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Abstract--Automated terrain analysis is required for many practical applications, such as outdoor navigation, 
image exploitation, remote sensing, reconnaissance and surveillance. In this paper, we present a hierarchical 
approach to analyze multispectral (MS) imagery for autonomous land vehicle navigation. The approach 
integrates several strategies to label various terrain classes in these images acquired using twelve spectral bands 
in the visible and near-infrared spectrum. At the low (pixel) level, it combines texture gradient results from 
specifically selected channels by varying the size of gradient operators and performing multithresholding and 
relaxation-based edge linking operations to obtain robust closed region boundaries. At the high (symbolic) level, 
it makes use of the spectral, locational, and relational constraints among regions to achieve accurate terrain 
image interpretation. Details of the technique with examples from real imagery collected by an autonomous 
land vehicle (ALV) are presented. Copyright © 1997 Pattern Recognition Society. Published by Elsevier 
Science Ltd. 
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1. INTRODUCTION 

The problem of terrain interpretation using image-based 
techniques requires the segmentation of the terrain 
imagery into regions corresponding to distinct land 
cover classes, e.g. field, road, forest. This interpretation 
task is of critical importance to many practical 
applications such as autonomous navigation in an 
unstructured natural environment. As an example, if  
an autonomous land vehicle (ALV) is required to survive 
and carry out its mission of surveillance, search and 
rescue and munitions deployment, it should be able to 
perform the functions of path planning, landmark 
recognition, and obstacle detection/avoidance. In order 
to achieve these functionalities, the ALV must first 
interpret the imagery obtained from its sensors into 
various regions in terms of their land cover, traffic- 
ability, and slope. The challenges presented by this task 
are significantly greater than those encountered in 
navigation on paved highways (I~ because of the great 
variability of the terrain. 

In the past, sensors for autonomous navigation and 
other remote sensing operations have primarily been TV 
cameras that provided data from the visible portion of 
electromagnetic spectrum. More recently, laser radars 
(LADARs) are finding applications in ALV navigation. 
At the same time, multispectral scanners (MSSs) and 
synthetic aperture radar (SAR) sensors are being 
increasingly used in many remote sensing operations. 
The former provide data in the visible and infrared 
portions of the spectrum in a digital form and can cover 
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a wide spectral region. However, the use of MSSs for 
ALV navigation has been limited so far due to their size 
and weight. These sensors are particularly suitable for 
terrain interpretation as they can capture the spectral 
characteristics of the different land cover regions in the 
different spectral bands and can provide digital data for 
image analysis. As the field of perception-based 
autonomous navigation advances, these sensors will 
become important for image understanding in natural 
environments. 

The interpretation of sensory data, including multi- 
spectral (MS) data, in remote sensing applications is 
often affected by the problem of insufficient spatial 
resolution of the sensor. The finite spatial resolution 
causes the geographical area subtended by a pixel to 
contain a mixture of terrain categories. As a result of 
this, the spectral response observed at a pixel is a 
mixture of the spectral responses of several individual 
land categories. (2'3> This problem, known as the 
mixture-pixel problem, also persists in the ALV 
navigation scenario. In general, the spectral response 
at a pixel of an arbitrary region of a multispectral (MS) 
image will less likely to be due to a single category of 
terrain as the range to the region in the scene increases. 
Thus, spectral features calculated for these regions 
(located at the farthest distance of the scene) will not 
match those of data collected at close ranges where the 
mixture-pixel problem is negligible. 

A robust terrain interpretation approach requires the 
integration of statistical techniques and adaptive feature 
detection, and the use of world knowledge. The use of 
constraints derived from context-dependent knowledge 
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is helpful to overcome effects of sensor measurement 
variability caused by errors in sensor calibration, 
thermal noise, atmospheric effects and the mixture- 
pixel problem during region-based analysis of MS 
images. The knowledge-based techniques for region 
labeling can tolerate some errors in input data and still 
produce meaningful results. Because of their compact 
rule database, these techniques can be designed to have 
modular structures; as new contexts for classification of 
features are discovered, the system is reconfigured by 
the addition or modification of a few rules. The 
contextual information from a general world model that 
is applicable to all natural environments, can also be 
used to improve the system's performance for terrain 
interpretation in a specific application such as the ALV 
navigation. 

In this paper, we present a technique for the labeling 
of regions in terrain images that are obtained with a 
MSS. What distinguishes our approach to region 
labeling from other scene interpretation algorithms (4-6) 
is the combination of texture feature detection operator 
results obtained from selected channels. The integration 
scheme involves adaptive texture gradient calculation, 
multithresholding, relaxation-based edge linking to 
obtain robust region boundaries, and the use of 
context-dependent constraints from the knowledge base. 
The algorithm described in this paper is hierarchical and 
consists of two stages. First, a multispectral image is 
segmented into macroqevel  regions with a texture 
gradient-based technique that is optimal with respect 
to the spectral characteristics of all the desired terrain 
categories: sky, forest, field, and road. The algorithm 
defines only closed region boundaries, and these regions 
are classified into one of the four categories (plus 
unknown) with a knowledge-based approach which uses 
relational, locational, and spectral constraints. Second, 
the macro-level regions are further segmented with the 
texture gradient-based approach where the parameters 
for texture feature extraction are optimal with respect to 
the individual macro-level region, e.g. field, forest, etc. 
The resulting subregions are classified using locational 
and spectral constraints. Finally, very small micro-level 

regions are merged with neighbors and boundaries are 
refined to identify all the terrain regions. 

The paper is organized as follows. In the next section, 
we discuss the previous work related to region labeling 
in MS imagery. Section 3 describes the principle of the 
design of the texture gradient-based region segmentation 
algorithm and the approach to knowledge-based classi- 
fication of regions. Experimental results based on 
imagery obtained with an ALV-mounted MSS are 
presented in Section 4. Finally, Section 5 presents the 
conclusions of the paper. 

2. PREVIOUS WORK 

The various approaches to the problem of region 
labeling in segmented images have ranged from pure 
statistical techniques to pure knowledge-based methods. 
In this section, we shall be reviewing mainly the latter 

category with some references to the former in the 
context of multispectral image segmentation. Knowl- 
edge-based techniques have been found to be useful in a 
number of application areas such as photointerpreta- 
tion, (7-9) autonomous weapon delivery systems, (1°) and 
the labeling of arbitrary urban scenes. (4-6) These 
knowledge-based systems have several features in 
common: a database of computed image features is 
matched with antecedents of production rules (rules are 
represented as logical statements of the form "if . . . .  
then.. 2'), and a control system that supervises rule 
activation. 

The system developed by Nagao and Matsuyama (a) 
uses a knowledge base representing contextual and 
geometric constraints for the task of labeling regions in 
multispectral imagery obtained by a low-flying heli- 
copter. This method is intended for reliable classifica- 
tion of vegetational regions that is independent of the 
time of year and uses the ratio of two distinct spectral 
bands to discriminate the vegetational regions from the 
non-vegetational regions. Within the non-vegetational 
regions, such as congested urban areas, this method 
allows reliable identification of houses and roads. The 
region boundaries are detected by multiple low-level 
image segmentation algorithms and the resultant 
information is archived on a blackboard shared by each 
of the experts of the system. Each expert is optimized 
for locating a specific kind of object or region. The 
approach is hierarchical in which the final segmentation/ 
classification of regions is dependent on the preliminary 
segmentation of the regions. A region growing approach 
is used to identify large regions of the image with global 
region properties such as homogeneity of multispectral 
intensity levels or elementary region-average texture 
measures, but no measure of local texture information is 
used at this stage, which is critical for the detection of 
regions in images of arbitrary outdoor natural scenes. 

Ohtas (5) developed a hierarchical region labeling 
scheme for color images of urban scenes. The approach 
derives an initial "plan" image which is then labeled 
before a more detailed, data-directed segmentation is 
carried out. The "plan" image is defined by a region- 
based color image segmentation algorithm. The regions 
of the "plan" image are sky, tree, building and road. 
These region categories are detected using contextual 
and spectral constraints in a top-down manner. The 
algorithm is reliable and can correctly label regions in 
urban outdoor scenes using only 57 rules. The algorithm 
employs a texture measure for region classification, but 
the measure is expressed as a three valued logical 
variable: a region is either not-textured, textured or 
heavily-textured. This approach is useful for the 
discrimination of tree regions from sky, buildings and 
roads, which are essentially untextured, but it is not 
robust enough to discriminate the textures typically 
found in natural terrain images. 

Hierarchical image interpretation strategies have also 
been implemented for the automatic classification of 
regions of multispectral Landsat imagery. Ton et al. 01) 

demonstrated a knowledge-based segmentation and 
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interpretation methodology for the interpretation of 
township-sized (5 × 5 mile) Landsat images. The image 
interpretation system establishes a coarse segmentation 
of the imagery using spectral features alone during a 
stage denoted by category-oriented segmentation, with 
simple, application-independent spatial constraints. The 
identified terrain regions are transferred to a second 
stage, denoted by image-oriented segmentation, where a 
hierarchical implementation of various image proces- 
sing operations establishes an accurate segmentation of 
the image. Domain knowledge, and spectral and spatial 
constraints are utilized at this stage. This approach is 
appropriate for satellite imagery because the coarse 
resolution of the imagery averages out the effects of fine 
image texture and tends to blur out microscale region 
signature variations. Thus, spectral features alone can be 
used for coarse region classification. For a sensor 
mounted on a ground vehicle, the effects of perspective 
and shadow and the greater spatial resolution of the 
sensor diminish the utility and reliability of this strategy. 
Instead, the application of spatial and locational rest- 
raints is required to obtain useful region category maps. 

Previous work on the problem of scene labeling for 
remote sensing applications (12) has predominantly used 
classic statistical techniques with some applications of 
knowledge-based  techniques .  Landgrebe  (3) and 
Swain (13) surveyed the state-of-the-art for this applica- 
tion and identified four generic approaches: (a) spectral 
methods, (b) spectral/temporal methods, (c) spectral/ 
spatial methods, and (d) spectral/general scene context 
methods. Algorithms from category (d) do employ 
auxiliary information, such as digital map data, water 
depth maps and ownership boundaries, but very limited 
work has been done to determine the value of knowl- 
edge-based techniques for the classification of regions 
in remotely sensed imagery. Region labeling with a 
priori spatial constraints is accomplished with relaxa- 
tion labeling for consistency, (14) and measures of image 
texture. Image texture may be measured locally, such as 
using the co-occurrence matrix (2'15) or globally, such as 
using production system grammars for image struc- 
ture. (a6) The major obstacle to defining a knowledge 
base for the interpretation of remotely sensed imagery is 
that it is exceedingly difficult to identify suitable 
structural rules that are universally valid. (~3) 

Research in the area of automatic labeling of 
agricultural and urban areas in Landsat and SPOT 
imagery during the last few years has been concerned 
with attaining improved region classification accuracy 
using spatial and statistical attributes. Kusaka and 
Kawata (~7) evaluated a hierarchical, spatial feature- 
based approach for the detection of linear features 
(roads and rivers) in Landsat imagery. The approach was 
implemented in four stages: (a) a gradient operator was 
utilized to establish high-confidence edge locations for 
each of the images of a multispectral image; (b) a 
distance transform for the detected edges (for all 
images) was derived to establish locations at which to 
obtain estimates for each individual region's spectral 
features; (c) a region growing approach was utilized to 

establish region boundaries; and (d) the linear inter- 
region boundaries are then authenticated by cross- 
referencing them with a map. Meyer (~8) used a series 
of edge-preserving smoothing preprocessing steps and a 
statistical classifier to distinguish and classify agricul- 
tural regions in Landsat imagery. This approach derived 
region classifications with 100% accuracy for a test 
database containing 142 agricultural fields for a 
classification set of 12 major classes and 12 subclasses. 
The approach was predicated on the use of spectral and 
locational constraints that were specific to the problem 
being addressed. Another approach (19) obtained regions 
with uniform color in Landsat imagery by merging 
appropriate pixels with spectral values within a small 
predefined range. Zhang et al. (2°) empirically evaluated 
the reliability of a stochastic relaxation algorithm for 
region classification in Landsat imagery where a 
Markov-Gibbs distribution was used to establish con- 
straints on region adjacency. The stochastic relaxation 
algorithm was utilized to establish a minima of a cost 
function representing the reliability of region labels and 
restraints on the neighbors of each region. These 
approaches perform well for the applications for which 
they were designed, but for an autonomous vehicle 
navigation application, they would require significant 
modifications to deal with greater variability of the 
imagery. This could also prohibit implementation in 
real-time hardware. 

Goldberg et al. (21) designed an expert system for the 
detection of changes in the forests of Newfoundland 
from Landsat imagery. The system is hierarchical, with 
multiple tiers of experts applying domain knowledge, in 
a top-down fashion, to the problems associated with 
foresting, forest fire damage, and disease infestation. 
The experts exchange information for control and 
hypothesis generation in a blackboard framework. 
Knowledge-based techniques are used for the tasks of 
change detection and the interpretation of changes in 
forestry terms, but no knowledge-based system is used 
for region classification. 

Other researchers have evaluated Markov random 
field (MRF) based approaches for image texture for the 
task of multispectral image segmentation. (22"23) Since 
MRF models do not apply very well at region 
boundaries, approaches of this kind have problems at 
these locations. The computational complexity of a 
MRF approach can also be significant. Evaluations of 
the effectiveness of decision-directed learning of 
statistical region attributes and spatial interaction 
parameters have also been carried out for simple 
scenarios. Mardia and Hainsworth (24) quantitatively 
evaluated various approaches of this kind and demon- 
strated that, for low signal-to-noise ratios and artificially 
generated, single-channel imagery, these approaches can 
attain low misclassification rates. For three category 
region labeling problems, this approach produces very 
noisy estimates for region boundaries and requires 
several iterations of noise cleaning and re-estimation to 
achieve satisfactory estimates of region boundary 
locations. Bouman and Shapiro (25) describe a Bayesian 
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segmentation approach for multispectral images called 
multiscale random field (MSRF). The non-iterative 
approach uses a sequential maximum a posteriori esti- 
mation to derive the parameters of the multiscale model. 

Machine learning-based methods have also been 
applied to the multispectral image segmentation pro- 
blem. Fernandes and Jemigan (26) discuss a hierarchical, 
unsupervised learning approach for segmenting high 
resolution multispectral forestry images. Using a multi- 
resolution texture representation, a hierarchical smooth- 
ing network aggregates pixels at five different 
resolutions. Texture and spectral similarity measures 
between and within network levels are used to inhibit 
smoothing between land cover classes. Segmentation 
performance is evaluated in terms of classification 
accuracy using independent and dependent samples for 
labeling emergent classes. The unsupervised classifica- 
tion method of Amadasum and King (27) performs 
agglomerative-type clustering of feature values com- 
puted over uniform neighborhoods. The learned mean 
feature vectors of the clusters are used in the segmenta- 
tion of a three-band multispectral image of a terrain. 
This approach assumes that at least one uniform 
neighborhood can be found for each of the different 
categories present in the image. Another assumption is 
that feature vectors of neighborhoods representative of a 
particular category are similar to each other, but 
different from those of neighborhoods belonging to 
different categories. Another algorithm (as) which is 
intermediate between traditional supervised and unsu- 
pervised methods selects uniform and representative 
training samples for spatial segmentation of multi- 
spectral images. 

Some researchers have addressed the problem of 
segmentation as an intermediate step in the analysis of 
multispectral images. Salvaggio and Schott (29) achieved 
segmentation in the course of extracting pseudoinvariant 
features. Their approach uses the rate-of-change in- 
formation due to thresholding during the feature 
normalization process. Brill (3°) used the bands of a 
multispectral image to segment three-dimensional 
objects, thereby overcoming the problems caused by 
image highlights and shadows during such segmenta- 
tion. These methods are not directly applicable to terrain 
image analysis. 

In summary, we see that the current image inter- 
pretation techniques are not general for automated 
terrain analysis which is required for many practical 
applications such as outdoor navigation, image exploita- 
tion, remote sensing, reconnaissance and surveillance. 
There exists a need for hierarchical analysis of terrain 
regions that will be capable of producing good 
segmentation results both globally and locally, particu- 
larly for applications in which the scene resolution 
changes continuously such as in outdoor navigation. 

3. CONCEPTUAL APPROACH 

An autonomous navigation system that is responsible 
for establishing the best course across an arbitrary 

geographical area requires evidence from many sources. 
Terrain regions are rarely characterized by distinct 
structural features such as line segments that are straight 
or at right angles. Even the cultural features such as 
buildings and bridges are difficult to be identified for 
day/night operations using a single source such as a TV 
camera because of the extreme variability of natural 
scenes. Therefore, as many auxiliary reference sources 
for terrain region discrimination and identification as are 
available must be used. 

The signature observed by a MSS on-board an ALV 
for a specific terrain region will vary with the time of 
day, orientation of the surface relative to the imaging 
system, and shadowing effects. The subdivision of an 
image into regions where the terrain category is known 
versus those regions where the terrain category cannot 
be established defines useful information for a naviga- 
tion system in that it may help the vehicle to avoid 
attempting to cross hazardous, non-traversable regions. 
Because of the degree of variability in the signatures 
that are measured by this sensor, it is not practical to 
configure a terrain region interpretation system that 
establishes the classification of terrain regions using 
pure statistical approaches as may be appropriate for 
some remote sensing applications. Instead, the estimated 
features for terrain categories obtained using MSS 
imagery should be utilized to identify corroborating 
evidence obtained from other sources such as landmark 
identification, active sensor (3-D) imagery, or on-board 
inertial reference unit. Region segmentation results also 
benefit the autonomous navigation system by coordinat- 
ing the effective use of available computational 
resources in which the maximum amount of processing 
can be dedicated to those regions that represent the least 
hazard for traversal. 

The focus of this paper is on segmentation and 
labeling of terrain images that are acquired by a MSS. 
The terrain interpretation algorithm is designed to label 
regions seen in a single frame of the MS imagery to one 
of several land cover categories, possibly including 
information regarding the slope, trafficability, and 
geological characteristics of the region. This informa- 
tion is helpful to the mobile agent navigating the terrain 
and exploiting the MSS data. Examples of region labels, 
corresponding to land covers typically encountered in a 
cross-country navigation scenario, are field with grass 
and snowberry/chokeberry vegetation, and forest with 
hemlock vegetation. In this paper, large regions like 
f ie ld  will be referred to as the "macro-level" regions, 
while small regions like snowberry will be called the 
"micro-level" regions. It is important to note that an 
acceptable performance of the interpretation algorithm 
requires that the candidate set of labels for a region be 
small should the selection of a unique label not be 
possible. This requirement is posed by the naviga- 
tion task for which the candidate set for the land 
cover should be specific enough for the mobile agent 
either to match the region to a digital terrain map 
database or to plan a course across the terrain while 
avoiding obstacles. 
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3.1. Overview of the system for terrain interpretation 

Our system for terrain interpretation works by 
combining results from different multispectral channels 
in a cooperative and complimentary fashion. In contrast, 
most approaches to segmentation of MS imagery handle 
the data from individual channels in an independent 
manner. Those that do combine results from different 
channels rely on statistical properties of the image 
regions which are not very effective in discriminating 
among land covers encountered in navigation scenarios. 
For example, snowberry and scrub bushes have very 
similar image textures and are, therefore, nearly 
indistinguishable using Markov random field based 
methods. One of the key differences between segment- 
ing images for most remote sensing applications and 
that for autonomous navigation is that in the latter 
case, the segmentation algorithm has to cope with 
varying resolution for different parts of the same 
image flame. 

Due to the nature of the imaging process, a mobile 
platform-mounted MSS captures data that are affected 
to a greater extent by the mixture-pixel problem (see 
Section 1) due to perspective than data collected using 
an airborne MSS. (The latter type of sensor is typically 
used in most remote sensing applications.) This 
fundamental difference in the input data calls for a 
different approach to segmentation of MS imagery in 
the former case which is the focus of this paper. 
Accordingly, the terrain interpretation system described 
below is designed to be hierarchical in nature and 
knowledge-base oriented. The hierarchical structure 
allows the system to be more tolerant of the mixture- 
pixel problem; the use of region-average features at each 
stage of the hierarchy reduces the number of errors in 
region classification since averaging tends to reduce 
variability in features. This also reduces the computa- 
tional complexity at each stage of the hierarchy 
compared to that in a non-hierarchical classifier as 
classifications at each stage are based on a reduced set 
of terrain categories identified by the previous stages. 
The knowledge database rules lend robustness to the 
interpretation system against the mixture-pixel problem 
by capturing contextual information which is difficult to 
express in terms of statistical rules. 

The interpretation of MS imagery occurs in two 
distinct stages at each level of the hierarchy: segmenta- 
tion and classification. Segmentation involves locating 
discontinuities of texture gradients that correspond to 
region boundaries. The classification step utilizes the 
knowledge base to assign a distinct label to each of the 
segmented regions. The regions identified at the lower 
level of the hierarchy are further subdivided at the 
higher level. These steps of the algorithm are now 
described in detail. 

The algorithm for terrain interpretation is subdivided 
into five key steps: 

1. Macro-level Region Segmentation The segmenta- 
tion of the multispectral images into large regions 
using texture gradient techniques. 

2. Macro-Level Knowledge-Based Classification--The 
classification of the macro-level regions with a 
knowledge-based scheme which utilizes relational, 
locational, and spectral constraints. 

3. Micro-Level Region Segmentation--The segmenta- 
tion of the labeled macro-level regions with texture 
gradient techniques which are specifically designed 
for those regions. 

4. Micro-Level Knowledge-Based Classification--The 
labefing of micro-level regions using contextual and 
spectral knowledge. 

5. Refinement of Region Boundaries--The merging of 
micro-level regions with large neighboring regions 
and adjustment of boundaries. 

Figure 1 shows the block diagram of the hierarchical 
symbolic approach for terrain interpretation. Optimal 
channels for the detection of region boundaries are 
selected both at the macro-level and at the micro- 
level. 

3.1.1. Selection of optimal muhispectral scanner 
channels. The selection of a MSS as the sensor for 
remote sensing applications is motivated by the fact that 
such sensors  are r e s p o n s i v e  to the spec t ra l  
characteristics of the individual land cover categories. 
Thus, for optimal performance of a system deploying 
such a sensor, the different spectral channels of the MSS 
to be used for feature detection are required to be 
selected in a fashion which allows for maximum 
d i sc r imina t ion  among  the land cover  classes.  
Consequently, the selection process is application 
dependent. The varying gross-scale emissivity and 
reflectivity of the "macro-level" regions specify the 
particular spectral attributes to be used for "macro- 
level" region boundary detection. For a given spectral 
waveband, the apparent contrast between "macro-level" 
regions varies with the specific times of day as it is 
dependent on the natural coloration and emissivities of 
the terrain categories that make up these regions. The 
predominant portion of a multispectral signature of an 
object in an outdoor scene at wavelengths shorter than 
3 gm is due to the reflection of diffuse and direct solar 
irradiation. The measured signature of these objects in 
the visible and near-wave infrared (NWIR) wavebands 
is a function of their chemical composition and surface 
orientation relative to the imaging system. Absolute 
reflectivities of terrain categories can be established by 
measuring their reflected radiation simultaneously with 
the measurement of the reflected radiation from a 
reference standard and then normalizing the sample's 
radiant energy by that of the reference standard. 
Consequent ly ,  the iden t i f ica t ion  of  a speci f ic  
waveband (i.e. an MS channel) for a selected pair of 
terrain categories, in which the reflectance of one is 
significantly greater than that of the other, should allow 
the design of  a robust feature detector for the 
discrimination of boundaries between the categories. 
In the following, we discuss the criteria employed by 
our terrain interpretation system for the selection of 
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algorithm. K and N are window parameters used in the TBL Algorithm. 

optimal MSS channels  to best  locate the region 
boundaries. 

A discussion of the optimal channel selection process 
is facilitated by a brief description of the MSS used in 
this research. The MS data is collected in twelve 
discrete bands (~1) with a passive scanner. The passive 
multispectral scanner was developed by the Environ- 
mental Research Institute of Michigan (ERIM), the 
spectral bands for the scanner are given in Fig. 2. Also 
available for the ALV test site are spectral reflectance 
measurements obtained from the U.S. Army Engineer- 
ing Topographic Laboratories (ETL). (32) They include 
specta-oradiometer measurements of the spectral beha- 
vior of several terrain categories in the form of graphs of 
radiance and reflectance, with respect to a Halon 
reference standard, as a function of wavelength. These 
data are used to extrapolate the average spectral 
characteris t ics  of the regions of interest.  In our 
approach, the estimated spectral characteristics are used 
to identify the MS channels exhibiting the greatest 
discontinuity between regions for all possible pairings 
of the four classes (sky, forest, field and road) at the 
macro-level. Consequently, the best discriminating set 
of channels for the four classes is defined (see Table 1). 

The macro-level MS channels identified for this 
research are very close to the set of four channels 
identified by a computer modeling study for the design 
of the ERIM active multispectral 3-D Sensor. (33) The 
four channels are: (a) green reflectance peak (0.52 - 

Table 1. Multi-spectral channels which are optimal for the 
detection of region boundaries between four macro-level 

classes 

Sky Forest Field Road 

Sky X 1 1 1 
Forest 1 X 3 6 
Field 1 3 X 8,10 
Road 1 6 8,10 X 

The optimal channel(s) for the detection of a boundary between 
a class of the row dimension and a class of the column 
dimension is found as the table entry at the intersection of the 
row and column. 

0.55 gin.), (b) red reflectance peak (0.62-0.69 lam), (c) 
near infrared (0.8-1.2 gin) and (d) shortwave infrared 
(2.0-2.35 gm). These channels roughly correspond to 
the channels 2, 5, 8-10 and 12, respectively, of Fig. 2. 
Actually, the study (33) has established the best set of up 
to seven channels for terrain region classification by a 
minimum-distance,  statistical classifier for thirteen 
terrain categories. It has also been reported in the study 
that when the minimum-distance classifier used features 
from all four channels, a 95% probability of correct 
recognition (POCR) was attained. The best discrimina- 
tor set for a two-dimensional classifier was a visible 
spectrum channel and a near-infrared channel for 
all images studied (POCR > 85%). These quantita- 
tive results reinforce the validity of the theoretical 
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Table 2. A cross-reference table for the best multi-spectral 
images to obtain significant region boundaries between the four 

micro-level region categories of field 

Grass Snowberry Scrub Road 
bushes 

Grass 8,10 8 4,5,6,8 
Snowberry 8,10 10 4,5,6,8,10 
Scrub bushes 8 10 4,5,6,10 
Road 4,5,6,8 4,5,6,8,10 4,5,6,10 

assumption that a single channel or a combination of 
channels establishes a high contrast feature for dis- 
crimination between pairs of terrain regions. 

Similar to the selection of channels for macro-level, 
the micro-level channels identified for feature detection 
are optimized with respect to the measured spectral 
features of each of the micro-level regions within a 
macro-level region so as to obtain the best discrimina- 
tion. For example, the optimal micro-level channels 
identified for the macro-level  field category are 
indicated in Table 2. 

3.2. Algorithm details 

The various algorithms of the terrain interpretation 
process are indicated in Fig. 1. The algorithms at the 
macro-level stages are concerned with region boundary 
extraction through linking of multithresholded, multi- 
spectral texture-gradient edges and region classification 
using contextual (i.e. spatial, spectral, relational) con- 
straints from the knowledge base. The MS channels of 
Table 1 selected for this level are optimal with respect to 
the macro-level terrain categories (field, forest, sky, road 
and unknown). The micro-level obtains region bound- 
aries in a similar fashion, except that it uses a different 
set of optimal channels and algorithm parameters for 
each of the macro-level regions. The labeling of micro- 
level regions uses only the spectral constraints from the 
knowledge base. In the following, the algorithms that 
constitute each of  the five steps of  the terrain 
interpretation process will be described in detail. The 
justification for the approach established for each step is 
presented together with the salient features of the 
algorithms. Experimental results based on these steps 
appear in Section 4. 

3.2.1. Macro-level region segmentation. The 
objective of this step is to define a coarse image 
segmentation which is the basis of all succeeding region 
classifications. The use of spatially wide windows for 
feature detection at this stage guarantees that the 
diversity of the natural terrain imagery does not cause 
invalid interpretations to be transferred forward to the 
next level of the hierarchy. The use of spectral features, 
that are effective for detection of critical structural 
features, where the feature detection operators sample 
the image at a resolution appropriate for the current 
level of the hierarchy, diminishes the likelihood of 
classification errors for this stage and the following 

ones. This coarsely segmented/labeled image is similar 
to the "plan" image of Ohta. (5~ To obtain a coarse 
representation of the input MS image, the algorithm's 
parameters are tuned to detect only large features. 
Extraction of the resulting macro-level regions is fairly 
reliable and is little affected by sensor noise or small 
changes in the parameter values. The importance of this 
segmentation step, called the Multispectral Texture- 
Gradient Edge Linking Relaxation Algorithm, lies in 
data abstraction--transforming the raw image data into 
a form which is suitable for a high-level, knowledge- 
based, labeling algorithm. A block diagram of the 
texture-gradient edge linking algorithm is shown in 
Fig. 2. The key processes used in this algorithm are the 
computation of texture gradients and their integration, 
multi-thresholding and relaxation-based edge-linking. In 
the following, each of these processes is described in 
detail. 

Process A. Computation of Texture Gradients and 
their Integration: texture gradients are obtained by a 
texture boundary locator (TBL) algorithm. For most 
regions in natural scenes, it has been observed that on 
either side of the boundary between two adjacent 
regions there occurs a gradual transition from the mean 
of the image intensities of one of the regions to that of 
its neighbor. Thus, the TBL algorithm calculates the 
texture gradient of an image, which is the local rate of 
change of a textural attribute of the image. The textural 
attribute is derived from the mean, # and standard 
deviation of each N x N window of the image, where N 
is obtained as a function of the image features to be 
detected. The sole requirement imposed on the gradient 
image is that it should have a large magnitude wherever 
major discontinuities occur, such as between the region 
categories (sky, forest, field and road) at the macro level. 

In order to compute a texture gradient image, a 
(2K + 1) × (2K + 1) window is centered at each pixel, 
where K is a function of the size of the region of interest 
and/or the range of the scene objects from the sensor. 
The window geometry for an arbitrary image plane 
location P is shown in Fig. 3. The pixels at the centers 
o f  the  f o u r  s ides  and the  c o r n e r s  o f  the  
(2K ÷ 1) x (2K ÷ 1) window are labeled sequentially 

i0 i 
K 

, 4 - -  N --t~ 

i, i N' 
I -  - !  

U-] N !' I 
Fig. 3. Window geometry for texture boundary locator (TBL) 

algorithm. 



204 B. BHANU et al. 

beginning at the top left corner as shown in the figure. 
The texture gradient at a pixel is obtained as 

2~1/2 
m<_ia<_x3{(#i--#i+l)2~-(oi--(Ti+4) ~ , (l) 

where #i and ai are the mean and the standard deviation 
of the image's intensities for an N x N window (see 
Fig. 3). 

The texture gradient is not calculated for every MS 
image, but only for those MS images which display 
sharp differences between the means of regions 
representing the four macro-level classes: sky, forest, 
field, and road. As discussed earlier and shown in Fig. 2, 
MS channels 1, 3, 6, 8, and 10 provide the best images 
for texture gradient computation out of the twelve 
channels that are available and are, therefore, used. 

The parameters of the TBL algorithm, K and N, are 
set for each selected MS image according to the nominal 
range of the terrain class boundaries to be detected. For 
instance, channels 8 and 10 are identified as the best dis- 
criminators between the road and field classes. Because 
fields are usually located within 5-100 yards of the ALV 
(as a function of the ALV's current mission profile), the 
road-field boundary extends across several pixel sam- 
ples laterally. Therefore, the parameters of the TBL 
algorithm used for these MS images are K = 9, N = 11 
and K = 11, N = 13, respectively. The values of the 
parameters K and N used for estimating the gradient of 
the five images (at the macro level) for the experimental 
results presented in this paper are shown in Fig. 2. 

The evidence for region boundaries obtained by 
processing each of the five images (corresponding to 
channels 1, 3, 6, 8, and 10) with the TBL algorithm are 
combined to produce a single gradient image called the 
accumulated texture gradient image. Because the 
locations of the image where each of the five gradient 
images attains its maximum value are essentially 
disjoint, the gradient images may be combined addi- 
tively. Therefore, each gradient image provides max- 
imum support for the existence of a true inter-class 
boundary for the region boundaries it is designed to 
detect and can contribute evidence for the remaining 
region boundaries, 

Process B. Multi-thresholding: the algorithm uses 
multiple thresholds for the estimation of the true region 
boundaries. It endeavors to fill in the gaps of the highest 
threshold binary image by using the evidence from the 
edge points that are output for each of the remaining 
lower thresholds. In this way, the confidence that the 
edges of the output binary image are true region 
boundaries is high. This approach is more robust than 
traditional gradient-based techniques for the following 
reasons. For the traditional gradient-based approach, a 
gradient image is calculated with a differential window 
operator. The resultant gradient image is transformed 
into a binary image with an appropriately chosen 
threshold. If the threshold value is chosen too low, 
spurious region boundaries will appear alongside true 
ones in the resultant region boundary image. On the 

other hand, a high threshold value will cause pixels to be 
missing from the region boundaries. 

For an edge confidence image, pixel values range 
from A1 to AN, where AN signifies the highest confidence 
that a pixel is an edge element. The confidence image 
locations with the intensity value AN are those locations 
of the gradient image whose intensities are equal to or 
greater than the strictest, highest-value of the N 
thresholds. The thresholds are not absolute thresholds 
for image intensities, but are upper percentage thresh- 
olds for the cumulative distribution function of the 
accumulated texture gradient image's histogram. The 
cumulative distribution function of an image's histo- 
gram is evaluated by deriving the image's histogram, 
normalizing the histogram by the total number of pixels 
of the image and then integrating the normalized 
histogram bin counts from the lowest intensity value 
of the image. The accumulated texture gradient image is 
mapped to the edge confidence image according to the 
following steps: (a) absolute thresholds T1, . . . ,TN 
(which correspond to the P1, . . . ,  PN upper percentage 
points of the cumulative histogram) are calculated; (b) 
the accumulated texture gradient image is mapped to N 
binary images by thresholding with each of the thresh- 
olds; (c) the N binary images are combined additively to 
obtain the edge confidence image. Thus, accumulated 
texture gradient image magnitudes greater than the 
highest threshold are mapped to the greatest confidence 
of the edge confidence image (N), and those magnitudes 
greater than the next highest level threshold but less than 
the highest level threshold are mapped to the next 
highest confidence (N - 1), and so on. Three thresholds 
at the upper 15, 25 and 35% of the accumulated texture 
gradient image are found to be sufficient to define the 
true region boundaries. The use of a greater number of 
thresholds did not improve the quality of the detected 
boundaries significantly. 

Process C. Relaxation-based Edge-linking: an edge 
confidence image is utilized for joining together the 
incomplete region boundaries. (34) The three steps of this 
edge-linking relaxation process are 

1. Label the maximum intensity pixels of the con- 
fidence image as edge elements. 

2. Identify incomplete region boundaries. If  no incom- 
plete boundaries are found, stop; otherwise go to 
Step 3. 

3. Link the incomplete boundaries found for Step 2. 
based on local edge evidence and the smoothness of 
the boundary. Go to Step 2. 

The criteria employed for selecting new edge 
locations for Step 3, in order of precedence, are the 
following: 

(a) the edge location of maximum edge evidence of the 
set of neighbors of the endpoint (if such a maximum 
exists), and 

(b) if all the neighbors of the end point have the same 
edge evidence, then select the pixel location among 
the neighbors of the endpoint that causes the 
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smallest change in the curvature of the incomplete 
boundary. 

Because new edge pixels are appended to incomplete 
boundaries until they become complete boundaries, the 
region boundaries defined by this algorithm are closed. 
After edge-thinning, region properties/features are 
calculated for each region, and these properties are 
archived in a database for use by the knowledge-based 
region labeling algorithm. 

3.2.2. Knowledge-based classification (macro-level). 
A knowledge-based region labeling algorithm is used to 
establish region labels for the regions identified in the 
preceding stage. This algorithm is implemented as a 
production system which cross-references features 
established in the current image with an archive of 
representative features of outdoor scenes via pattern 
matching. The rules of the knowledge-based region 
labeling algorithm are derived using a priori knowledge 
of the spectral, locational, and relational characteristics 
of the regions of interest for the ALV's current location. 
The macro-level regions are individually classified into 
four categories (plus unknown) which are 

O = {sky, forest, field, road} (2) 

The specific features used by the region labeling scheme 
are, 

1. Spectral features the mean and standard deviation 
of each region. 

2. Locational features--the location in image space of 
the region with respect to the expected location of the 
terrain classes, as a function of the imaging system's 
orientation. 

3. Relational features--neighborhood adjacency con- 
straints for specific pairs of terrain classes. 

The likelihood or confidence of the classification of 
each macro-level region is calculated with a pseudo- 
Bayesian confidence measure. The classes {sky, forest, 
field, road} are labeled as ci, c2, c3 and c4, respectively. 
A fifth class, unknown, also exists at this stage, but no 
confidence measures are calculated for it. This last class 
correspond to regions which are not classifiable based 
on the current rules in the knowledge base. 

The spectral features employed to classify the regions 
into one of the four classes are denoted by {fij} 
j = 1 , . . . , J i  for class ci, where J/ is the number of 
spectral features and i = 1 , . . . , 4 .  If the a priori 
probability for each class of (~, P(ci) (i = 1 , . . .  ,4) is 
known, then the conditional likelihood that a region is 
an instance of class ci when the feature data 

f i l , f i 2 , ' ' '  ,fiJi, are observed is given by 

P(ci)p~il,f i2,. . .  ,fis~ I ci) 
P (  ci I J~l'J~2'" " " ' f iJ i)  = 4 p . . .  ' 

~=1 (ck)pffil,f~2, ,fiJ, I ck) 
(3) 

where  P0~I ,J~2,-.- ,fiJi ] ci)  is the probabi l i ty  densi ty  of  
the features3~j, j = 1 , . . . ,  Ji, conditioned on the fact that 
they are observations of class ci. If each of the features 

of a specific class ci (i = 1 , . . . ,  4) are independent, then 
equation (3) can be expressed in a computationally 
efficient form. Because of the immense variability of 
outdoor imagery, the features, {fij}, for the ith region are 
asymptotically independent as the size of the region 
becomes large. Thus, for macro-level regions, which are 
large, the features can be viewed as being independent. 
Under this assumption, equation (3) becomes: 

P(ci) I I J ~ p ~ j  d c,) 
p ( c i  ] J~i , j~2, .- .  ,3~Ji) 4 

21c=lP(Ck) i~Jilp(fij l Ck) (4) 

The initial probabilities of the classes, P(ci), i =  
1, . . .  ,4, are all equal to 0.25 for our system. 

The terms p(fij ] c i) , j  = 1 , . . . , J i , i =  1 , . . . , 4  in 
equation (4) are very difficult to estimate precisely for 
an arbitrary MS image. Instead, these density functions 
are approximated as piecewise uniform or linear like- 
lihood functions for computational efficiency. One such 
approximation is the trapezoidal density function. 
Figures 4 and 5 show the densities estimated for the 
sky and forest, and field and road classes, respectively, 
using the selected MS channel image. Also presented, 
for comparison purposes, are the histograms of mea- 
sured image intensities of these regions in the image 
MULTI36 (an element of the data set of MS imagery 
collected using ERIM passive scanner). 

Currently, our approach uses the four relational 
constraints: ABOVE, BELOW, LEFT and RIGHT. 
These relational constraints are defined for all pairings 
of the four terrain categories, but have logical values 
only for those pairings where the relation makes sense. 
For instance, the relation {sky ABOVE grassy field} is 
possible (the sky is above all fields), but the relation 
{forest ABOVE sky} is invalid. 

The knowledge-based classifier uses a pseudo-Baye- 
sian likelihood approach for the spectral and locational 
constraints. Because conditional likelihoods for rela- 
tional constraints are binary, i.e. p O e l c i ) ~  1 and 
p ( - f l c i )  ~ O, where - f ,  represents the compliment 
set of feature j-), the reasoning process carried out by 
terrain interpretation system at this step is essentially 
one of pattern matching. These knowledge-based pattern 
matching operations can be represented equivalently as 
pseudo-rules. Two of the equivalent pseudo-rules are 
given below. 

Classify-forest pseudo-rule 
If the class Forest has the greatest likelihood and 
If the location of the region is in the upper half of the 

image and 
If the region ABOVE this region has a high likelihood 

of being Sky, then 
Classification -- Forest 

Classify-road pseudo-rule 
If the class Road has the greatest likelihood and 
If the location of the region is in the lower half of the 

image and 
If the location of the region is in the middle one-third 

of the image and 
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Fig. 4. Piecewise linear densities estimated for (a) sky and (b) forest regions in multi-spectral channel 1 of 
MULTI36. Measttred image intensity histograms of 5x5 window means for (c) sky and (d) forest using the 

same data. 

If the region RIGHT of the region has a high 
likelihood of being Field or if  the region LEFT of the 
region has a high likelihood of being Field, then 

Classification = Road 

The performance of this step can be enhanced with 
the integration of  auxiliary information such as digital 
map, digital terrain feature data (DFAD) and digital 
terrain elevation data (DTED) into the knowledge base, 
beyond the baseline spectral, locational, and relational 
constraints described here. The representation of this 
auxiliary knowledge will also be in the form of 
conditional probabilities, similar to that of the baseline 
constraints. 

3.2.3. Micro-level region segmentation. Once the 
macro-level regions have been segmented and labeled, 
adjacent regions which belong to the same class are 

merged. The updated labeled image consists of 
contiguous regions of forest, field, road, sky and 
unknown. The third step of the terrain interpretation 
algorithm is the segmentation of each macro-level 
image region into subregions or the micro-level 
regions. We have identified the spectral bands of the 
data which are optimal for differentiation of the micro- 
level regions within each macro-level region. A cross- 
reference table for the micro-level regions of the field 
category is provided in Table 2. 

The general principles for the segmentation of micro- 
level regions are the same as that of macro-level regions. 
However, the notable differences between the two are 

• A distinct group of MS images is used, 
• The parameters that define the sensitivity of the 

TBL algorithm are revised, and 
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Fig. 5. Piecewise linear densities estimated for (a) field and (b) road regions in multi-spectral channel l of 
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same data. 

• Region merging is done after the MS texture 
gradient edge linking relaxation algorithm has 
produced an edge image to combine small regions 
resulting from this algorithm. These small regions 
are obtained because the parameters of the TBL 
algorithm are tuned at this step to detect higher 
resolution features. 

The set of MS images used for subregion boundary 
detection for each of the four terrain classes (excluding 
the unknown class) are those that exhibit sharp 
discontinuities between subregions of interest. The 
parameters of the TBL algorithm are selected to 
correspond to the range of macro-level image regions 
and the resolution required for the detection of the 
micro-level features. Range to a specific macro-level 
region is derived from knowledge of the height of the 

camera above ground level and the DTED or a flat earth 
assumption if no DTED is available. The parameters of 
the TBL algorithm are given in Section 4. 

Region merging, as mentioned above, is performed 
after the spectral features for different regions have been 
obtained using the luminance image (the Y image of the 
NTSC standard for color imagery transmission). These 
features are utilized in a series of hypothesis tests for the 
estimation of equivalence of statistical distributions of 
image intensities for neighboring regions. The deriva- 
tion of hypothesis test procedures where the mean and 
variance of the micro-level classes are unknown is very 
complicated and no generally accepted methodology 
exists. This category of statistical hypothesis test is 
known as the Behrens-Fisher Problem in the statistical 
literature (35) and although diverse strategies have been 
proposed for scenarios of this kind, controversy still 
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rages regarding the appropriateness and usefulness of 
these test procedures• The statistical hypothesis test 
procedure derived for establishing micro-level region 
equivalence is heuristic and is realized as a sequence of 
three hypothesis tests. These three hypothesis tests are: 
(1) an F-test for the equivalence of the variance of the 
samples' image intensities, (2) a t-test for the equiva- 
lence of the means of the samples' image intensities, 
and (3) a test of the equivalence of the distributions of 
the sample measurements, which is called the Kolmo- 
gorov-Smirnov Test. These hypothesis test procedures 
are described below. 

A hypothesis test is a standard statistical estimation 
approach for discriminating between mutually exclusive 
hypotheses. The disjoint spaces represented by the 
hypotheses are f~o and [21 and the traditional notations 
for the hypotheses themselves are: 

H0 : 0 E [20, 
HI : 0 C [21, (5) 

where random samples (X) are drawn from a distribution 
which involves the unknown parameter 0. The subset of 
the sample space S for which the hypothesis Ho will be 
rejected is denoted as the critical region. For a specific 
hypothesis testing strategy, one is interested in the 
likelihood of rejecting Ho, which is denoted as 7r(0) for 
all 0 E f~, where f~0 U (31. The function 7r(0) is called 
the power function of the test. Thus, if C denotes the 
critical region of the test, then the power function, 7r(0), 
is determined by the relation: 

7 r ( 0 ) = P r ( X c C ] 0 )  f o r 0 C f 2  (6) 

The likelihood of an incorrect decision is minimized 
by minimizing 7r(0) for the region [2o. In many 
problems, an upper bound c~0(0 < c~0 < 1) is specified 
and tests are considered for which 7r(0) _< c~0 for every 
0 C f20. The constraint on this category of error is 
defined as the level of significance of the test. For the 
region labeling approach, the three individual hypoth- 
esis tests are carried out at a level of significance of 
0.05. 

First Test for Merging--The F-Test: this test for the 
equivalence of the variances of the image intensities 
of the micro-level regions is specified (35~ by the 
equation: 

r(x,y)  sup( m,m,4,.~)~fl 1 g(x,y  I ~1, #2, 0-2 0-2) 
= sup(~,,m,@~)e~0 g(x,y  I #2, #2, 0-~, o~2)' (7) 

where r(x,y)  is the discriminant of the hypothesis test; x 
the vector of image intensity samples from region 1; y 
the vector of image intensity samples from region 2; 
g(x,y  ] #1, #2, 0-2, o.~2 ) is the joint likelihood of the 
samples from the neighboring regions; #1,0-2 represent 
the mean and variance of the first region, respectively; 
and #2,0-~ represent the mean and variance of the 
second region, respectively. 

If image intensity samples from each region are 
viewed as being Gaussian random variables whose mean 
is #i, i =  1,2, and variance is o~/, i =  1,2, then the 

preceding equation can be rewritten as 

/ ( x , y )  = ~ i m l ( X i  Xmm)2/(/7"/- l )  (8) 

~-~i~=, (Yi - ~ ) 2 / ( n  - 1) ' 

where gin,, is the estimated mean of the image intensity 
samples (m) for the first region (= 1 m m ~i=1 Xi), and N the 
estimated mean of the image intensity samples (n) for 
the second region ( ~ 2~=1Yi). 

The attributes of the statistical distributions of the 
image intensities that we wish to test are 

H o :  0-I = 0-~2,H1 : 0-I #0-2. (9) 

It can be shown that under the hypothesis Ho the 
discriminant r1(x,y) is distributed as an F random 
variable of m- 1 and n- 1 degrees of freedom. Because the 
percentage levels of the F-distribution having m-1 and 
n-1 degrees of freedom can be tabulated numerically, the 
discriminant threshold can be calculated to obtain a 
prerequisite level of significance. The hypothesis test of 
equation (9) specifies that the critical region is obtained 
as two subregions, the region where r'(x,y) < c~ and 
the region w h e r e / ( x , y )  > c2. If misclassification errors 
for either of these regions are viewed as being equally 
undesirable, then the discrimination levels are obtained 
as the l c~o and 1 -  i ao percentage levels of an F- 
distribution of m-1 and n-1 degrees of freedom. Thus, 
the hypothesis test procedure is as follows: reject the 
null hypothesis Ho if / ( x , y ) <  cl or / ( x , y ) >  c2, 
where ca and c2 are the ~c~o and 1 - ½ a o  percentage 
points of an F-distribution with m-1 and n-1 degrees of 
freedom. 

Second Test for Merging--t-Test: It is used for the 
equivalence of the means of the image intensity of 
micro-level regions. This discrimination function is 
calculated only if the variances of the image intensities 
are established to be statistically equivalent because the 
derivation of the hypothesis test is predicated on the 
samples being measurements obtained from indepen- 
dent Gaussian distributions with unknown means and 
one known variance. The hypotheses for this test are 

Ho : #1 = #2, (10) 
H1 : #1 7 ~ #2.  

The discriminant of  the hypothesis test can be 
established from the ratio of the joint likelihoods of 
the samples for the distinct hypotheses' subspaces. The 
ratio of the joint likelihoods can be transformed into the 
following equation: 

r ' ( x , y )  = 

( m 4 - n - - 2 )  1/2 ] 2~ - - ~  I 

-t- 1~ 1/2 ~K-~m ( X  --  Xm) 2 ~- n (1 n] [Z-J,=I \ z ~ i = 1  (Yi - y~,)2] 1/2 

(11) 

If # 1 - / * 2  (the hypothesis Ho is true), then the 
discriminant function r'(x,y) has a t-distribution of 
r e+n- 2  degrees of freedom. The t-distribution function 
is symmetrical and displays equal likelihoods for the 
coordinates i x .  Thus, the hypothesis test is specified 
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equivalently as follows: reject H0 if Ir1(x,y)I> c, 
where c is the 1 - ½ a 0  percentage point of a t- 
distribution of m+n-2 degrees of freedom. 

Third Test for Merging Kolmogorov-Smirnov Test: 
this hypothesis test is a non-parametric decision strategy 
because the derivation makes no requirements on the 
categories of distributions to be used for the test. The 
hypothesis test is derived on the basis of the established 
statistical behavior of empirical distribution functions. 
For this test, we assume that an array of samples 
X1,. . . ,  Xm is taken from a distribution for which the 
distribution function F(x) is unknown, and an indepen- 
dent array of samples 111,..., Ym is taken from another 
distribution for which the distribution function G(x) is 
also unknown. The hypothesis test is based on the 
assumption that F(x) and G(x) are continuous functions 
and the hypothesis test establishes the statistical 
equivalence of the distribution functions, or a decision 
is made between the hypotheses: 

H0:  V(x) = G(x), for oo < x < oc 
(12) 

H1 : Hypothesis H0 is true. 

For each number x ( - c c  < x < oo), the value of the 
sample distribution function, Fro(x), is defined to be the 
proportion of observed values in the sample which are 
less than or equal to x. In other words, if exactly k of the 
observed values in the sample are less than or equal to x, 
then Fm(x)=k/m. 

The sample distribution function Fro(x) can be 
regarded as the distribution function of a discrete 
distribution which assigns probability 1/m to each of 
the m values x l , . . . , xm.  Thus, F,,(x) will be a step 
function with a jump of magnitude 1/m at each point 
xi (i = 1 . . . .  , m). 

If the distribution function of the image intensity 
samples is F(x), then for any x, - o c  < x < oc, the 
probability that any particular Xi will be less than or 
equal to x is F(x). Therefore, it follows from the law of 
large numbers that, as m ---, oc, the proportion Fro(x) of 
observations in the sample which are less than or 
equal to x will converge in probability to F(x). A 
stronger result is the Glivenko-Cantelli lemma, which 
states that Fro(x) converges to F(x) uniformly over all 
values of x. 

The third hypothesis test is derived from a statistic 
obtained from the sample distribution functions Fro(x) 
and Gn(x) for sample measurements X1, . . . ,Xm and 
I71, • • •, Y,, respectively. The statistic is denoted D,,n and 
is obtained from the following equation: 

D,m = sup I Fm(x) -- G,,(x) I (13) 
- - o O < x < o o  

If the hypothesis H o is true (the distribution function 
F(x) is equivalent to the distribution function G(x)), then 
the sample distribution functions will tend to be close to 
each other. In fact, when H0 is true, it follows from the 
Glivenko-eantell i  lemma that: 

p l i m  Dm. = 0 (14) 
n ~ o o  

The hypothesis test is based on a theoretical result 
regarding the statistical behavior of the statistic D,~n. If 
the hypothesis Ho is true, then the statistical attributes of 
Dmn are defined by the following equation: 

( Iron]l~2 ) 
l i m  Pr [ ~ J  Dm. < t  

cx~ 

= 1 - 2 ~ ( - 1 ) i - l e x p ( - 2 i z r 2 ) .  (15) 
t = l  

Thus, the decision strategy is to reject the hypothesis 
Ho if the magnitude of the statistic Dmn, scaled by the 
factor (mn/(m 4-n)) 1/2, is greater than the a 0 percen- 
tage level of the function of the right-hand side of 
equation (15). 

If all three hypothesis tests do not negate (a very 
conservative approach) the eqnivalence of the statistical 
distributions of the samples obtained from the adjacent 
regions, then the regions are designated as measure- 
ments from the same terrain category. The estimation of 
the equivalence of the density functions of the samples 
is carried out for all pairs of regions obtained from the 
preceding stage, and then all pairs of regions that remain 
after the first iteration of region merging, and so on, 
until no changes occur. Finally, the boundary image is 
revised to account for the merged regions. 

3.2.4. Knowledge-based classification (micro-level). 
The region labeling scheme at the micro-level is 
identical to that at the macro-level, except that only 
spectral features are used for micro-level region 
classification. This approach is utilized because the 
immense variabili ty of  arbitrary outdoor scenes 
prevents the specification of valid locational and 
relational constraints for all scenarios. Therefore, the 
micro-level knowledge-based classifier derives terrain 
classifications by associating with each region that 
region category whose a posteriori Bayesian likelihood 
is the highest of all classes. Thus, if  P~.  I c) denotes the 
probability that a region possesses a feature f~ given that 
the segment belongs to class c, the region is classified as 
belonging to class c* if c maximizes p(c I fl ,f2, • - • ,fN), 
where p(c I fl,f2,. ,fN) is defined by the following 
equation: 

N 
= IIi=lP(filc)P(c) (16) 

p(clf l , f2 . . . .  ,fN) ~j21 N [I,=lp~ l cj)P(cfl 

where N is the number of database (independent) 
features employed for the classification of a region at 
the micro-level to class c, and J is the number of micro- 
level classes for the specific macro-level region under 
consideration. The c* that maximizes the above 
expression is the Bayes classification for the micro- 
level region. 

3.2.5. Refinement of region boundaries. Because the 
multispectral texture-gradient edge linking relaxation 
algorithm (Fig. 2) can yield false region boundaries 
where the texture gradient strength at the true structural 
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boundaries of the image is low, a region editing step is 
required. The small regions which share the same 
classification as neighboring larger regions are merged 
to the larger region if the degree of disparity between the 
mean  and the var iance  of  the reg ions  under  
consideration does not test to be significant (utilizing 
the hypothesis test procedure described in Section 
3.2.3). After the application of all appropriate spectral 
constraints from the knowledge base, neighboring 
micro- level  regions that share the same terrain 
classification are merged to form larger regions. This 
process continues until every pair of adjacent micro- 
level regions are elements of disjoint terrain categories. 
The region categories employed for micro- level  
classification for fields are: gamma grass, snowberries, 
scrub bush (e.g. gambel oak, yucca, etc.) and gravel 

Fig. 6. Display of 12 channels of multi-spectral scanner image 
MULTI36. 

road. The region categories utilized for micro-level 
region classification of forest regions are: gamma grass, 
scrub bush (e.g. gambel oak) and trees (e.g. juniper, 
mountain mahogany, etc.). The region categories 
employed for micro-level classification of road regions 
are: gravel road and grass. Sky regions are not 
segmented into subregions. 

4. EXPERIMENTAL RESULTS 

The terrain interpretation system is implemented on 
two platforms. The macro- and micro-level segmenta- 
tion steps are implemented in the C programming 
language on a SUN 4 computer under the SUNOS 
UNIX 4.1.1 operating system. The knowledge-based 
region labeling steps at the macro- and micro-levels are 
implemented in a pattern-based reasoning language 
package, written in Common Lisp, on a Symbolics 
3670. Data is transferred from one computer to the other 
by means of a ChaosNet File Transfer Protocol (FTP). 
The MS imagery input to the system are obtained from 
the Collage I database generated with the ERIM passive 
MSS at the Martin-Marietta ALV Test Site on 3rd July 
1985.( 31 ) 

Figure 6 displays the twelve MS channels from the 
image MULTI36 ("Segment O")  of the Collage I data 
set. These are shown sequentially going from left to 
right across the figure, where the first row begins at the 
top left comer of the figure, the next row is the one 
below it, etc. As a result of the scanner electronics 
malfunction, no data is available for channel 9 (third 
row, first column of Fig. 6). Edge Linking Relaxation 
results for image MULTI36 are shown in Fig. 7. The 

fm]iLtt ' " ' 

Channel 1 Channel 3 Channel 6 Edge Confidence 
(0.44 to 0.49 gm) (0.54 to 0.58 gm) (0.66 to 0.70 gin) Image 

. . . .  - - , f 2 _ 2 -  

Channel 8 Channel 10 Accumulated Texture 
(0.77 to 0.86 gm) (1.0 to 1.4 pm) Gradient Image 

Fig. 7. Texture gradient images for channel 1, 3, 6, 8 and 10 (image MULTI36). As described in Fig. 2, the 
accumulated texture gradient image, edge confidence image and region boundary image results at the macro- 

level are also shown. 

Region Boundary 
Image 
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figure shows the texture gradient images for MSS 
channels 1, 3, 6, 8, and 10 and the additive combination 
(normalized) of the five texture gradient images (the 
accumulated texture gradient image in Fig. 2). The 
estimated image textural qualities are represented as 
intensity images, where the image intensity is propor- 
tional to TBL gradient magnitude. The significant 
region boundaries are very sharp in the accumulated 
texture gradient image, while the individual texture 
gradient images demonstrate varying degrees of sig- 
nificant region boundary sharpness, primarily as a 
function of range. When the accumulated texture 
gradient image is subjected to multi-thresholding, the 
result is an edge confidence image. The edge confidence 
image is depicted in an encoded pseudo-color display in 
Fig. 7. The region boundary image is obtained from the 
edge confidence image by iterative continuation of 
unclosed boundaries. The optimal representation for the 

Fig. 8. Macro-level region boundaries superimposed on the 
luminance image for MULTI36. 

existence of region boundary locations is determined by 
the relaxation-based edge linking algorithm to derive the 
macro-level region boundaries. 

Figure 8 is the luminance image (the Y image of the 
NTSC television standard for color imagery transmis- 
sion) of the MS image MULTI36 over which the macro- 
level region boundaries are superimposed. For the 
purpose of visual verification of the results, the color 
image without superimposed macro-level region bound- 
aries is presented in Fig. 9(a). Comparing Figs 8 and 
9(a), we find that the segmentation of all terrain classes, 
sky, forest, field and road, are good except for the left 
and right forks of the road. These fork-region bound- 
aries are not detected because they are located at too 
great a distance from the MSS. The range of distances at 
which road boundaries may be detected is a function of 
the parameters of the TBL algorithm for MS images, 8 
and 10, which are the best channels for detecting road 
boundaries (see Table 1). Because the edges of road 
boundaries for these channels are not sharp, the 
parameters of the TBL algorithm are set for wide 
boundaries (K = 9, N = 11 for channel 8 and K = 11, 
N = 13 for channel 10). When road regions are located 
at a great distance from the MSS, such as the two forks 
of the road, both borders of the road lie inside the 
texture gradient measurement window (see Fig. 3). 
Therefore, the texture in their vicinity will appear to 
be homogeneous and the TBL will not detect their 
boundaries. According to specifications, O6) the image 
processing requirements for vehicle guidance at a 
velocity of 10 km/h are 15 m for the MSS. Because 
the distance to the fork in the road is approximately 
30 m from the vehicle for MULTI36, the failure to 
detect the forks is acceptable according to the 
specifications. This lack of information can be sup- 
planted with other sources, such as a knowledge base 
enhanced with elevation map, land cover map, or range 
sensor information, and temporal evidence, (37) for cross- 

Fig. 9. Segmentation and region labeling results for image MULTI36: (a) color image corresponding to 
image MULTI36 (Red=channel 6, Green=channel 3 and Blue=channel 1); (b) labeled macro-level regions 
for multi-spectral scanner image MULTI36. Labeled regions, r=road, g=field, f=forest, s=sky and 

u=unknown. 
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(a) O) 

i 

F F 

G 

(c~ (d) 

Fig. 10. Segmentation and region labeling results for image MULTI12: (a) display of 12 channels of multi- 
spectral scanner image MULTI12 (pseudo colored); (b) luminance image (pseudo colored); (c) macro-level 
region boundaries superimposed on the luminance image; (d) labeled macro-level regions for multi-spectral 
scanner image MULTI12. Labeled macro-level regions, R=road, G=field, F=Forest, S=sky and 

U--unknown. 

country navigation. The results of macro-level region 
segmentation of MULTI36 are presented in Fig. 9(b). 

A second set of macro-level region segmentation 
results are presented in Fig. 10. Figure 10(a) shows the 
twelve channels of  the MSS imagery MULTI12 
("Segment  V" )  from the Collage I database and 
Fig. 10(b) is the luminance image corresponding to 
MULTI12. The extracted macro-level region boundaries 
and the labeled regions superimposed on the luminance 
image are shown in Fig. 10(c) and (d), respectively. 
Note that the foothills are accurately segmented and that 
the occluding borders of hills in the foreground are 
detected as well. 

The results of the micro-level region segmentation for 
the field region using MULTI36 are demonstrated in 
Figs 11-13. During this segmentation process, the field 
regions of  Fig. 9(b) are further subdivided into 
subregions of snowberries, scrub bushes, red clay-like 

soil, and grass. The sources of evidence for this stage are 
MSS channels 5, 8, and 10 (see Table 2). We have used 
only one channel (channel 5) from channels 4, 5 and 6 to 
reduce the amount of computation. The parameters K 
and N for the TBL algorithm for these MS images are: 
MSS channel 5, K = 2, N = 3; MSS channel 8, K = 3, 
N = 5; and MSS channel 10, K = 3, N -- 5. Figure 11 
shows the texture gradient results on the selected 
channels, accumulated texture gradient images, edge 
confidence image and region boundaries obtained after 
the application of the Edge Linking Relaxation algo- 
rithm. Small regions are merged with adjacent regions 
using the technique as described in Section 3.2.3. The 
results after region merging are shown in Fig. 12(a). 
Figure 12(b) shows the labeled regions at the micro- 
level. The labels are grass, scrub bushes, snowberries 
and road. As mentioned in Section 3.2.4, only spectral 
features are used for labeling the regions. The final 
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Channel 5 Channel 8 Channel 10 
(0.62 to 0.66 p.m) (0.77 to 0.86 gm) (1.0 to 1.4 gm) 

Accumulated Edge Region Boundary 
Texture Gradient Confidence Image 

Image Image 

Fig. 11. Texture gradient images, for channels 5, 8 and 10 (image MULTI36), used for the segmentation of 
micro-level region called "field". As described in Fig. 2, the accumulated texture gradient image, edge 
confidence image and region boundary image results at the micro-level are also shown for the field region. 

( i  " , : i : : , ;  . . . .  : 

(a) (b) 

Fig. 12. Micro-level terrain segmentation for the "field" region (image MULTI36): (a) micro-level regions; 
(b) labeled regions, mustard=grass, yellow--scrub bushes, tan=snowberries, blue=road. 

region classification results are shown in Fig. 13; 
Fig. 13(a) shows the image MULTI36 and Fig. 13(b) 
shows the labeled macro- and micro-level regions (for 
the field region) superimposed on the image. 

5. CONCLUSIONS 

This paper has presented a technique for the detection 
of structural region boundaries in terrain images using a 

mobile platform-mounted MSS sensor. The problem of 
region classification is solved using knowledge-based 
techniques. To reliably label each region in the input 
image, it has been argued that the terrain interpretation 
system must make use of a pr ior i  information as much 
as possible because of the immense variability of 
outdoor scenes. The a pr ior i  information can assume 
various forms, for instance, the nominal location of each 
terrain class in the image as a function of the imaging 
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~ r ~  ' 

(a) (b) 

Fig. 13. Terrain segmentation for image MULTI36: (a) collage I color image--MULTI36; (b) terrain region 
classifications• Labeled regions, s=sky, f=forest, r=road, g=grass, sn=snowberry, sc--scmb bushes, 

u unknown. 

system's orientation. The reliability of the overall 
approach is enhanced by the application of constraints 
on the region labeling process where the constraints are 
derived from the a priori information about the 
geographic region where the vehicle is traveling. 
Experimental results showing extracted macro-level 
and micro-level region boundaries demonstrate the 
efficacy of the method. Since the knowledge base can 
include a priori information about terrain elevation, land 
cover, geological data, time of day, season, and the like, 
the described work should be useful in the development 
of a totally autonomous system navigating in an 
unstructured natural environment. The hierarchical, 
region labeling strategy discussed in this paper can be 
used to establish reliable scene classification maps for 
other application areas such as remote sensing and 
photointerpretation, because application-specific con- 
straints also exist for these problems. The requirements 
and practices of these application areas and the specific 
attributes of the geographic locations where the systems 
are used can be mapped to constraints on the applicable 
labels to be used at each stage of the hierarchy. Thus, the 
same baseline terrain interpretation system whose 
functionality has been demonstrated in this research 
can find usage in diverse areas without requiring major 
modifications. 

Acknowledgements--This work was supported in part by the 
Defense Advanced Research Projects Agency (DARPA) under 
Contract DACA 76-86-C-0017 and monitored by the U.S. 
Army Engineer Topographic Laboratories. The authors would 
like to thank W. Au, J. Kim, J. Landay and S. Schaffer for their 
help with the implementation of the algorithms described in 
this paper. 

REFERENCES 

1. E. D. Dickmanns and B.D. Mysliwetz, Recursive 3-D 
road and relative ego-state recognition, IEEE Trans. 
Pattern Analysis Mach. Intell. 14(2), 199-213 (1992). 

2. C. A. Harlow, M.H. Trivedi, R. A. Conners and 
D. Phillips, Scene analysis of high resolution aerial scenes, 
Optical Engng 25(3), 347-355 (1986). 

3. D. A. Landgrebe, Analysis technology for land remote 
sensing, Proc. IEEE 69(5), 628-642 (1981). 

4. M. D. Levine and A. M. Nazif, Low level image 
segmentation: An expert system, IEEE Trans. Pattern 
Analysis Mach. Intell. PAMI-6(5), 555-577 (1985). 

5. Y. Ohta, Knowledge-based Interpretation of Outdoor 
Natural Scenes. Pitman, London (1985). 

6. S.M. Rubin, Natural scene recognition using locus search, 
Comput. Graphics Image Process. 13, 298-333 (1980). 

7. D. M. McKeown, Jr. Knowledge based aerial photo 
interpretation, Photogrammetria 39, 91-123 (1984). 

8. M. Nagao and T. Matsuyama, A Structural Analysis of 
Complex Aerial Photographs, Plenum Press, New York 
(1980). 

9. W.A. Perkins, T. J. Laffey and T. A. Nguyen, Rule-based 
interpretation of aerial photographs using the Lockheed 
Expert System, Optical Engng 25(3), 356-362 (1986). 

10. L. Sauer and J. Taskett, Cultural feature and syntax 
analysis for automatic acquisition, SPIE Conf. Processing 
of Images and Data from Optical Sensors 292, 270-276 
(1981). 

11. J. Ton, J. Stridden and A.K. Jain, Knowledge-based 
Segmentation of Landsat Images, IEEE Trans. Geoscience 
Remote Sensing GE-29(2), 222-232 (1991). 

12. R. M. Hord, Remote Sensing Methods and Applications. 
Wiley, New York (1986). 

13. R H. Swain, Advanced interpretation techniques for earth 
data information systems, Proc. IEEE 73(6), 1031-1039 
(1985). 

14. J.A. Richards, D. A. Landgrebe and P. H. Swain, Pixel 
labeling by supervised probabilistic relaxation, IEEE 
Trans. Pattern Analysis Mach. Intell. PAMI-3, 181-191 
(1981). 

15. A. Rosenfeld, C-Y. Wang and A. Wu, Multispectral 
texture, IEEE Trans. Systems Man Cybernet. SMC-12(1), 
79-84 (1982). 

16. J. M. Brayer, P. H. Swain and K. S. Fu, Modeling earth 
resources with satellite data, in Syntactic Pattern 
Recognition Applications, K. S. Fu, ed. Springer, Berlin 
(1977). 

17. 2". Kusaka and Y. Kawata, Hierarchical classification of 
LANDSAT TM image using spectral and spatial informa- 
tion, Int. Geoscience and Remote Sensing Symposium 
(IGARSS '91), 2187-2190 (June 1991). 

18. P. Meyer, Segmentation and symbolic description for a 
classification of agricultural areas with multispectral 
scanner data, IEEE Trans. Geoscience and Remote Sensing 
GE-30(4), 673-679 (1992). 

19. D. D. Giusto, L. Parodi and G. Vemazza, Accurate 
segmentation of multispectral remote sensing images, 



Analysis of terrain using multispectral images 215 

Proc. 6th Scandinavian Conf. Image Analysis, 936-939 
(June 1989). 

20. M. C. Zhang, R. M. Haralick and J. B. Campbell, 
Multispectral image context classification using stochastic 
relaxation, IEEE Trans. Systems Man Cybernet. SMC- 
20(1), 128-140 (1990). 

21. M. Goldberg, D. G. Goodenough, M. Alvo and G. M. 
Karam, A hierarchical expert system for updating forestry 
maps with landsat data, Proc. IEEE 73(6), 1054-1063 
(1985). 

22. A. Rangarajan, R. Chellappa and B. S. Manjunath, Random 
fields and neural networks with applications to early 
vision, in Artificial Neural Networks and Statistical Pattern 
Recognition: Old and New Connections, I. K. Sethi and 
A. K. Jain, Eds. Elsevier Science, New York (1991) . 

23. C.A.  Therrien, An estimation-theoretic approach to terrain 
image segmentation, Comput. Graphics Image Process. 22, 
313-326 (1983). 

24. K.V. Mardia and T. J. Hainsworth, Spatial thresholding 
method for image segmentation, IEEE Trans. Pattern 
Analysis Mach. Intell. PAMI-10(6), 919-927 (1988). 

25. C. Bouman and M. Shapiro, Multispectral image segmen- 
tation using a multiscale model, Proc. IEEE Int. Conf. 
Acoustics Speech Signal Process., 565-568 (March 1992). 

26. R. A. Fernandes and M. E. Jernigan, Unsupervised 
multiscale segmentation of multispectral imagery, Proc. 
IEEE-SP Int. Syrup. Time-Frequency and Time-Scale 
Analysis, 547-550 (October 1992). 

27. M. Amadasum and R. A. King, Low-level segmentation 
of multispectral images via agglomerative clustering of 
uniform neighborhoods, Pattern Recognition 21(3), 261-  
268 (1988). 

28. H. Hanaizumi, H. Okumura, H. Tsubaki and S. Fujimura, 
A supervised classification algorithm for remotely sensed 
multispectral images by using spatial segmentation, Proc. 

Second lnt. Syrup. Noise and Clutter Rejection in Radars 
and lmaging Sensors, 136-141 (November 1989). 

29. C. Salvaggio and J. R. Schott, Automated segmentation of 
pseudoinvea'se features from multispectral imagery, Proc. 
SPIE Three-Dimensional Imaging and Remote Sensing 
Imaging 902, 118-127 (January 1988). 

30. M. H. Brill, Object-based segmentation and color recogni- 
tion in multispectral images, Proc. SPIE Image Under- 
standing and the Man-Machine Interface H 1076, 97-103 
(January 1989). 

31. J. A. Allison, COLLAGE: A collection of sensor images 
for the ALV test area, Technical Report, Martin Marietta 
Corporation (December 1985). 

32. J. N. Prinker, J. P. Henley and M. B. Satterwhite, Terrain 
data base--Air  photo analysis, Martin Marietta ALV Test 
Site, Technical Report, Martin Marietta Corporation 
(January 1986). 

33. D. Zuk and L. Harmon, Active multispectral 3-D sensor 
design, Technical Paper from Environmental Research 
Institute of Michigan, Ann Arbor, Michigan (November 
1986). 

34. W. Au, S. Mader and R. Whillock, Scene analysis, Third 
Triannual Technical Report to Center for Night Vision and 
Electro-Optics, Contract No. DAAL01-85-C-0429, Honey- 
well Systems and Research Center, Minneapolis (July 
1986). 

35. M. DeGroot, Probability and Statistics. Addison-Wesley, 
Reading, Massachusetts (1975). 

36. J. Lowrie, The autonomous land vehicle--Second quarterly 
report, Technical Report, Martin Marietta Corporation 
(September 1985). 

37. B. Bhanu, P. Symosek, J. Ming, W. Burger, H. Nasr and 
J. Kim, Qualitative target motion detection and tracking, 
Proc. DARPA Image Understanding Workshop, 370-398 
(May 1989). 

About  the A u t h o r - - B I R  BHANU received the S.M. and E.E. degrees from Massachusetts Institute of 
Technology, the Ph.D. degree fi'om the Image Processing Institute, University of Southern California and the 
M.B.A. degree from the University of California, Irvine. Since 1991, Dr Bhanu has been a Professor and 
Director of Visualization and Intelligent Systems Laboratory at the University of California, Riverside. Prior to 
that he was a Senior Honeywell Fellow at Honeywell Systems and Research Center in Minneapolis. He has been 
the principal investigator of various programs from ARPA, AFOSR, A R t ,  NASA, NSF and other agencies and 
industries. He has five patents and over 150 reviewed publications in the areas of computer vision, image 
processing, pattern recognition, artificial intelligence and learning. He was the General Chair for the IEEE 
Conference on Computer Vision and Pattern Recognition held in June 1996 at San Francisco, California. 

About  the A u t h o r - - P E T E R  E SYMOSEK was born in Lawrence, MA, on 22 September 1953. He received 
the B.S. degree in Electrical Engineering from Merrimack College, North Andover, MA, in 1978, and M.Sc. and 
Ph.D. degrees in Electrical Engineering, with minors in Computer Science and Applied Mathematics, from 
Brown University, Providence, RI, in 1980 and 1985, respectively. From 1978 to 1985 he was a Research 
Assistant at the Division of Engineering of Brown University. The research projects he was involved with during 
this time were concentrated in the fields of boundary finding for outdoor scenes, and the derivation of algorithms 
for object classification and for estimating the location and orientation of objects, employing specular image 
data. Since 1985 he has been working at Honeywell, Inc., Minneapolis. At Honeywell, he has been doing 
research on algorithm design and analysis for autonomous outdoor robotics, space image processing, and sensor/ 
processor trade off studies for implementation of multisensor algorithms for surveillance and tactical 
applications. 

About  the A u t h o r - - S U B H O D E V  DAS received his B.Tech. (Hons.) degree in Electronics and Electrical 
Engineering from the Indian Institute of Technology, Kharagpnr, in 1984, his M.S. degree in Electrical 
Engineering from the University of Hawaii in 1986, and ins Ph.D. degree in Electrical and Computer 
Engineering from the University of Illinois at Urbana-Champaign in 1991. Between 1991 and 1994, he was with 
the College of Engineering at the University of California, Riverside. Currently, he is a research staff member at 
PEB Inc., Princeton, working in real-time computer vision. His research interests include intelligent systems, 
computer vision, machine learning, human-computer interaction, real-time computing, parallel and distributed 
processing, and applications of artificial intelligence, signal and image processing. He is a member of the IEEE. 


