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Gabor Wavelet Representation
for 3-D Object Recognition

Xing Wu and Bir Bhanu,Fellow, IEEE

Abstract— This paper presents a model-based object recogni- can be efficiently implemented. It allows the use of Gabor
tion approach that uses a Gabor wavelet representation. The key magnitude, Gabor frequency, and Gabor phase to localize
idea is to use magnitude, phase, and frequency measures of thegiacts to recognize objects under different scales, and to

Gabor wavelet representation in an innovative flexible matching timat . d fi | traint h
approach that can provide robust recognition. The Gabor grid, estimate precise pose under operational constraints (such as

a topology-preserving map, efficiently encodes both signal energy 0cclusion, high clutter, etc.) for automatic target recognition
and structural information of an object in a sparse multires- (ATR). It can be used to detect interesting features such

olution representation. The Gabor grid subsamples the Gabor as contours and periodic patterns. The representation is less
wavelet decomposition of an object model and is deformed 10 gepitive to small perturbations of contours that are commonly

allow the indexed object model match with similar representation d f tchi biects in inf di The Gab
obtained using image data. Flexible matching between the model used for matching ODJeCts In Inirared images. e Labor

and the image minimizes a cost function based on local simi- filter responses, constituting the core of the representation,
larity and geometric distortion of the Gabor grid. Grid erosion  are expected to be robust to misalignment in the spatial and

and repairing is performed whenever a collapsed grid, due to frequency domains, and are less sensitive to partial occlusion
object occlusion, is detected. The results on infrared imagery 5t |east for some frequencies and orientations.

are presented, where objects undergo rotation, translation, scale,
occlusion, and aspect variations under changing environmental .
conditions. A. Definition of the Problem

The goal of the research presented in this paper is to use a
|. INTRODUCTION model-based recognition paradigm to recognize 3-D rigid ob-
jects with varying appearances, signatures, and possible partial

ODEL-BASED object recognition in real-world out- L : . .
i o .occlusion in highly cluttered sensor data. Distortions involved
door situations is difficult because a robust algorithm

. ; N In most ATR scenarios are induced by 2-D projection of a 3-
has to consider multiple factors such as: i) object contrast, sig- |, . : ; : . .
ST T ; object, sensor noise, object occlusion, and articulation. Also
nature, scale, and aspect variations; ii) noise and spurious |

W. . ) . . :
resolution sensor data; and iii) high clutter, partial object OCC|§2r mfrare_d 'mages, the S|gnatur_e_ of an_object W'Il change with

. . . .. changes in environmental conditions, like the time of the day,
sion, and articulation. Current approaches use shape primitives

silhouettes and contours, colors, and invariant object featu%'[c, temperature, vehicle operating conditions, etc. All these

for matching. The performance of these methods is accepta ad to distortion between object models and their images

when objects are well defined, have high contrast, and T(:r(()jlected by a sensor. Gabor wavelet filters have potential
a

-, o) c{esolve these problems because they are less sensitive to
at close ranges. However, the recognition results generate

bv these anproaches do not aracefully dearade and rodn"(|:|nor viewpoint variations and can tolerate small local shape
y bp 9 y ged ProdiiSortions caused by the above factors. The Gabor wavelet

high false alarms when competitive clutter and object shape : :
. i . X . epresentation can help to reduce/correct these various errors.
distortion are present in the input data [4], [6]. To improve Given a series of two-dimensional (2-D) intensity images

the recognition performance under multiscenarios and varying input, which may contain instances of the modeled objects

, " a
environmental conditions, model of sensors, atmosphere, %Hg system will then detect and identify each of the objects
nd determine its pose (or aspect), or it may report that none

background clutter are helpful in addition to the geometrlfg‘:
model of an object. Usmg.onlyamlnlmum set of object mode& the modeled objects are present in the input image. The
and sensor model, multiscale Gabor wavelet representation” ~ .. . . : )

i : . . ) recognition process verifies a given object hypothesis that uses
of objects and a flexible matching mechanism described ,in . ) ) !
both global and local image information produced by detection

this paper can potentially help_ to improve the recogmﬂognd indexing algorithms. Generally, there is more than one
performance under real-world situations.

The use of Gabor wavelet representation to recognize thrggJeCt hypothesis for a given region-of-interest (ROI) in a test

dimensional (3-D) objects is motivated by the fact that ag'age, and the hypotheses may consist more than one object
: o class and pose
compared to popular edge-based representations, it is a ric h this research, we are working with objects, such as
multiresolution representation with sound theoretical basis a{wJ . ! . . ' .
ank, jeep, truck, high mobility multipurpose wheeled vehicle
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TABLE |
RELATED APPROACHES FORMODEL REPRESENTATION AND MATCHING
Object Image
X Approaches Advantages . Drawbacks
Dynamic link + Gabor filters for local - no multi-scale matching
architecture pattern structure - unguided deformation
Gabor (Lades [19]) -+ tolerate distortion -no occlusion
Decomposilion + noise-tolcrant - no indexing support
l Hierarchical + noise-tolerant - rigid template matching
correlation + fast - no rotation /scale handling
(Rosenfeld [22]) - no occlusion
Global & local éo%alized ab-_ieidt“‘ Pattern Tree + tolerates global distortion |- no rotation/scale handling
measures for indexing a ;rll—dmigar:em ¢ (Burt [12]) + mpust local matchix}g - no indexing support
P + efficient representation
Aspect |index Region of |Interest -+ partial ocelusion
e A 1| Multi-Resolution ¥ tolerates local distortion - expensive unguided deformation
: l Ilastic Matching + coarse-to-fine matching - no occlusion handling
i | Bajcsy [2]) - no indexing support
I Dynamic . (Bajosy (2] g supp
Model Base . Grid Placement| 1 . i
: X R Gabor Grid 1 Stereo Matching + use of Gabor phase to guide | - 1-D matching
| Mglt;}-re.\‘glbgi]l(‘)n : (Sanger [24], matching - norotation/scale handling
I apor Lrids o i Fleet [15]) + coarse-to-fine matching - no indexing support
: Loop a Loop b L | + tolerates distortion
| : Geometric + 3-Dindexing - requires explicit structural features
! Invariants + large aspect range - limited number of useful invariants
I ible Matchil ' ;
| a) Flexible Muatching : (Forsyth [16])
: Grid Index b) Grid Repairing i Multi-scale ) + steerable filters for local - scale and scene clutter sensitive
| ] I Steerable Fillers pattern structures - no occlusion
| ‘ : (Ballard [3]) -+ handles rotation - excludes boundary points
: h + supports indexing
| A Evaluation : Linear combination |- generate new aspect using | - sensitive to scene clutter
Lf(fgs_()f_ﬂlc_‘hfsls __________________________ H of models existing aspects of model |- sensitive to distortion
(Ullman [25]) t 3-D indexing

Object Class and Pose

Fig. 1. Object recognition is an iterative process of matching.

paper) detect the ROI of an object, and generate hypotheses
aspects is computed theoretically and verified experimentaipt a particular aspect of an object, respectively. Objects are
by considering factors such as the size of the object, the rangigected using tuned Gabor filters [9], [10]. Global and local
to the object, the depression angle, the quality of the sengggasures used for indexing are based on the axis of the least
data, variations of object appearances, and the design of Gab@ment-of-inertia of the ROl and other local phase-based
wavelet filters [9]. measures, respectively [10], [11].

Given the ROI of the image, initial matching is performed

B. Our Approach between hypothesized object models, represented by Gabor

| del-based obi . h. 3-D mod rids, and Gabor decomposition of the object image using
n our model-based object recognition approach, 3-D mo Sgrid-placement algorithm to quickly find the location and

of objects are obtained from Gabor wavelet decomposition o e of the object in the input image. Then, flexible matching

series of wewer-cent_ered 2-D images of the objects at varioys darformed by allowing deformation of the model about
aspect and depression angles. These models are gener%t

) . ) : . ._thiS location. The precise alignment between the model and
off-line by either using available real data or by simulatin P g

geometric models of objects and sensor models. Although %r"a object is obtained after performing Gabor phase-based

models corresponding to one object are closely related, eaec\:ﬁluatlon' The matching results for all hypothesized object

. : o models are evaluated to select the best match. This is shown
model is treated as an independent model for recognition.

Both object models and images are represented by the mga_theLoop ain Fig. 1. When object occlusion is present, .
nitude and phase responses of multiscale Gabor wavelet f”tgrgrlld—repalrlng process starts to detect and remove subgrid
(Gabor decomposition). The magnitude responses measureqﬂré'or,‘s th.at correspond to'the oc;cluded pgrts 9“ the object, and
localized signal energy and the phase responses encode iCNing is performed using this dynamiefaired Gabor
relational structure of an intensity patte@abor magnitude 9"d- This is theLoop b shown in Fig. 1. Note that Gabor
is used for matching between an object and a model, baseodgﬁomposnmn.of an inputimage is a noniterative computation.
local energy patternsSabor frequencys used to estimate the OPiect model is represented by Gabor grid (for details see
scale variation of a given object from the modshbor phase Section 1I-B) instead of an image. Gabor decomposition of an
is used to evaluate the matching result in terms of averag@€ct image is matched with model Gabor grid to recognize
local image displacement between the model and the objed?. Object in an image. o
Objects are recognized when they successfully match with al e reasons our approach is important for model-based
specific model based on distinctive local features in the Gagjiect recognition are as follows:
wavelet representation. 1) It does not require any image segmentation to extract

The general scheme of our system is depicted in Fig. 1. objects from the background.

The focus of the paper is model-based object matching.2) It does not need explicit shape features and contours
Objectdetectionandindexing(which are not the focus of this which cannot be reliably detected.
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Gabor Probe

Fig. 2. Example of a Gabor grid. A vector of Gabor wavelet coefficients, which is cal@db®r probe is stored at each node of this grid. Edges between
nodes represent geometric constraints between probes, and can be deformed like a spring during matching.

3)

4)

5)

C. Related Approaches and Our Contribution
The related approaches for model representation and match-—

It can tolerate significant amount of object distortions
due to viewing geometry, scale, aspect and environmen-
tally induced deviations.

TABLE 1
OUR APPROACH FOROBJECT RECOGNITION
VERSUS THEDYNAMIC LINK ARCHITECTURE

It allows us to recognize objects at different scaleg

since we can estimate the scale of an object using theg,...

multiscale Gabor wavelet representation of an object

Features

Dynamic Link Architecture
by Lades et al. [19]

Our Approach
This paper

2-13 object recognition

3-12 object recognition

Hepresentation

uses Gabor magnitude only.

nses Gabor magnitude, phase
and frequency.

model.

Occlusion

cannot be handled.

can handle up to 50% object.
occlusion.

It allows precise estimation of scale/pose alignmen
between an object and the model by making use of local

Seale varintions

canuot be handled.

can handle up to 3.5 octaves (v/2)'
scale variations.

Distortion criteria

simple evaluation criteria.

comprehensive evaluation criteria.

Gabor phase-based measures.

Grid deforiation

fixed anncaling temperature

varying annealing temperature

Placement of
model templatc

initial placement of the template
by heuristics.

initial placement of the template by
speedup grid-placement algorithm,

ing are summarized in Table I. Note that indexing is the
process to hypothesize which object (and its aspect) exists
in an image. Not every recognition system has indexing 1)
subsystem, but indexing is necessary when the number of
models is large. The most closely related work is the dynamic
link architecture technique by Ladest al. [19]. The key
differences between our approach and this technique are)
summarized in Table II.

The main contribution of this paper is to use Gabor wavelet
representation to recognize 3-D objects under scale, rotation3)
translation, and significant distortions in shape and appearance,
and under real-world changing environmental conditions. The4)
principle is to use magnitude, phase, and frequency measures
of Gabor wavelet representation in an innovative flexible 5)
matching approach that can provide robust recognition. The
key features of the approach are as follows.

Imagery used

tested with simple images withou!
background.

tested with both real visible and
infrared images acquired under
changing weather conditions.

Gabor magnitude, phase and frequency are used in
model Gabor grid placement, flexible model matching,

handling target scale variation, and evaluation of match-
ing for precise alignment.

The distortions in shape and signature of objects are
measured by the geometric constraint of the model
representation.

Several evaluation criteria are used to measure the
performance of matching and recognition;

Obiject occlusion is handled by grid erosion and repair-

ing.

Obiject signature variation with changing environmental

conditions is handled by simulating object models and

anticipating performance degradation in the real world.
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Il. GABOR WAVELET REPRESENTATION and orientation bandwidth can be defined as

Gabor wavelet representation is the set of Gabor functions 27
that are self-similar and differ only by a quadrature phase shift, Awy = or Aw,  Afy = 2 arctan(
dilation, and rotation. Gabor functions are joint spatial and _ . ) .
frequency domain measures, and are localized transformationSI"C€ We want to be able to recognize objects at different

in both domains. Gabor functions have many degrees %ales and orlentatlons_, we chose f_||ters to maximize responses
freedom that allow their spatial and spectral characteristics/fJ Seven scales and eight orientations. Corresponding to each
be optimally adjusted to a specific visual requirement. GabBfe": We have a magnitude and a phase response. The high-
wavelet filters have been used to solve a variety of ima@@d low-frequency Gabor filters behave like edge detectors

processing and computer vision problems [9]-[11], [13], [15fNd lowpass filters, respectively. _
[17], [19]-[21], [26]. In this paper, Gabor wavelet fllter@J“ are defined by

seven logarithmically spaced center frequencies (filter bands)
and eight orientations for each filter band. Thus, we sample the
frequency domain by 56 bandpass channels. These filters are
The general form of a 2-D Gabor function [14] is given ag,dexed byk € {0,---,6} (frequencies) and € {0,---,7}
, 2 , 2 (orientations). The reason one expects 56 different Gabor fil-
G(z,y) = exp {_W[(%) + (y_) ] } ters treated as being of equal importance should be considered

AT W )

A. Gabor Functions and Gabor Wavelet

@g a good representation for an object is that we do not know the
cexp{ifu(z—z;) +vly—w)]} (1) scale a_nd orientation of objects. As 51 r_esult, we tref\t the 56
w=wy, cosy , v =wy sin b Gabor f||te_r responses equally. Iq the “grid plagement process
, . (see Section llI-A), we also estimate the object scale using
T cos g Singg ||z — x; :
= . these Gabor filter responses.
Yy —singg cosdg | |y —yi

Other parameters of the filters are

where(z;, ¥;) is the spatial centroid of the elliptical Gaussian
window whose scale and aspect are regulatedsbynd

a, respectively.w;, and 6; (k, [ € AN) are the modula- The gize of the Gabor filters varies with the change of center
tion frequency and direction, respectively, apd v) are the  fraquencies (see (2) and subsequent equations in Section II-
frequency components in x and y directions, respectivelyy The range of the center frequencies is selected according
The scales controls the size of the filter as well as itg the size of the object, so that local information can be
bandwidth, while the aspect ratioand the rotation parameterydequately represented by the wavelet. It is betweghand
¢ (generally set equal t6;) control the shape of the spatial; /16 in our experiments. Using half-octave/) modulation
window and the spectral bandwidth. _ frequency ratio creates a 50% overlap between filter frequency
Multiple Gabor kernels with various frequencies and oryng grientation bandwidth. Although the representation is
entations, which cover the whole spectral domain, can BGercomplete, it helps to represent an object in a smoothly
organized to sample an image into bandpass energy ch@ning manner with different scales and tolerate increased
nels—image decomposition [9]. These are localized transforgignect distortions. Note that the filters exceed the spatial
when compared with Fourier transform, such that the extent @fhension of the objects for most frequency ranges and

one local measure is limited to a small neighborhood defingshaiions on the grid. Consequently, the representation is
by the size of the filter kernel. inherently a measure of object-plus-background phenomena.

By representing Gabor wavelet filters as a set of self-similgf, o responses of the filters depend upon both the object

and dilated quadrature pait; = ={GJ ., G,  } thelog- ang background. Lacking an explicit segmentation phase to

polar sampling in the freguerfcy domain generated by the 2efstinguish object from nonobject signal, most of what is
wave propagation vectap, ; is given as measured depends upon both.

The bandwidth-frequency ratid also determines the num-
ber of aspects needed for recognizing an object. ¥Ferr /4,

wherek is the frequency index of the waveldt £ 0, - - K), aspeqts are needed_for _every’AA simplified proof (assuming

[ is the orientation index of the wavelet & 0, --- L), a periodic pattem) is given below. .

and p is the scaling factor of the wavelet. In a biologically Let 5 be one of thdocal planar surface patch of an object,
inspired scheme, different Gabor functions in the Wavelg‘pd Sa _and Sp _be the area of the sgrface patch seen by the
representation have sizes distributed in logarithmic steps, stifwer in locationA and B, respectively. Let. the azimuth
as one octave or half-octave. Also, the modulation frequen gle betweend and B be 4, and the elevation angle for

increases proportionally with the reduction in scale these two aspects is. Then, we have following relationship
betweenS, and Sg:

a=1, p=v2, wy=n/16, 6p=n/8 and \ = /4.

1/?&1 = Wk Giel, where wWE = pk wo, and 0, =106 (2)

1

Ok = O0k=1y Wk = Pk and o wr = 0p—1 Wr—1. Sp=S4cosf-cosa.

By introducing a new parameter calldindwidth-frequency SupposeS contains a periodic pattern of frequenfy. Due
ratio A = 27 /(orwy), the wavelet filter kernel's frequencyto the foreshortening effect, at locatidhthe frequency of this
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periodic pattern will change t€,. Then,Q; can be estimated B. Model Representation

approximately as The Gabor wavelet decomposition of an object imége),
Q, obtained by convolving it with the complex Gabor wavelet
2 & s’ filter kerneIsGwrk , Is an iconic multiresolution template. To

reduce the interﬁixel redundancy, subsampling this template
Here, we ignore the distortion due to the rotation in thterms a Gabor gridGp that covers the object witv x M
elevation direction. nodes (verticed’’) in the x andy directions, and edge(),
To answer the question of how many model aspects a@espectively. ThusGp = {V’, E'}.
needed to represent an object in order to cover all viewingl) Grid Nodes: Each nodev; € V' is a triple, -v; =
parameters, we can simply take a look at the relationship of tfre;, Rj’, R} } wherex; is the image coordinates of grid node
two signals in the frequency domain. If the highest frequengy(with respect to some normalized coordinate frame). Nodes
channel in our Gabor wavelet is tuned to frequeflzy(since are selected with fixed distancB;,q.. from neighboring
high frequency channel has wide bandwidth), then the periodioedes for a model grids; = (zo +nDspace, Yo +MDspace),
pattern inS 4 will have a peak response &. where @,m € N). R;r and R} are vectors of lengthk L
Correspondingly, the periodic pattern $ will have a (where K is the total number of frequencies, addis the
peak response af, using the same Gabor filter. So, thdotal number of orientations of the wavelet) referred to as the
maximal distortion between these two signals with respesine and cosine parts of ttf@abor probe
]Eo pea_lk respopsg in frequency 45} /2. Then, we have the RE[h 0] = (I+G* )], and R [k, ] = (I+G )]
ollowing relation: J P, /L J P (13)

0 0 where(GY | G ) is a Gabor wavelet quadrature filter pair
cosfim — R —— . W1 T r ! _
QG+ AQ/2 (cosine and sine components of a Gabor filter) with center
frequencyw; and modulation orientatiog;. With frequency
where AQ2; is the bandwidth of the Gabor filter, and spacingA,, and orientation spacing\,, = = /Ny, wi, and §;
can be computed as
Al = Ay wk:wo-Afﬁ. fOI‘OSk‘SN—l
here X is the bandwidth-frequency ratio defined in the paper. and
Therefore, we have pr=¢go+1 - Ay foro<I<L—1.
1 ¢o is taken asd® and D,yq.. is either 11 or 13 pixels for
cos 8 = 157/ A2 the experiments reported in this papeR,fq.. is 11 pixels

for all the results shown using real data with the exception of

From the above equation, we can see that the numiexample shown in Fig. 11, for which,,,.. is 13 pixels. For
of object aspects needed to cover all viewing aspects af simulated data used in this papé?,,q.. is 13 pixels).
independent of the filter's center frequency and the frequencyNote that the grid spacing is slightly larger than the width
of the periodic pattern. This claim is restricted only to locabf the smallest kernel. We intentionally chose the spacing of
structure of the object, since Gabor representation is localizéite grid to be slightly larger than the width of the smallest
Thus, it is thebandwidth-frequency ratia that determines the kernel, since a single object model is used to recognize objects
number of aspects. Fot = 7 /4, model aspects are requiredwith different scales. When matching object and model with
for every 44. different scales, the grid edge needs to be scaled accordingly.

It is our intention that the wavelet cover the entire objecTherefore, the smallest object that can be recognized by our
In order to recognize objects with all possible aspects, objenbdel is constrained by the size of the highest Gabor filter
model is sampled (foA = 7/4) at least for very 44to cover center frequency and the spacing of our Gabor grid. This is
the entire object. discussed in detail in Section IlI-A (see (7)).

In our experiments, the size of the filters varies from»x1  2) Grid Edges: The role of the graph edges; € E’
11 to 89 x 89, and size of the correctly recognized objects to represent neighborhood relationships and to serve as
varies from 256 pixels (1& 16) to 16K 120 x 120) pixels. constraints during matching. They are interpreted as elastic
The kernel, 89x 89, may seriously over sample the imagdinks, such that an edge can be deformed like a spring to make
However, note that we do not know the scale of the obje@.model probe match with the Gabor decomposition of a dis-
Some filters will approximately match the size of the objedbrted object. The length between two nodgs= ||x; — x;||
within chosen ranges (256 pixels tal6K pixels). We do not and angles between edges serve as initial constraints. Thus,
discount responses where part of the kernel falls outside tihe deformation can be measured and penalized immediately
object, since the scale of the object is unknown. It is possibdering matching.
to design a filter set and the associated recognition schemé&ig. 2 shows the Gabor grid and Gabor probe representation.
for objects whose size may be smaller or larger than the fili€he magnitude of the Gabor probe is used to measure the
set used in this paper. However, note that when objects aimilarity between matched local features, while the phase of
far from the sensor and have only few pixels, this and aryabor probe is used to fine tune the matching result. The
model-based recognition approach will not be suitable. extracted information (both signal energy and local pattern
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(© (d)
Fig. 3. lllustration of grid placement algorithm. (a) Object image. (b) Mar- Py

D.!‘pa(.'ﬁ

ginal magnitude of the object image Gabor decomposition. (c) Search region O3
for object localization. (d) Similarity surface between the image decomposition

and a specific model Gabor grid.
Fig. 4. lllustration of length and angular deformation of the Gabor grid. The

structure) associated with each probe spans a mgltiresolutgfg %rgzjeﬁngg;j ;Zdiowg edges with respect to the undeformed grid (in
neighborhood whose size equals the extent of the filter kernels.
Each Gabor probe is pictured as a “Hanoi tower” in Fig. 2,
which is a set of concentric multiscale disk platters, whe@bjects” box in Fig. 1) where maximal similarity between a
the low-frequency channel is the large, thin platter, and higftodel grid and Gabor-based image features of an object is
frequency channel is the small, thick platter. It records Gabaghieved. At this stage of the matching process, the hypoth-
wavelet decomposition of an object at a spatial locatiovith  €sized model Gabor grid+;4., generated by the indexing
certain spectral externkwy,. It also represents the fact that theorocess that potentially corresponds to the object aspect is
low-frequency channel extracts coarse image features in a laR§sitioned atx; 4., scaled bys;q,, and rotated byp;q, to
neighborhood, while high-frequency channel can extract fifigflect the pose and position of the potential object aspect
localized features in a small neighborhood. Aidz, while the grid is kept rigid as in

The grid may suggest that we are making localized measure- B %56 0 i ,
ments associated with object parts. However, note that the grid Gide = Vide, Bide} = Gige = Vide) Biao}
node records the localized features at each spatial location, gphe
the grid-edge records the spatial relationship between nodes.

We are not doing explicit parts-based object recognition like vy = {xy, Pj+, P} ity v;»
the work of Biederman [7] and others. = {x+ Ss.0(X;), Ss.6(PF), Suo(P7)} (4)
- S, 371 8, J /s, J
Ill. FLEXIBLE MODEL-BASED OBJECT RECOGNITION eij=dij %50 ¢ j=s5-di; (5)

The flexible object recognition process includesnipdel
grid placementii) flexible model matchingand iii) evaluation
of matching Initial matching (model grid placement) betwee
the Gabor magnitude response of an input image and
hypothesized model is performed to find the location of an S, (x) = [cos¢ —Sind)} (6)
object in an input image where the model grid is to be placed. @ sin ¢ coso |7
Flexible matching performs model and image matching based . X
on deformed model Gabor grid, and fine tunes it using GaborVhen the scale factos is a power ofA, (s = A for
phase information. Also, grid repairing is performed whenevéPMek € A) and the orientatior is a multiple of Ay, the
a collapsed grid indicating the presence of an occluded obj@@0Vve transformation corresponds to deriving @ new model
is detected. Finally, evaluation of matching is performed @1d 9 at @ given scale by scaling down edges of the Gabor

select the best matched model by following the selected rul@§d by factors, and shifting and rotating Gabor protig at
each nodes; from the corresponding frequency index and

orientation ¢,.

for all v; € Vig, ande; ; € E;q,. The functionS; 4(), which
rperforms a scaling and rotation operation on the grid nodes,
isadefined as

A. Model Grid Placement

The goal of model grid placement is to find the spatial { € Gj/(\/i) ) 7)
location in the object image (ROI passed by the “localized Pi(wr, p1) = Pij(w—s), P1-s)-
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@ (b) @ (b)

© (d) © (d)

Fig. 5. lllustration of the quality of flexible matching. (a) Model image. (b)Fig. 6. lllustration of phased-based evaluation. By projecting points from

Object image. (c) Matching result. (d) Projected model. object (b) to model (a), matching errors are estimated in terms of local
image displacement (c) measured by their local phase difference between
the corresponding point in (a) and (b). Object and the backprojected model

In cases is not a power ofp or G is @ not a mulple of (10 2 by eies) e shoun 1 (0 o lswle 1w e metching

A,, we can either i) round the scale fac®to s’, which is

the closest multiple of the frequency indexin (7), and let

the subsequent flexible matching overcome this small scale a common frequency

distortion in Gabor decomposition (note that the grid edge -

will be scaled according to the exact scale facsdror ii) (i, Yjs Wr) = Zm(xi’yj’wk’el)' (8)

implement a suitable interpolation scheme over scale and o

orientation. Object scale variation that can be handled by our |t generates the magnitude response for a specific fre-

recognition system is constrained by the number of center quency. At this stage in processing we want the greatest

frequencies of the Gabor wavelet and the edge length of the magnitude without regard for orientation.

model grid. 2) Get an estimate of the object’s spatial cent) by
When the object scale is unknown, our multiscale represen-  computing the center of a rectangular bounding box

tation of the model can help to estimate object scale using the for which themarginal Gabor magnitude defined in (8)

grid placement algorithm given below. Since the object image  for the lowest filter frequency band is greater than the

decomposition by a Gabor filter with a specific frequency  threshold¢. In our experiments we have set= 1/3

corresponds to a representation of an object at a specific scale, of the maximum magnitude. Note that this step of the

by computing the similarities of these representations between algorithm is different from the “localized objects” box

an object and a model grid, it allows us to estimate the object in Fig. 1.

scale. 3) Start the grid-placement algorithm in the area of the
Since Gabor wavelet representation captures both coarse object image defined by + AA/2, where AA is

and fine information of an object, it is possible to combine  based on the size of the image. The grid-placement

this information to locate the existence of an object in an  algorithm computes the similarity (defined in Section

image [13]. By focusing our attention inside the ROI, we can  11I-B2) between all model grid nodes and the Gabor

safely assume that the high-magnitude response in the lower- image decomposition at corresponding spatial locations

frequency channel suggests that there is a possible interesting with respect to the centroid of the model grid.

object in that region. We start the matching process by placing4) Select the local similarity peak computed by the grid-

the center of the model Gabor grid at the location where the  placement algorithm in the candidate region as the grid

high Gabor magnitude response is obtained in the image. Now placement index, or expand the image region under

the correlation between the two is performed. consideration byt A if the similarity peak falls on the
The location of the maximum correlation is used as the  region boundary.

initial placement of a model grid for subsequent flexible Note that the information regarding the region-of-interest

matching. The key steps of the algorithm are given below. of the image is given to the box labeled as “focus” box in
Grid Placement Algorithm Fig. 1. We know that something is of interest in this ROI but
1) Compute themarginal magnitude response of Gabomwve do not know exactly where to place the model Gabor grid

decomposition of the object image by summing up thier matching. It may be near the center of ROl or some other
magnitude responses from all filter orientations but witlocation. This is why we need the model Gabor grid placement
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algorithm (and step 2) of this algorithm. As is traditionally
done, ROI will also have a small number of background pixels
all around it, and there is a potential object inside it. 1
An example is given in Fig. 3 where the image is of size
300 x 200 pixels. The grid-placement algorithm has detected
the high magnitude response region using rirerginal mag-
nitude response shown in Fig. 3(b), and the computation is
restricted to a small region, which is the potential center () (b)
of the object, shown in Fig. 3(c). The size of this region
(AA+1)x(AA+1)is 31 x 31 pixels. The global similarity
peak between the model and the object shown in Fig. 3(d) is
correctly detected inside the search region (marked as “+” =
shown in Fig. 3(c). The search region is dramatically reduced
when it is compared to the whole image. In this experiment,
responses from filters at eight different orientations for the
lowest filter frequency band (see Section IlI) are used to
generate the boundary of the search regitat+1)x(AA+1),
56 filter responses of the whole filter set are used to compute y | . .(;)( e 4 (hin tine) and |
imilari i i g. 7. Repairing a collapsed grid. (a) Connected (thin line) and comple-
:]hoei ﬁmféltzostﬂaggsl; Zg-tﬁ(ed)e-xgtr;tsl éhﬁtates fggégicarﬁ%m;ye rg;iﬂd“Zi‘;iiliﬂe’ of a Gabor grid. (b) Collapsed grid. (c) Repaired
there is a single peak response toward the center of the image.
If the bright spot (Fig. 3(c)) is located near the boundary, step
3) and step 4) of the algorithm will take care it. In step 3)
there will be low similarity, and if the peak is located near the
boundary (as the case will be depending upon how close t
bright spot is to the boundary), in step 4), the image regio
under consideration (i.e, the size of ROI) will be expanded
The computational efficiency of the algorithm will depend
upon the size of the region. In general, the process can
repeated for each location that has a high marginal magnitude
response of the Gabor decomposition. (€Y (b)

B. Flexible Model Matching

After object localization, flexible matching starts to veri
the hypothesis for a model by moving nodes of the modg
Gabor grid locally and independently to find the best matche
image probes. In this process, the 2-D image of an obj
with small aspect distortion from the model is matched
small, local elastic deformations of the model. When external
forces are applied, an elastic model/object is deformed until (©) (d)
an equilibrium state between the external forces and interg. . occluded object (40%) and results after grid erosion. (a) Occluded
forces resisting the deformation is achieved. This equilibriunbject. (b) Initial matching. (c) Grid erosion. (d) Final result.
state can be described as

function of flexible matching

8
pV2U 4 (7 + ) o £ F =0 )

Ix N

N
C=pYy Dlw)-Y SPF, PM) (10)
wherex is the coordinate of the object image representation, ! !

is the displacement of the deformatidnijs the external force, where N is the total number of grid nodeg, is the elastic
and . and~y define the elastic properties of the model/objecparameter that controls the grid deformatian. is a grid

To find the equilibrium state when the deformable model gricertex, andP’ and P are the image and model Gabor

is matched with an image decomposition, the external forcesdacompositions, respectively. Note that for model Gabor nodes
(9) are estimated by the extent of deformatioat which the their values remain the same at all time, only the matched
best similarity between the object and the model is achievathage probes change. During flexible matching the node
This can be expressed as an iterative process that minimipesitions change as the model matches with the image probes.
a cost functionC balanced between grid deformati@h and 1) Grid Deformation: To compensate for small aspect vari-
local similaritiesS. Therefore, we can rewrite (9) as a cosation between a model and an object, and changes induced in
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images as a result of varying environmental conditions suphoportional to the magnitude of the smaller of the two vectors.
as time of the day and air temperature, grid deformation Tée rationale behind the similarity metric between two probes
allowed to find optimal and localized matches between modslas follows. It should be maximum when they point in the
Gabor probes and Gabor decompositions of an input imagame direction (first term) and have about the same magnitude
Since in this paper we are working with rigid objects, thésecond term). Since we want to minimize the similarity
Gabor grid has to be topology preserving. By grid deformatiobetween a model probe and an image probe that may arise
we mean that the edges of the template are stretchedfram the background in the image, the similarity should reduce
squeezed like a spring, whereas the information stored at edghthe minimum of the relative magnitudes of the two probes
node (Gabor probe) is unchanged. When a node moves ifsacond term), and it should further reduce by the lower of the
small tolerable extent, the Gabor probe associated with tmesgnitude of the two probes (third term).

node also moves, and the edges connected to this node ade addition, we have to consider the differences between
deformed. Note that the warping of the grid may imply abject appearances due to environmental changes such as time
warping of the image neighborhood and warping the Gabof the day and air temperature. As an example in visible
wavelet filters in a corresponding manner. Further, warping ahd infrared images, changes in time will cause an object
the grid may indicate that the local image structure has warpedth a fixed viewpoint to have different signatures or absolute
and hence the same Gabor filters actually measure differenttrast. These changes will be primarily reflected in the third
properties of the image. However, note that our representatienm in equation (12). Since we want to be able to recognize
can only handle image warping due to aspect changes tolgects under varying environmental conditions, the third term
certain degree. Under this restriction, the Gabor filters respornis€12) is dropped, and a normalization facipis introduced

is invariant to the small warping, since we are using 56 filtets provide comparable similarity measures for different object
responses (with different orientation and center frequenciesynatures obtained under varying environmental conditions.

instead of one. The environmental conditions invariant metric is
To precisely estimate the deformation of the Gabor grid, _ ., . 1 p.J (181 14
two kinds of measures are used. Namely, theylengthand S(P,Q)=- ————min| —, = | (13)
angular deformations as shown in Fig. 4. They are computed TPl A 1127
by comparing the deformed grid with its original structurd Practice, we choose to be
which has fixed lengthD,,,.. and a rectilinear grid. The . ||ﬁ|| ||j||
deformation for a node,, is then calculated as n= m, ﬂ
3 3 2
5 .
D(Uk) = z% (di - Dspace) + z% (ai — 4/ df + dz‘2+1) . wheref: {j;: : max( HP{|’|’ : hjf}* H )7 Y probeic}. (14)
1= 1= . k

11
The first term in (11) measures the grid length defomgatiz)nﬁﬂther (12) or (13) can be used in (10) depending upon the
is zero for rigid or shear transformation. The second term mdged for multiscenario recognition (see Section 1V-A). For an
sures the angular deformation of the grid, which is zero und@plect m_ode_l obtained in a speC|f|c envwonmental condition,
a rigid transformation. In order to make both measuremerfi Metric given by (13) will provide approximately constant
compatible, they are in the form of distance measures that §f@ilarity as the environmental conditions change. Note that
proportional to the length of the grid. It can be seen frofpr (12) the 5|m|lar|ty will increase as th_e contrast between
Fig. 4 that for the movement of any single grid naBeonly the.m(_)del {:md the image decreases. Likewise for (12), the
the similarity measure foP and deformations betweeh and S|m|lar|ty.W|II depreases as the contrast between the model
its four connected neighbor€)(, - - - , Q3) need to be updated.and the Image Increases. L
Thus, update of the cost function (10) during matching can beTh,e flexible match'lng algorlthm that minimizes (10) based
executed in parallel. on S|m_ulated ann_eallng [1_8] is given below.

2) Similarity MeasurementGiven each Gabor probe given ' €xible Matching Algorithm

by (3) as a vector of Gabor wavelet decomposition of mag-1) Use the location generated and the scale estimated by
nitude at a spatial grid location, the match of local features  the grid-placement algorithm as the initial placement of
between probes from a model and an image corresponds to a the model grid on top of the image decomposition with
search of maximum similarity between a model Gabor probe the estimated scale factor.
and an image probe. The similarity between two measured?) For each grid node of the model (visited in random

Gabor probesP (model) and@ (object) is computed as order), take a random step A move s for a node is
follows: valid and can be accepted if either
. . - a. the global cost is reduced due to this move, or
S(P, Q) = ﬁD'Qﬁ min <”Pi”, @) min (||ﬁ||,||(§||)_ b. changes in costAC satisfies a probability
(PEimied 1l 121 exp(—AC/T), where T is the annealing tem-
(12) perature.

The first term in (12) measures the angle between veetand
(). The second term compares the length of the two vectors3) The matching terminates and produces a deformed
The third term is used to make the similarity measurement model grid if either the matching reaches a desired
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only when a small shiftAx is made. Due to the fact that

a shift of an image in the spatial domain corresponds to a
phase shift in the frequency domain, we can estimate this
shift Ax by A¢/wy. It is approximately true for Gabor filters
under conditions that most of the energy of the Gabor filter is
contained within the Gaussian envelope and constant relative
bandwidthA (see Section II-A) is maintained [24]. Our Gabor
filter design meets all these requirements. Therefore, Gabor
phase-based evaluation allows precise model/image alignment
which, in turn, allows the estimation of pose.

Since phase difference is restricted G-, x|, the
maximum image displacement estimated is limited to
(—m/wy, w/wg]. Therefore, in Gabor wavelet representation,
low-frequency filters can estimate large displacement with
less accuracy, while high-frequency filters can estimate small
displacement with more accuracy. However, phase-wrapping
is expected when large shape or signature distortions are
present. Phase-based measures will not be reliable in these
situations.
© @ The phase difference at center frequengyand orientation

Fig. 9. Four object signature under varying environmental conditions d@] between a model and an image probe is given as
picted in Fig. 10. All objects have a 10depression angle and different

aspects. The time of the day at which the signatures are simulated is also
shown. Changes in object signatures are clearly visible. (a) Frame 5 (11:00
am). (b) Frame 9 (3:00 pm). (c) Frame 17 (11:00 pm). (d) Frame 21 (3:00 am#{wy,, @) = O (wi, d1) — 0:(wi, P1)

R [k, URT [k, 1] + R [k, (| R [K, ]
(15)

@ (b)

cost, or the annealing temperature is freezing. If neither = arctan <
condition is satisfied, continue previous step with
temperature decreased by a cooling fagtor

The flexible matching process described above is controll%ere R+ and B-

o ) are thecosineand sine components of
by three parameters, the elasticity paramei@rthe annealing P

the Gabor probe (3), respectively. Thus, the translational

temperature disol tin the directi b timated

) and the cooling factor4). They are determined exper- isplacement in the direction af, can be estimated as
imentally. c_ontrols the degree of d_e_formafcion_ allowed for J _ Ab(wr, tr) 16
the Gabor gridZ" controls the probability of finding the best (wry 1) = ———. (16)

Wi
matched local probes inside the Gabor decomposition of an

object. The process starts with a high temperature and cool$Ve want to come up with an average displacement measure-
down generally at a constant rate until it is stable (the cost ment by using all available filter bands. To overcome noise,
cannot be reduced any more). The annealing settles upotha displacement estimates by different filter frequency bands
locally optimal configuration. Underestimating the valueuof with the same orientation are first combined [24] as

will derive a collapsed grid during matching. An overestimate

of the value ofy will keep the process from generating the d(¢n) = 2o Wwr, P)d(wr, ¢1) (17)
optimal matching result because the grid is too rigid. 2o wlwr, ¢1)

For the experimental results reported in this paper, th .
annealing temperatur®’ is set between 3 and 5, the elasti(‘f"ehere local magnitude responses of the modgl (wy, ¢;)

parametery is set between 0.8 and 2.5, such that the smafd the imagen; (w, ¢:) (indexed by filter frequency,) are

number allows more grid deformation, and the larger numb'é?ed as weight

allows less grid deformation. The cooling facdis generally _ (s 1)

set to 1.15. w(wy, ¢;) = min !
To illustrate the quality of matching under image distor-

tions, an example is given in Fig. 5, in which a matchegihen, the image displacement estimated [8] for the probe

model whose aspect is slightly different from the aspect ¢f computed as the weighted sum of estimations over all filter
the object isbackprojectedonto the object image using thegrientations ).

matched deformed Gabor grid. To backproject the model, the
transformation is calculated based on the relationship between

mi(w, 1)
mi(wi, ¢1) " M (Wis P1) | &

Zij p(di, 5 )d(;) sin ¢;

the mo:jti_l gri(_j and tg? matched deormled grid, and the bilinear dap) = = 2 (b, d5) sin(d; — ¢i) (19)
interpolation is used for gray-scale values. ol b (b 4
3) Gabor Phase-Based EvaluationAssume that the dy(p) = 2y P($ir 5)d95) cos b (20)

matched model and image are locally similar to each other 2245 P §;) sin($; — di)
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Fig. 10. Environmental parameter used to simulate the infrared object signature. (a) Solar energy and (b) air temperature changes for a period of 23
h are recorded on July 19, 1984, at Grayling, MI. (c) Recognition performance as measured by the “recognition power” for 23 infrared signatures of
an object in a day under different weather conditions.

where ¢ is the filter orientationj,j = 0,---,L — 1,d(¢;) is as the matching errdf for comparison. Similarly, the average
obtained from (17), an@(¢;, ¢;) is computed as pose can be estimated by using (23) for each probe.
Fig. 6 gives a quantitative illustration of how phase-based
d(¢s) d(¢;) . O : . )
) . (21) evaluation is used to estimate matching error. In this example,
d(¢;)" d(¢i) the aspect of the object and the model aré 50d 67.5,

Finally, the matching error for a proheis estimated in terms réspectively. Thirty-one points selected from the object image

o =

of amplitude and direction as (Fig. 6(b)), which are local high Gabor magnitude responses,
are backprojected onto the matched model (Fig. 6(a)) using
|d(p)| = 1/dx(p)2 + dy(p)Q, (22) the transformation computed by the matched deformed Gabor

d,(p) grid. The matching errors estimated for each of these points
fa(p) = arctan {d‘“ } (23) in terms of local image displacement are displayed by their
=(p) direction and magnitude in Fig. 6(c). Many of these errors are
Due to the observation that grid nodes are not necessafsociated with points in the front part of the object. This can
located at high Gabor magnitude response points, in dg verified by overlapping the two images together as shown in
approach, points selected from the image with high Gabbig. 6(d). An average local image displacement of 3.4 pixels
magnitude responses are used and backprojected onto ishebtained.
matched model. More accurate phase measures can be obtainddhe success of phase-based evaluation is based on the fact
using these projected pairs than using grid nodes. An averdigat distinguishable features in the interior of the object, which
of the local displacement estimated for all these points is usack likely to be preserved under aspect and shape distortion,
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@) (b) (©

(d) (e) ®

Fig. 11. Object signatures in an image sequence and the matching results. The full-scale object in the image sequence (object 3) is selected as the
model and matched with the other images in the sequence. (a) Object 1 (scale 52%). (b) Object 2 (scale 82%). (c) Object 3 (scale 100%). (d) Object
3 (model). (e) Object 1. (f) Object 2.

are available in the object image. Boundary points are sensitiveThus, it is safe to assume that the part of the grid having
to noise and background clutter and, therefore, they are motoncollapsed grid and high similarity matching result cor-

suitable for use in phase-based measures and we have not usgponds to the nonoccluded part of the object. Grid nodes
them in this paper. However, since we are deriving modeéi®m the hypothesized occluded part of the Gabor grid are
based on Gabor representation using sensor models andli8earded iteratively during dynamic grid refinement. The

D geometric models of the objects where boundary versimlowing processes are repeated until no more refinement is
internal can be determined, this information can be identifiedcessary: imodel grid placementi) flexible matchingiii)

and utilized in future research. grid repairing, and iv)new Gabor grid (SeeLoop bin Fig. 1).

4) Recognizing Occluded Object®ur approach for rec- Fig. 7 shows how the connected and the complementary grids
ognizing an occluded object can be described dyypamic are used to detect and repair a collapsed grid. We define the
modification of the Gabor grid through grid erosion andconnected-gridto be the same as its Gabor grid, and the
repairing processes performed during matching. The ideacismplementary-grids created by connecting the center of
to determine which subset of the model Gabor grid matcheach block in the connected grid (the thick lines in Fig. 7(a)).
with the nonoccluded part of the object in the image. Since aThe dynamic grid modificatiorprocess starts to erode the
Gabor grid encodes the localized signal energy and structugald, cutting boundary nodes from the Gabor grid one by
patterns of an object, the following two facts can be used tme, and calculating the grid placement again each time until
detect a potentially occluded object. either the collapsed and randomly matched part of the grid

]_) During flexible matching process, any Co||apsed griare removed, or the remaining grld moves to a new location

results only due to object occlusion, since part of theithout collapsing and random matching. The grid repairing

model does not match with the exposed backgroudgorithm is given below.

corresponding to the occluded part of the object in the Grid Repairing Algorithm

image. 1) Create the connected and complementary grids as graphs
2) A sub-Gabor grid corresponding to the occluded part  based on the deformed model Gabor grid.

has very low similarity measurement due to random 2) Detect and remove collapsed and randomly matched grid

matching with background clutter. nodes using the following rules:
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(b) (©

©) ©) ®

()

Fig. 12. Object model is matched with three objects having scale, aspect variations, and different signatures. The size of the images2@0 300
pixels. They are taken as the ROI from original images of size %1%12. (a) Model 1. (b) Object 1. (c) Object 2. (d) Object 3. (e) Second best
match. (f) Best match. (g) Third best match.

a. Anode is collapsed if the topological relationshigizabor grid as shown in Fig. 8(b). Three subgrids that survived
between this node and its four-connected gridfter grid erosion are shown in Fig. 8(c). After repairing,
nodes in the connected or the complementatiie remaining grid that matched with the nonoccluded part
graph is broken. i.e., a collapsed node will resulsf the object is shown in Fig. 8(d). To determine which
in “folding edges” in the Gabor grid. subgrid should survive, th&izeof the subgrid and thaverage

b. A grid node that is randomly matched with backsimilarity measurement of the subgrid are used to make a

ground clutter will generally have small normal-decision.

ized similarity (in our experiments it ig 0.3) , ,
C. Evaluation of Matching

3) Remove collapsed grid nodes and corresponding edgeg\s we have seen, successful object recognition is based on
according to their spatial locations and relationshipsaatching of Gabor probes in a model grid with the probes
Remove isolated subgrids (nodes), and subgrids whigbtained in an incoming image. Regardless of whether or not

are marked as randomly matched grid nodes. a corresponding object is in the model database, the process of
4) Repeat the flexible matching process using this repairgfatching always yields a best value forin (10). Successful
Gabor grid, and evaluate matching result. recognition tends to have small geometric distortions and

An example of occluded object recognition using synthetitigh similarity measurements as defined by (10). However, a
cally generated infrared imagery obtained from the Physicallyatching result for the correct object class may not be distinct
Reasonable Infrared Signature Model (PRISM) infrared sirenough when large object aspect variations and large changes
ulator [1] is given in Fig. 8. Fig. 8(a) shows an object withn object signatures are present in the input data. In order
40% occlusion. The initial matching resulted in a collapsed overcome the drawbacks of using only a single evaluation
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TABLE I
STATISTICS OF RECOGNITION PERFORMANCE (AS MEASURED BY THE PERCENTAGE OF IMAGES
CORRECTLY CLASSIFIED INCLUDING THE CORRECT POSE) FOR ATOTAL OF 207 IMAGES

Criteria used Images Failures Percent Correct
C 207 79 61.8%
S+e 207 14 93.2%
s+e+d 207 5 97.6%

¢: flexible matching cost, ¢: dissimilarity measurement, §: phase based average image displacement.

criterion (10), we introduce a set of comprehensive measut&$X4.0.5F. The main reason for using synthetic infrared sig-
described below. natures is to understand and to provide quantitative measures
1) Flexible matching cost: It combines a measure of gridon how the recognition performance varies with changes in
deformation and the similarity measure between probé¥ject signature caused by varying environmental conditions.
It is given by (10). We have investigated the effect of air temperature and solar
2) Dissimilarity Coste: It is defined as the difference be-energy on object signatures. The air temperature varied from
tween perfect matching and the actual matching resul#2’C to 26C over a period of 23 h on July 19, 1984, at
Grayling, MI (Fig. 10). A total of 18 models for one object

N are synthesized at 4 pm, with depression angles @il 20,
£ = Z [1 - S(Pf, PiM)]Q (24) and aspect angles fronf @o 180 with 22.5 separation. A
f total of 138 object signatures are generated for testing. They

have depression angles of°1@nd 30, and aspect angles of
whereS is the normalized similarity given by equationf0”, 90°, and 120 and were obtained at one hour intervals

(13). The angle between two Gabor probe vectors ®/€r 23 hours. Four object signatures including background,
zero for perfectly matched probes, and the normalizéth 60° aspect angle and 1@lepression angle are shown in
similarity is 1. According to our experience, is less Fig. 9.

than 0.5 for a randomly matched probe pair. Therecognition-powerdefined as the difference of flexible-

3) Displacement Cos: It is defined as the average locamatching cost (10) between the best and second best matched
translational displacement for all the matched Gab#nodels, is used to evaluate the performance of our recognition
probes. algorithm. The recognition performance shown in Fig. 10(c)

To find the correct model after flexible matching, the resuit§ OPtained from experiments on 23 infrared object signatures

are evaluated based on the three criteria discussed above 4jif3 three aspect angles antl @epression angle. As expected,
the following rules in order. the recognition power is highest at the approximate time

1) For all matching results, sort each of the cagts and corresponding to the mo_qlels. Also, the correlation between
the curve of the recognition performance and the environ-

6 in descending order. R .
2) Select the model having both the lowest matching Cor%kental parameter curves shown in Fig. 10(a) and 10(b) is

C and the smallest dissimilarity cost If neither the clearly seen. It shows that as the contrast changes with
values ofC or ¢ for the top two matched models arethe changes in time, recognition performance also changes.

distinguishable enough (by a predefined threshold), @ re'_suIF, modelg to be used for matching signatures_c_)f
to step 4). jects in infrared images should be generated for specific

3) Select the model having the smallest dissimilarity Cog{\v!ronmental condl_t[ons. A model generated for a given
¢ while its matching cos€ and dissimilaritye are both environmental condition can accommodate only so much
lower than a predefined threshold variation. For example, the model generated at 4 pm will

4) Select the model having the smallest displacement & suitgble (from fapproximately 8_ am to 10 pm) when th‘?
§ which is less than a predefined threshold. recognition power is above a certain threshold (say, at 150 in

5) Any matches that fail the above tests are rejected fo19: 10(C))- .
recognition. Table Il shows the results of a total of 207 recognition
experiments using the synthesized infrared models and images
mentioned above These results include the following: i) 69

objects at depression angle°l@re recognized using object
model sets at depression angfe i) 138 objects at depression
angle 10 and 30 are recognized using object model sets at
Synthetic infrared images are generated using PRISM [Hlepression angle 20A success rate of 61.8% was achieved
a well known infrared simulator on an SGI machine runningshen only the flexible matching cost is used in matching. The

V. OBJECT RECOGNITION EXPERIMENTS

A. Simulated Infrared Imagery
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TABLE IV In this experiment, the distortion values (with respect to the
RECOGNITION PERFORMANCE, ASMEASURED BY THE COST, DISSIMILARITY model) for the best matched object correspond to 105 m in
AND DISTORTION MEASUREMENTS, IN THE IMAGE SEQUENCE . . . . .
viewing distance, 11in depression angle, and 5 aspect

Object Grid Scale | Probe Scale Cost lDissimilarity DistortionJ ang|e_ Note that the best match is the closet match to the
Object 1 52% 50% 787 1.65 47.6 { model.
Object 2 82% R0 934 1.38 283 2) Examples of Multiple Objectstn the first experiment,

four object classes with a total of 16 object aspects are
extracted from the second generation infrared images, as the
TABLE V ; . " :
RECOGNITION PERFORMANCE SHOWN AS CONFUSION ROI's of the object for recognition. The four object class
MATRIX FOR SEVEN INFRARED TARGET SIGNATURES types are ASTRO, BTR_60, SS_21R, and SA_8, which were
captured at Grayling, MI, in October 1992. These 16 objects
are shown in Fig. 13, where the first object signature in each

| ASTRO | BTR 60 | ZIL | SS21R | SS_21L [ TZM [ SA8 |

ASTRO | 1 1 row is used to obtain the object model, and the rest of the
BIR 60 8 ! 1 images are used as test cases. Note that images show shape
ZIL 3 1 distortion due to aspect, scale, and depression angle variations,

SS21R 3 ! signature changes, and background clutters.

S8-21L ! ! The best-matched object is selected as the instance of
giM ! 2 an object model. Ten of the 12 objects shown in Fig. 13
28 ! 7 are successfully recognized. The two failures are for AS-

TRO 2 (Fig. 13(c)) and SS_21R 1 (Fig. 13(j)). The ASTRO

2 (Fig. 13(c)) is recognized as SS_21R model (Fig. 13(i))

performance is improved by using other evaluation criteriand SS_21R 1 (Fig. 13(j)) is recognized as ASTRO model
and a successful recognition rate of 97.6% was achievgilg. 13(a)). These failures are due to severe signature and
when the three evaluation criteria described in Section ll$cale distortions with respect to the model. Only the first two

C (flexible matching, dissimilarity, and displacement) arevaluation criteria (flexible matching cost and dissimilarity
used together. All the five matching errors are due to th®@st) are used to obtain the matching results. Gabor phased-
foreshortening projection at°Odepression angle anc® (as- based evaluation is not used in this experiment because of the
pect. nondistinct interior structure of the object in the sensed data.
In the second experiment to recognize multiple objects, a

total of 48 infrared images, similar to the ones shown in

B. Object Matching in an Image Sequence Fig. 13 in structure and complexity, are selected; 15 of these

Fig. 11(a)-(c) shows a sequence of tank images, whergages are used to build object models to recognize objects
the wheel tracks of the tank on the ground form competirg the rest of the 33 images. The confusion matrix is given in
clutter. Both object and background clutter show high Gabdable V and the recognition performance is 76%. The reason
magnitude response in these images. Using the spatially tuf@dthe errors is significant distortion in shape and signature
Gabor filters [9], the response of the periodic pattern such yayiations. Note that for the results shown in Section IV-AC,
the wheel track of the tank is enhanced, while the resporid@ significantly occluded objects (like the ones presented in
of the background clutter is suppressed. The location of tH next Section, IV-D) were present in the data set. The
object was correctly generated. Using these results, the flexigta included some minor occlusions like the one shown in
matching and tracking can start with a region-of-interest &fig- 13(m)—(p).
the object and only a few object aspects. Table IV a
Fig. 11(d)—(f) show the matching results. In this experiment,
the full-scale image object 3 is used as the model to matchAn occluded object (with 35% occlusion) is selected from
with object 1 and object 2, with a grid scale of 52% and 829e second generation infrared image database, which is iden-
respectively. Using our multiscale model representation, th#ed as an ASTRO, shown in Fig. 14. Although the grid in
object scales are estimated and rounded to the closest prifiseinitial matching results, Fig. 14(c), is not collapsed, the
scale which are 1/2 anty/+/2, respectively. Flexible matching similarity of those grid nodes which matched with background
costC, dissimilaritye, and grid deformatiorD are also given. clutter is relatively low with respect to the nodes which
This experiment illustrates the capability of combining spati@ihatched with the nonoccluded part of the object. These
groupings of certain object features (periodic pattern in tif@ndomly matched nodes are detected and removed from
detection phase) and object matching under scale, aspect, &ther consideration. The final matching result is shown in
image distortions. Fig. 14(d). To illustrate the performance of matching under

occlusion and distortion, the edge boundaries of the matched
. object model are backprojected onto the occluded object using
C. Second Generation Infrared Imagery the repaired distorted Gabor grid (Fig. 14). The quality of the

1) Examples of Single Objecfig. 12 shows an exampleresult can be observed by comparing Fig. 14(e) and 14(f).
where the object undergoes scale, aspect, and signature varAnother example of occlusion with a truck (ZIL, 30%
ations. occluded) is shown in Fig. 15. We have carried out other

. Recognizing Occluded Objects
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@ (b) © (d)

(e) (® () (h)

(m) () (0) (9]

Fig. 13. Object model and images for ASTRO, BTR_60, SS_21R, and SA_8. (a) ASTRO model. (b) ASTRO 1. (c) ASTRO 2. (d) ASTRO 3. (e)
BTR_60 model. () BTR_60 1. (g) BTR_60 2. (h) BTR_60 3. (i) SS_21R model. (j) SS_21R 1. (k) SS_21R 2. (I) SS_21R 3. (m) SA_8 model. (n)
SA 8 1. (0) SA_8 2. (p) SA 8 3.

experiments with up to 50% occlusion and similar results wepixels (~120 x 120) using a single scale object model and its
obtained. multiscale Gabor wavelet representation. The scaling factor
of our Gabor wavelet filters is/2. Since our wavelet filters
consist of seven center frequency bands (corresponding to
seven scales), so the scale variations that can be handled

We have shown that the multiscale Gabor waveleRy our system is(v/2)". These scale changes from a given
representation-based flexible matching technique that ugeadel are handled gracefully. In our experiments, the range
both Gabor magnitude and phase is a potentially robugf synthetic images has varied from 200 m to 800 m and,
method for object recognition under real-world conditions. THer real second generation infrared images, has been 180 m
approach can tolerate variations of up to°4@ depression t0 250 m (due to the availability of data). When the objects
angle and 225 in aspect. The dynamic grid erosion andire far away and have only a few pixels, this approach, or for
repairing allow the recognition of objects that may have uhat matter any model-based recognition approach, will not be
to 50% occlusion caused by natural objects or other maswitable. Although infrared signature of the object may change
made objects. Our approach can be used to recognize objedth changes in the environmental conditions, our approach
with the size varying from 256 pixels (1& 16) to 16K can adapt to these changes to some extent. The use of both

V. CONCLUSIONS
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(b) ©

(d) (e) ®

Fig. 14. Example of an occluded military truck (ASTRO) and the matching result. To illustrate the matching result, the edge boundaries of the model
14 are backprojected onto the occluded object 14 using the repaired distorted Gabor grid 14. (a) Object (ASTRO). (b) Object model. (c) Initgal matchin
result. (d) Result of grid repairing. (e) Model edges. (f) Backprojected model.

(@) (b)

©) ©) ®

Fig. 15. Example of an occluded truck (ZIL) and the matching results. To illustrate the matching result, the edge boundaries of the model (e) are
backprojected onto the occluded object (f) using the repaired distorted Gabor grid (d). (a) Object (ZIL). (b) Object model. (c) Initial matdhing resu
(d) Result after grid erosion. (e) Model edges. (f) Backprojected model.

Gabor magnitude and phase help to improve the recognitionMost of the computation time taken by the object recog-
performance when object signature varies with changes riition algorithm is for the Gabor decomposition obtained by
environmental parameters, such as air temperature in the rangmg 56 filters. For an image of size 380200, it takes sev-

of 12°C to 26°C. For an approach based on modeling contegtal minutes on a SunSparc10 to finish the decomposition. We
and clutter (time of the day, air temperature, range, depressame investigating very large-scale integration implementation
angle) in infrared images, the reader is referred to [23].  [5] of Gabor filters, which can dramatically reduce the cost of
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Gabor image decomposition. Since the models are generatel D. Forsyth, J. Mundy, and A. Zisserman, “Transformational invariance:
off-line and stored as Gabor grid, the complexity of matchinﬁ ]
is significantly reduced by our speed-up grid placement a J

flexible matching algorithm.
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