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Model-based object recognition has become a popular paradigm in computer vision
research. In most of the current model-based vision systems, the object models used for
recognition are generally a priori given (e.g. obtained using a CAD model). For many
object recognition applications, it is not realistic to utilize a fixed object model database
with static model features. Rather, it is desirable to have a recognition system capable
of performing automated object model acquisition and refinement. In order to achieve
these capabilities, we have developed a system called ORACLE: Object Recognition
Accomplished through Consolidated Learning Expertise. It uses two machine learning
techniques known as Explanation-Based Learning (EBL) and Structured Conceptual
Clustering (SCC) combined in a synergistic manner. As compared to systems which
learn from numerous positive and negative examples, EBL allows the generalization of
object model descriptions from a single example. Using these generalized descriptions,
SCC constructs an efficient classification tree which is incremently built and modified
over time. Learning from experience is used to dynamically update the specific feature
values of each object. These capabilities provide a dynamic object model database which

. allows the system to exhibit improved performance over time. We provide an overview of
the ORACLE system and present experimental results using a database of thirty aircraft
) models.

Keywords: Dynamic object model database, model acquisition and refinement, multi-
strategy learning,.

1. INTRODUCTION

Prior attempts to automate object recognition systems have suffered from the lack
of an ability to automatically acquire new object models, to adapt to changing en-
vironmental conditions, and to modify system behavior based on the context of the
situation in which the systems are operating.1™ Due to recent advances in machine
learning technology, some of these problems are resolvable by effectively combining
machine learning and machine vision technologies. Learning allows an intelligent
vision system to use situation context in order to understand images. This context,
as defined in a machine learning scenario, consists of a collected body of background
knowledge as well as environmental observations which may impact the processing
of the scene. The resulting system dynamically reacts to the appropriate stimuli in
the environment, continuously adapting its internal knowledge to improve overall
performance levels. This improvement may come in the form of faster recognition
times, improved recognition accuracy, and higher confidence in system results.
Machine learning technology provides two benefits for an object recognition
domain: automatic knowledge base acquisition (e.g. object model database) and
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continuous knowledge base refinement. Although, significant work in automatic ob-
ject model acquisition have been reported in the literature, particularly in the area
of CAD-based vision in which computer vision systems are interfaced with existing
CAD model databases, these approaches are not adequate enough for some real-
world outdoor applications of computer vision for the following reasons.'4 The ap-
pearance of an object under varying imaging conditions (typical of outdoor scenes)
can be significantly different, none of which may be suitably described using a single
representational scheme.® Features of representation may not be robust for match-
ing or may even prove to be difficult to extract; obtaining statistical distribution
of object features is difficult when the object appearance cannot be predicted well;
the representation may not be optimized for the task in hand; and, finally, new
object models cannot be added to the static database as previously unseen ob-
jects are encountered. Further, the inability to adjust or update the descriptions
of objects that are already modeled is another serious limitation of the existing
approaches. The above two modifications (automatic knowledge acquisition and
continuous knowledge base refinement) to the existing object recognition systems
using machine learning techniques are the focus of this paper. Our work emphasizes
that an effective recognition performance in unconstrained, outdoor scenarios re-
quire the capability to automatically acquire object model descriptions, refine those
descriptions, and learn from experience.

Although machine learning has been used in many applications, its incorpora-
tion into the computer vision field is just beginning, particularly for object model
acquisition (e.g. Ref. 5) and refinement. Further, within the machine learning
field, very little effort has been made to combine several learning techniques to-
gether. Typically, learning methodologies are used independently to provide adap-
tive ability and improved system performance. Our multistrategy approach to ob-
ject recognition!! presented in this paper, calleld ORACLE (Object Recognition
Accomplished through Consolidated Learning Expertise), incorporates two impor-
tant learning techniques, known as explanation-based learning (EBL) and struc-
tured conceptual clustering (SCC). These techniques filter and structure the infor-
mation present in positive concept examples to create useful knowledge structures.
We have synergistically combined the EBL and SCC learning methodologies in the
ORACLE system to offer a consolidated technique which employs the best features
of each method to address the object model recognition, acquisition, and refinement
requirements.

2. ORACLE LEARNING SYSTEM FOR OBJECT MODEL
RECOGNITION, ACQUISITION, AND REFINEMENT

Learning systems based on a single learning paradigm, called monostrategy learning
systems, are not adequate for complex problems like object model acquisition and
refinement. Thus, the ORACLE object recognition system, which is a multistrat-
egy learning system, integrates multiple learning techniques — EBL and SCC — to
achieve its goals. The integration helps to overcome the inherent limitations present
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in the individual learning approaches when applied to the object recognition prob-
lem. In this section, we review the component learning methods of the ORACLE
system, following which the description of the integration and the system details
are presented.

EBL,%12 which is classified as a learning by observation technique, uses inference

to construct a useful concept description from a single example (or a small number of

-—examples)-of that-concept. Unlike the classical-learning from-ezamples-techniques:-18

EBL uses a collection of applicable background knowledge to generate a useful object

description from a single example. However, classification of objects using EBL can

be an extremely slow process, particularly when the model database is large. The
exact manner in which EBL is used in our system is discussed in Sec. 2.1.3.

SCC%10.15 ig 5 method for grouping objects into classes similar to traditional
numerical clustering techniques. However, instead of using predefined measures of
object similarity to determine class boundaries, SCC uses a conjunction of con-
ceptual attributes to group objects into conceptually simple classes. This process
-utilizes important contextual information relevant to the objects to assist in the
classification process. SCC can handle complex, structural descriptions of objects,
which is ideal for object recognition tasks since most objects are represented using
structural descriptions. However, SCC has problems with model biases when the
number of object class examples is small. Further details about our use of SCC are
given in Sec. 2.1.4.

( - \ The nugget of the ORACLE object recognition system is that we have combined

~ ohe ability of EBL to characterize an object using a single training example with
SCC’s efficient method of organizing objects once they have been properly modeled.
This approach yields an integrated learning system which effectively handles the
object recognition task. ’ :

2.1. ORACLE System Description

Figure 1 shows the configuration of the components in the ORACLE object recog-
nition system. The processing elements (indicated by rectangular boxes) utilize
object-specific data (indicated by rounded boxes) and knowledge databases (indi-
cated by oval boxes) during the object recognition process. The input image is
assumed to contain objects of interest (e.g. aircraft) and may include objects that
are not currently in the object model database. The Segmentation and Symbolic
Feature Extraction component identifies the regions of interest that contain objects
in the input image and extracts symbolic feature information from these regions.
The Symbolic Feature Definitions (e.g. wing span, fuselage length, number of en-
gines) are used during this step to identify important object features which are
useful for object recognition. The Knowledge-Based Matching component parses
the Object Classification Tree (see Sec. 2.1.4) which represents a structured hier-
archy of all objects (e.g. different aircraft types) known by the ORACLE system.
Using the extracted symbolic object features, the matching component identifies the
various recognition states (complete, incomplete, occluded, or failed recognition) of
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the ORACLE system. It also initiates the proper learning cycle (model acquisition
or refinement) based on the object recognition results. The Feature Value Monitor
modifies the object feature (e.g. wing span) values in the classification tree based
on the features which are used to identify the object during the recognition cycle.

The Explanation Based Learning (EBL), when invoked by the matching com-
ponent, selects the relevant object features from the symbolic feature information
during the object model acquisition process. EBL also identifies new, pertinent
object features for refining object models already present in the classification tree.
The Background Knowledge is accessed by the EBL component to select object
features during both model acquisition and refinement operations. The Object
Model Database stores the complete model of each object encountered by the sys-
tem, including every feature (relevant or not) defined on each object. Relevant
object features, as determined by EBL, are tagged for future reference in the object
model. The Structured Conceptual Clustering (SCC) is responsible for constructing
and maintaining the object classification tree using the symbolic features selected
by EBL. SCC makes use of the Goal Dependency Network (discussed in Sec. 2.1.4)
while constructing or modifying the classification tree in order to compute the op-
timal clustering of the objects at the current level in the object hierarchy.
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Fig. 1. Multistrategy machine learning approach for object recognition.
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Figure 1 also highlights the two distinct learning cycles which are present in
the ORACLE system. The first learning cycle is the object model acquisition and
refinement process. The components used in this loop include the knowledge-based
matching, explanation-based learning, and structured conceptual clustering along
with the corresponding object and knowledge databases. The second learning cycle
is the object feature value refinement process. This operation utilizes the knowledge-
based matching and feature value monitor components.

The various processing components of the ORACLE system and the manner in
which they interact will now be briefly described.

2.1.1. Segmentation and symbolic feature extraction

A segmentation algorithm is used to initially segment the image. When working
with gray-scale images, we have used a “refocused”!® algorithm which analyzes
the large aerial images using domain knowledge at multiple resolutions to localize
and segment objects.” Among the segmented image regions, the ones related to
the objects of interest are identified and their boundaries are approximated using
piecewise linear segments. Next, each object region is assigned a label based on
its size, shape, and relationships with neighboring regions. A hypothesize-and-test
approach is used to identify the rough orientation of the object during the region
labeling operation. For example, a region may be hypothesized as being an aircraft
fuselage based on its shape properties (narrow, elongated region). This hypothesis
‘is verified by finding a symmetric pair of regions adjacent to the fuselage with wing-
}ike properties. Similarly, the tail regions of the aircraft are labeled and used to
support the current hypothesis.

When a hypothesis has been verified using surrounding regions as additional ev-
idence, all contributing regions are tagged and used in the symbolic feature extrac-
tion operation. ORACLE computes symbolic feature information from the region
borders using a knowledge-based approach. Symbolic features represent conceptual
descriptions of an object’s properties that would be used by a human in charac-
terizing the object’s appearance. The rules use distances and orientations of line
segments on the region borders to compute the various cbject features.

2.1.2. Knowledge-based matching

The knowledge-based matching component receives an object schema (an enumer-
ated list of symbolic features) from the segmentation and symbolic feature extrac-
tion component. This schema is utilized by the matching element to traverse the
classification tree in an attempt to reach a leaf node of the tree. If the latter hap-
pens, then an input object is correctly recognized as the object model present at
the leaf node. If at any point in the tree traversal, a feature is missing from the
unknown object schema, the system spawns a set of multiple viewpoints. Fach
viewpoint represents a different interpretation of the data. A separate viewpoint is
created for each feasible branch at the current level in the classification tree. This
action allows the tree parsing process to evaluate many hypothetical alternatives.



966 J. MING & B. BHANU (|
\

The survival of any given viewpoint is governed by the matching success that is
achieved during the processing of successive tree nodes in that viewpoint. At a
later time in a particular viewpoint, the tree parsing process may terminate due to
feature incompatibility. This condition results in the removal of the corresponding
viewpoint from further consideration. Viewpoint removal allows the search process
to prune branches from the classification tree when it becomes clear further search
will be useless.

If the knowledge-based matching component is unable to parse the tree using the
available symbolic feature data, the feature set is passed to the EBL component. In
these situations, the failure of the matching process is due to one of two conditions.
First, the feature information may represent a new object model that is not currently
represented in the classification tree and which can potentially be acquired by the
EBL component. Alternatively, the feature data may be faulty, incomplete, or
inconsistent with the system’s current object recognition domain, in which case
EBL will not be able to acquire a new model. However, the matching process does
not distinguish between these two cases. The matching component also sends the
feature information to the EBL component when it detects the presence of a new
feature in a correctly recognized object. By consulting the information stored in the
Object Model Database, the matching component can detect when a new feature is
present. It adds the new feature to the current object model and passes the revised
model to the EBL component in order to determine the relevance of the new feature.

2.1.3. Explanation-based learning (

The Explanation-Based Learning component utilizes domain-specific Background
Knowledge (Fig. 1) to draw inferences from the symbolic feature data that are not
possible for the matching process using the classification tree alone. Since, EBL and
its associated knowledge base are only invoked in situations where the classification
tree fails, the ORACLE system remains efficient by accessing the information in the
knowledge base only when necessary.

The EBL component requires three inputs in order to acquire an object model:

Goal Concept: Tt is a definition of the concept to be learned. For example, in the
aircraft recognition domain, a goal concept may be defined as Aircraft(X) for (Wing-
Features(X) & Fuselage-Features(X) & Engine-Features(X) & Tail-Features(X)). In
other words, an object X can be assumed to be an aircraft if it contains wing-like
features, fuselage-like features, engine-like features, and tail-like features.

Training Ezample: It is an instantiation of the goal concept provided as an in-
put to EBL. In the aircraft recognition scenario, a training example takes the
form of a set of symbolic object features such as Wing-Span(Obj1,74’), Fuselage-
Length(Obj1,69%), etc.

Domain Theory: Tt is a set of rules and facts to be used in explaining how the train-
ing example is an instance of the goal concept. Earlier, this information has been

<
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referred to as background knowledge. One of the rules in the aircraft recognition
domain theory may state that if an object contains a Wing-Span feature (e.g., Wing-
Span(Obj1,74)), then it exhibits wing-like features (e.g., Wing-Features(Obj1)).
As part of the EBL process, the generated explanation (of how the training
example satisfies the criteria represented in the goal concept) structure is general-
ized by removing the intermediate level subgoals (Wing-Features, Fuselage-Features,

etc.) _of the explanation and by replacing the numeric values associated with_each
feature into a range of acceptable feature values. This generalized explanation is
represented as an object model schema and can be used to recognize future instances
of that object. The details of the EBL process are given in the report by Ming and
Bhanu.!!

The EBL component is responsible for four separate tasks within the ORACLE
object recognition system:

(1) Processing the training ezamples during system initialization. EBL applies the
Background Knowledge (Fig. 1) to each object schema using a generic object
prototype to guide the explanation process. Once the explanation has been
created, it is generalized to create an object model that contains the relevant
object features. All object models created during system initialization are sent
to the SCC component, which generates the object classification tree.

(2) Acguiring new object models. When the object classification tree is unable to
process an unknown object schema, the EBL component is given the feature

) data in order to determine if a new object model can be constructed from the

" available features. The new model acquisition process is identical to the system
training process described above. If a new model can be successfully derived,
it is added to the object model database and is passed on to SCC for addition
into the current object classification tree.

(3) Refining existing object models. EBL is also invoked to determine the relevance
of new feature information that is present for an existing, correctly recognized
object model. The presence of a new feature can be detected since EBL main-
tains a list of all previous symbolic features defined on each object in the object
model database (Fig. 1). EBL adds the new feature to the current object model
feature set and reprocesses the feature data. If the new feature is found to be
relevant, it is tagged in the object model and is sent to the SCC component for
addition into the object classification tree. Otherwise, the feature is simply left
in the object model database as non-relevant.

(4) Identifying recognition failures in the ORACLE system. EBL is responsible for
determining cases of recognition failure. When the knowledge-based matching
component is unable to process a set of feature data, EBL is given the chance
to acquire a new model using the available features. However, if EBL cannot
construct an appropriate model from the feature information, the feature set
is incomplete or the background knowledge is insufficient to understand the
feature data. In either case, the situation is reported as a recognition failure.
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2.1.4. Structured conceptual clustering

The Structured Conceptual Clustering component constructs the Object Classifica-
tion Tree (OCT) from the relevant feature data generated by EBL (see Fig. 1; for an
example see Fig. 7). The organization of the OCT closely matches the categoriza-
tion of objects in human cognition. Coarse, high level features are used to identify
broad object classes while the more specialized features are used to provide subclass
discrimination. As described earlier, traversal of the classification tree allows the
matching component to understand and compensate for missing information in un-
known object schemata during the recognition process. The classification tree also
provides efficiency in the object recognition task since the matching process does
not have to compare the unknown object schema with every object model currently
in the object model database.

During the construction or modification of the OCT, SCC accesses the informa-
tion present in the Goal Dependency Network (GDN) in order to select potentially
useful object features (Fig. 1). The GDN is an association list of potential relevant
object features and the level in the OCT at which each feature is best used. Global
object characteristics (e.g. fuselage length or wing span) are specified by the GDN at
high levels (near the root) in the tree because they usually categorize coarse object
classes. Within these classes, the GDN suggests more specialized object features
(e.g. the number of engines, leading or trailing wing angles, etc.) that are used
to determine subclass assignments. At each node in the tree, beginning with the
root node, the SCC computes the intersection of the feature lists for all the object,-
models at that node. The SCC then removes all features used at higher nodes 1r<
the OCT so they are not reused. If at any position in the tree, this resulting list
is null, the object models at that node are each placed in a leaf node descending
from the current tree location. Otherwise, the SCC clusters the object models using
each of the valid features and selects the most distinguishing one based on cluster
quality. :

Although the GDN suggests several features to use at a particular position in
the tree, the SCC process must still select the best feature for the specific situation.
To perform this task, each suggested feature is used to generate a clustering of
the objects. The quality of each clustering is based on the conceptual simplicity of
the clustering results. ORACLE uses several factors in determining the conceptual
simplicity of a proposed clustering including: the number of clusters into which
the objects have been placed; the inter-cluster and intra-cluster distances of the
clustering results; and the GDN’s ranking of the selected feature at the current
level in the tree. These measures of clustering quality are combined to evaluate the
clustering results of each feature. The feature that provides the highest clustering
quality value is selected and the current branch of the tree is defined accordingly.
The SCC component continues to cluster the objects at each branch in the tree
until every single object has been placed into a separate leaf node in the tree.

SCC provides an adaptive capability to the ORACLE system since it never relies
on predefined measures of class similarity, but rather, it computes the feature that

C
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best distinguishes a set of objects at any given level in the OCT. Over time, the
choice of the distinguishing feature at a particular level may dynamically change as
a result of the new objects and revised objects which are continually being placed
in the OCT. An analysis of the tree structure across many successive recognition
cycles of the ORACLE system shows that it dynamically responds to the objects
which are added or modified by automatically restructuring the appropriate tree
branches to obtain an optimal object categorization.

TN

The SCC component has three functions within the ORACLE bbject recogniﬁén
system:

(1) Construction of the initial OCT during system training. SCC takes all the ob-
ject models created by the EBL component and constructs the classification
tree. At each branch in the tree, the GDN is used to suggest a set of appro-
priate object features from which one is selected by measuring the conceptual
simplicity.

(2) Addition of a new object model into the OCT during the object model acquisition
process. SCC attempts to retain as much of the original structure of the tree as
possible. SCC traverses the tree using the new object model until a branch is
encountered that is not compatible with the new object’s features. The tree is
then reclustered at that location. If a leaf node is encountered, a new branch is
created to distinguish the object model currently stored in the leaf node from
the new object model.

’(3) Modification of the current OCT structure during the object model refinement

process. This process is similar to the new object model situation since SCC
minimizes the required changés to the tree. At each node in the tree, SCC
determines if the new feature produces a better clustering quality than the dis-
tinguishing feature used at the current branch. If the new feature is better, the
tree is reclustered at the current location. Otherwise, the appropriate branch
is selected and the process continues. If a leaf node is reached, the new object
model feature is simply inserted at the leaf node.

2.1.5. Feature value monitor

The Feature Value Monitor updates the quantitative feature values of an object
model, if and when that model is used to recognize an unknown object. This
process allows the ORACLE system to gradually modify the feature values of an
object in order to overcome any initial bias that may have been acquired during
the initial construction of the object model. Changes in object models made by the
feature value monitor will be very gradual compared with the changes which result
from activating the EBL-SCC object model refinement process described earlier. In
the latter case, symbolic features are added or removed from the relevant feature
list of the object model. The feature value monitor simply modifies the relevant
quantitative feature values of the object. Further, the feature value monitor does
not modify any qualitative object features present in the model.
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The feature values are changed by shifting the range of numeric values produced
during the EBL generalization process in the direction of the new object feature
value. Each range is characterized by a central feature value with endpoints, a
prescribed distance away from this value. For example, the central feature value for
the range (100°-106’) is 103’. The feature value monitor moves the entire feature
value range in the direction that more closely aligns the central value of range with
the new object feature value. The width of the feature value range remains the same.
To avoid wild fluctuations in the feature value ranges, the range is moved only one
unit (one foot, one degree, etc.) during any given recognition cycle, regardless of the
discrepancy size. This approach is preferable to the alternative method of aligning
the numeric range on the current object’s feature value because it prevents potential
misclassification results from adversely aflecting the actual location of the feature
value range. The approach is also more in tune with the notion that adaptation
should be a gradual, rather than abrupt, process.

2.2. Recognition and Learning in ORACLE

During every recognition cycle, the ORACLE system identifies one of the following
recognition states (See Fig 2):

(1) Complete Recognition — The unknown object schema is correctly classified with
a high degree of confidence using the classification tree. The knowledge-based
matching component and the feature value monitor are involved in the complete
recognition operation. -

(2) Incomplete Matching — The unknown object schema is partially classified us—(_
ing the classification tree. The matching component identifies multiple object
models in the classification tree which meet the limited constraints imposed by
the available unknown object features. A recognition confidence is produced for
each matched object model. Only the knowledge-based matching component is
used in this operation.

(3) Object Occlusion — Although occluded, the identity of the unknown object
schema is predicted with some confidence level using the classification tree.
This operation involves only the knowledge-based matching component. The
main difference between this and incomplete matching is one of global vs. local
nature of missing object features.

(4) Object Model Acquisition — The unknown object schema cannot be classified
using the current classification tree, so the object model is acquired by the EBL-
SCC learning cycle and added to the classification tree. The model acquisition
process involves the knowledge-based matching, EBL, and SCC components of
the ORACLE system. _

(5) Object Model Refinement — After correctly classifying the unknown object
schema using the classification tree, a new feature is identified in the unknown
object schema. The object model and the classification tree are updated to
indicate the relevance of this new object feature. The model acquisition pro-
cess involves the knowledge-based matching, EBL, and SCC components of the
ORACLE system.
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Fig. 2. Decision diagram specifying the conditions through which the six 'd'ifferent recognition states
of the ORACLE system are identified. ’

(6) Recognition Failure — The unknown object schema cannot be classified using the
information in the classification tree or by EBL with the use of the background
knowledge database.

3. EXPERIMENTAL RESULTS

‘We have conducted a series of experiments to test the object recognition and learn-
ing concepts, and capabilities of the ORACLE system for the recognition of 2D
aircraft. The imagery (binary) used for these experiments was generated by digi-
tizing technical diagrams of various commercial aircraft ranging in size from small
single engine private aircraft (Cessna Caravan) to large passenger airliners (Boeing
747). Eleven aircraft were selected for the initial set of experiments on the ORACLE
system. In order to simulate the degraded appearance of object region boundaries
typical of segmented real images, Gaussian noise (mean = 0, variance = 1-20) was
added to the border points of a binary image and the resulting image was distorted
using morphological operations of erosion and dilation. Next, a border following
routine was applied to generate a list of pixels that comprise the outline of the air-
craft. Finally, the outline was represented with a piecewise polygonal approximation
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Fig. 3. Various levels of noise and distortion added to an aircraft. (a) Noise level = 3. (b) Noise
level = 11. (c) Noise level = 17. (d) Polygonal approximation for (a).. (€} Polygonal approximation
for (b). (f) Polygonal approximation for (c).

using a split-merge approximation algorithm. Figure 3 provides an example of the
border distortion process and the corresponding polygonal approximation results
for a typical aircraft image.

The polygonal approximation of an aircraft contour is processed by a knowledge-

.

based algorithm to create the list of symbohc object features needed by the ORA-(

CLE system. This operation makes use of the symmetry properties of the aircraft’s
shape in determining many of the symbolic features. When feature values obtained
for a specific feature (e.g. wing span or leading wing angle) vary significantly on
opposite sides of an aircraft (usually due to distortion in the aircraft image), the
feature is not extracted due to the ambiguity of the situation. This approach insures
that object misclassification does not result from the presence of uncertain feature
information.

In the examples described below, the image distortion, border following, and
polygonal approximation algorithms have all been implemented and executed on a
SUN 3/60 workstation. The polygonal approximation data is transferred to a Sym-
bolics 3670 workstation, which performs the symbolic feature extraction operation
and hosts the ORACLE object recognition system.

3.1. System Training

The first step in the object recognition process is automatic construction of an
initial object model database from user supplied images. Figure 4 shows the set
of aircraft used to initialize the ORACLE system. These aircraft images have not
been distorted since most training operations utilize high quality training data to
insure accuracy. Figure 5 provides the set of symbolic object features obtained for
each aircraft in Fig. 4. Missing features are due to inconsistencies in feature values
or other aircraft anomalies.
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Once the symbolic feature information for all training examples is available, the
ORACLE system must construct the object classification tree. To do so, the EBL
component is invoked on each aircraft schemata (the symbolic feature lists shown
in Fig. 5) to select relevant object model features. EBL utilizes the background
knowledge base which for these examples consists of a generic aircraft prototype
that specifies the presence of wing, fuselage, engine, and tail features in order to
generate an aircraft object model. The knowledge base contains 23 different rules

which specify the allowable combinations of the symbolic features to satisfy the
wing, fuselage, engine, and tail requirements. Figure 6 illustrates the resulting
object models created by the EBL component for the system initialization phase.
Notice that the specific feature values have been generalized into ranges of values
and that EBL has generated a weight (user supplied) associated with each feature
in the object model. The weights are used during matching to compute object
recognition confidence.

Following the selection of relevant object features by the EBL component, the
ORACLE system invokes the SCC process to construct the initial object classifica-
tion tree. All seven object models are given to SCC, which builds the classification
tree shown in Fig. 7. The nodes in the tree are labeled TN — *, which stands for
TREE — NODE — . Note that the aircraft have been classified into intuitively

9

(2) (b) (c)
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Fig. 4. Aircraft used during the initialization phase of the ORACLE system. (a) Boeing 747 (B-
747). (b) Boeing 757 (B-757). (c) McDonnell Douglas MD-87 (MD-87). (d) Gulfstream Aerospace
(Aerospace). (e) Cessna Citation (Citation). (f) Cessna Caravan (Caravan). (g) Piper Malibu
(Malibu).
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Feature B-747 B-757 MD-87 Aerospace Citation Caravan Malibu
Wingspan 245’ 160 140’ 103’ 69’ 67 53’
Wing sweep, .
leading 129° 114° 115° 119° 116° 95° 97°
‘Wing sweep,

trailing 112° 97° 99° 102° 101° 88° 86°
Wing base chord 53’ 28/ 22/ 22/ 10’ 7 6
Wing tip chord 12/ 6 4/ —_ 3’ — 3/
Wing taper,

|base/tip 4.37 4.86 6.00 — 3.33 — 2.26
Fuselage length 222/ 155’ 130’ 88’ 55 38’ 32/
Fuselage width 27! 18’ 16’ 11/ 8’ 8’ 7
Length, »
wing-to-nose 62’ 60’ 58’ 32/ 20’ 12’ -1’
Length,

wing-to-tail 75’ a7’ — —_ —_ 14’ 10’
Nose shape ROUND — ROUND ROUND — — POINTED
Position of engines | ON-WING | ON-WING | FUSELAGE | FUSELAGE | FUSELAGE | NOSE NOSE
Number of engines 4 2 2 2 2 1 1
‘Tailspan 89’ 62’ 52/ 42/ 24/ 26’ 24/
Tail sweep, .

Leading 126° 118° 120° - 120° 120° 96° 97°
Tail sweep,

trailing 99° 99° 102° 102° 101° 87° 87°
Tail base chord 28’ 15’ 12 10’ 6’ 5/ 4/
Tail tip chord 8’ 6’ 4/ ry 2/ 3’ 2!
Tail taper, ™
base/tip 4.03 2.40 2.92 2.73 3.17 1.88 2.40
Wingspan/tailspan 2.76 2.59 2.68 2.45 2.'9‘1 2.53 2.22

Fig. 5. Symbolic features extracted from the aircraft in Fig. 4.

obvious groups by the SCC component. The tree is used to recog"nize subsequent
instances of aircraft modeled during training as discussed in the following three
subsections. :

3.2. Complete Recognition

Figure 8 shows an example of an “unknown” aircraft (Malibu) that must be recog-
nized by the object recognition system. The aircraft image (Fig. 8(a)) is moderately
distorted and thus, in the polygonal approximation (Fig. 8(b)), it is more irregular
than in the training example. The distortion is apparent when the list of extracted
symbolic features, shown in Fig. 8(c), and that of Fig. 6(g) are compared, e.g. only
a few of the tail features are available in the former case.

The model matching component uses the list of features in Fig. 8(c) to parse the
classification tree of Fig. 7. At the ROOT-NODE, the unknown aircraft is compati-
ble with the leftmost branch, so the matching component traverses the tree to node
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Feature Value Weight | | Feature Value Weight
Wingspan (Range 239'-251) 0.10 Wingspan (Range 155'-165') 0.11
Wing sweep, leading (Range 127°-131°) 0.08 Wing sweep, leading (Range 112°-116°) 0.09
Wing sweep, trailing | (Range 110°-114°) 0.07 Wing sweep, trailing (Range 95°-99°) 0.09
Wing base chord (Range 50'-56") 0.06 Wing base chord (Range 26'-30") 0.06
Wing tip chord (Range 11'-13") 0.04 Fuselage length (Range 150'-160") 0.12
Fuselage length (Range 216"-228') 0.12 Fuselage width (Range 17'~19') 0.04
-Fuselage-width————|—(Range-25/—295) 0:04 Length;wing-to-nose—|—(Range-57—630)—|—0:06—
Length, wing-to-nose (Range 59/-65') 0.06 Length, wing-to-tail (Range 45'-49') 0.08
Length, wing-to-tail (Range 72'-78") 0.08 Position of engines ON-WING 0.10
Position of engines ON-WING 0.10 Number of engines 2 0.05
Number of engines 4 0.05 Tailspan (Range 59'-65') 0.08
Tailspan (Range 86'-92") 0.08 Tail sweep, leading (Range 116°-120°) 0.66
Tail sweep, leading (Range 124°-128°) 0.06 Tail sweep, trailing (Range 97°~101°) 0.04
Tail sweep, trailing (Range 97°-101°) 0.04 Tail base chord (Range 14'-16') 0.02
Tail base chord (Range 26'-30") 0.02

(2) (b)
Feature Value Weight | | Feature Value Weight
Wingspan (Range 136'-144') 0.11 Wingspan (Range 99'-107') 0.11
Wing sweep, leading | (Range 113°-117°) 0.09 Wing sweep, leading | (Range 117°-121°) 0.09
Wing sweep, trailing (Range 97°-101°) 0.09 Wing sweep, trailing | (Range 100°-104°) 0.09
Wing base chord (Range 21'-23") 0.06 Wing base chord (Range 21'-23") 0.06
Fuselage length (Range 126'-134') 0.14 Fuselage length (Range 85'-91') 0.14
Fuselage width (Range 15'-17') 0.06 Fuselage width (Range 10'-12') 0.06
Length, wing-to-nose (Range 55'-61") 0.10 Length, wing-to-nose (Range 30'-34") 0.10
Position of engines FUSELAGE 0.10 Position of engines FUSELAGE 0.10
Number of engines 2 0.05 Number of engines 2 0.05
Tailspan (Range 49'-55") 0.08 Tailspan (Range 40'-44") 0.08
Tail sweep, leading (Range 118°-122°) 0.06 Tail sweep, leading (Range 118°-122°) 0.06
Tail sweep, trailing (Range 100°-104°) 0.04 Tail sweep, trailing (Range 100°-104°) 0.04
Tail base chord (Range 11/-13") 0.02 Tail base chord (Range 9'-11") 0.02

(©)

(d)

Fig. 6. EBL-generated object models for each of the symbolic feature lists shown in Fig. 5.
(2) B-747, (b) B-757, (c) MD-87, (d) Aerospace, (e) Citation, (f) Caravan, (g) Malibu.

TN-1. At this location, the unknown object matches the leftmost branch again, so
the matching process moves to node T'N-2. Here, both branches are investigated by
the matching process, due to the missing wing-to-tail feature, to determine whether
either of them (or possibly both) are compatible with the unknown object. The
right branch of TN-2is discounted due to differences in wing span, fuselage length,



976 . MING & B. BHANU /
L
Feature Value ‘Weight | | Feature Value Weight
Wingspan (Range 66'-72') 0.11 Wingspan (Range 64’-70") 0.17
Wing sweep, leading | (Range 114°-118°) 0.09 Wing sweep, leading | (Range 93°-97°%) 0.10
Wing sweep, trailing (Range 99°-103°) 0.09 Wing sweep, trailing | (Range 86°-90°) 0.08
Wing base chord (Range 9'-11') 0.06 Fuselage length (Range 36'—40") 0.12
Fuselage length (Range 52'-58") 0.18 Length, wing-to-nose | (Range 11’-13’) 0.08
Length, wing-to-nose (Range 19’-21') 0.12 Length, wing-to-tail (Range 13'-15") 0.10
Position of engines FUSELAGE 0.10 Position of engines NOSE 0.10
Number of engines 2 0.05 Number of engines 1 0.05
Tailspan (Range 23/-25') 0.08 Tailspan (Range 24'-28") 0.08
Tail sweep, leading (Range 118°-122°) 0.06 Tail sweep, leading (Range 94°-98°) 0.06
Tail sweep, trailing (Range 99°-103°) 0.06 Tail sweep, trailing (Range 85°-89°) 0.06

wing-to-nose, tail span, and tail leading angle. However, the left branch, TN-3,
which contains the Malibu aircraft model, is found to be compatible with the un-

(¢)

(®)
Feature Value Weight
Wingspan (Range 50"-56") 0.17
Wing sweep, leading | (Range 95°-99°) | 0.10
Wing sweep, trailing | (Range 84°-88°) 0.08
Fuselage length (Range 30'-34) 0.12-
Length, wing-to-nose | (Range 10'-12') 0.08
Length, wing-to-tail (Range 9'-11') 0.10
Position of engines NOSE 0.10
Number of engines 1 0.05
Tailspan (Range 23'-25") | 0.08
Tail sweep, leading (Range 95°-99°) 0.06
Tail sweep, trailing (Range 85°-89°) | 0.06

(g)

Fig. 6. (Cont’d)

known aircraft with 74.6% confidence. This confidence is derived using the weights
assigned to each object model feature and the error between the feature values in

the object model and the unknown aircraft. Even though the aircraft feature set

was missing two features specified in the Malibu object model (wing-to-tail and tail
leading angle), the ORACLE system was able to correctly recognize the aircraft.

Additionally, since the recognition confidence of the aircraft is greater than
the complete recognition threshold (70% for these experiments), the feature value
monitor is invoked to update the values in the Malibu aircraft model. The revised

Malibu model is shown in Fig. 8(d).
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ROQT-NODE
Wing-Span
50-72' | 99165 | 239251

— A\ T

6 TN-11
Wing-Leading Wing-Te-Nose B-747
93°-99° | 114°-118° 30-34' | 55-63
TN-2 TN-5 TN-7 TN-8
Wing-To-Tail Citation Aerospace Engine-Position
9-11' | 13158 ON-WING |FUSELAG
TN-3 TN-4 TN-9 — TN-10
Malibu Caravan B-757 MD-87

Fig. 7. SCC-generated object classification tree.

( ‘ 8.3. Incomplete Recognition

Figure 9 provides an example of an aircraft that causes the system to produce an
incomplete recognition result. In this image (Fig. 9(a)), the tail of the aircraft and
the engine regions are not connected to the main portion of the object. Such a
situation is common in real images when there is low contrast between the object
and the background. Since the border following algorithm is designed to locate only
the largest object region, the system creates the polygonal approximation shown
in Fig. 9(b). The corresponding set of extracted symbolic features are indicated in
Fig. 9(c). Due to the lack of any tail information and discrepancies in the wing
representation, very few reliable features have been obtained in this case.

The matching component begins at the ROOT-NODE of the classification tree
(Fig. 7) as usual. Since the wing-span feature is missing, all three branches of the
tree (Nodes TN-1, TN-6, and TN-11) are hypothesized as possible alternatives.
TN-11, which contains the B-747 aircraft model, is rejected due to differences in
every single object model feature except wing-to-nose. At TN-1, the unknown
aircraft’s leading wing angle is compatible with the right branch of the node, so
parsing continues down to T'N-5. However, the Citation aircraft model contained in
TN-5 conflicts with the unknown aircraft in every feature except the leading wing
angle. Thus, this hypothesis is also rejected.

L
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\
(a)
L
QJ |
(b)
Feature Value
Wingspan 54’
Wing sweep, leading 97° Feature ' Value Weight
Wing sweep, trailing 87° Wingspan (Range 51'-57') 017
Wing base chord 5/ Wing sweep, leading (Range 95°-99°) 0.10
Wing tip chord 3’ Wing sweep, trailing | (Range 85°-89°) 0.08
Wing taper, base/tip 1.85 Fuselage length (Range 29'-33") 0.12
Fuselage length 30 Length, wing-to-nose (Range 9'-11') 0.08
Fuselage width 7 Length, wing-to-tail (Range 9'-11") 0.10
Length, wing-to-nose 10’ Position of engines NOSE 0.10 (
Position of engines NOSE Number of engines 1 0.05 N
Number of engines 1 Tailspan (Range 22'-24') 0.08
Tailspan 23’ Tail sweep, leading (Range 95°-99°) 0.06
Tail sweep, trailing 87° Tail sweep, trailing (Range 85°-89°) 0.06
Tail tip chord .20 ’
Wingspan/tailspan 2.35
(©) (d)

Pig. 8. Aircraft (Malibu) which illustrates the complete recognition state of the ORACLE system.
(a) Distorted aircraft image. (b) Polygonal approximation of the aircraft. (c) Symbolic object
features extracted from the aircraft. (d) Revised Malibu aircraft model after complete recognition
cycle.

Looking at TN-6, the matching process selects the right branch and moves to
the TN-8 tree node. Since the engine position feature is missing, the matching
process.once again considers both branches as possible alternatives. Inspecting TN-
9, the matching process finds that the B-757 aircraft model is compatible with the
unknown object (matching confidence = 25.9%). At TN-10, the unknown aircraft is
also matched to the MD-87 aircraft model (matching confidence = 27.5%). Since no
additiona] feature information is available to select between these two alternatives,
the ORACLE system reports both aircraft models as possible matches.
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(

)

.
a
v
(a) (b)

Feature Value
Wing sweep, leading 114°
Wing sweep, trailing 97°
Wing tip chord 4
Fuselage width 17’
Length, wing-to-nose 60’
Nose shape ROUND

©

Fig. 9. Aircraft (B-757) which illustrates the incomplete recognition state of the ORACLE system.
(a) Distorted aircraft image. (b) Polygonal approximation of the aircraft. (c) Symbolic object
features extracted from the aircraft.

3.4. Occluded Recognition

Figure 10(a) provides an example of an aircraft image that illustrates the occluded
recognition scenario. In this example, the nose and the port wing of the aircraft have
been occluded. The polygonal approximation of this object is shown in Fig. 10(b).
The symbolic feature extraction process is still able to derive a useful set of features
from the aircraft, as indicated in Fig. 10(c).

The model matching component uses the list of symbolic feature information to
parse the classification tree of Fig. 7. At the ROOT-NODE, the wing span value
of the unknown aircraft is compatible with the center branch, so the matching
component proceeds down to node TN-6. The wing-to-nose feature is missing in
the feature list, so both branches (TN-7 and TN-8) are hypothesized. Examining
TN-7, the model matching process finds that the wing span and tail span feature
values contradict those of the Aerospace object model stored in the node, although
all other features are compatible. Thus, TN-7 is discarded. At T'N-8, the right
branch of the node is compatible with the engine position feature in the feature
list. Finally, at node T'N-10, the matching process discovers that the MD-87 object
model is compatible with the feature list. The recognition confidence in this example
is 65.9%. No changes are made to the object model since the recognition confidence
is below the complete recognition confidence threshold.
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(2)

(b)
Feature Value
Wingspan 140’
Wing sweep, leading 117°
Wing sweep, trailing 99°
Wing base chord 22/
Position of engines FUSELAGE
Number of engines 2
Tailspan 50’
Tail sweep, leading 120°
Tail sweep, trailing 102°
Tail base chord 11
Tail tip chord - g
Tail taper, base/tip 3.47
Wingspan/tailspan 2.65

(©)

Fig. 10. Aircraft (MD-87) which illustrates the occluded recognition state of the ORACLE system.
(a) Distorted aircraft image. (b) Polygonal approximation of the aircraft. (c) Symbolic object
features extracted from the aircraft.

3.5. Object Model Acquisition

Figure 11(a) shows the image of an aircraft not encountered during training. Figure
11(b) illustrates the polygonal approximation of the aircraft image and Fig. 11(c)
provides the list of symbolic object features extracted from the polygonal represen-
tation. During parsing of the classification tree (Fig. 7), only the left branch of the
root node is hypothesized. Traversing the tree in standard fashion, the knowledge-
based matching component eventually arrives at the sole hypothesized node T'N-3
and compares the symbolic feature list with the Malibu object model. However,
differences in leading wing angle, trailing wing angle, fuselage length, and tail span
cause the Malibu object model to be discarded. Thus, the current classification tree
contains insufficient information to identify this aircraft.

¢
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(b)
Feature Value
Wingspan 51/
Wing sweep, leading 93°

Feature Value "Weight
Wing sweep, trailing 84°

Wingspan (Range 48'-54") 0.17
Wing base chord s

: Wing sweep, leading | (Range 91°-95°) 0.10

Wing tip chord 3/ )

Wing sweep, trailing | (Range 82°-86°) 0.08
Wing taper, base/tip 1.87 .

Fuselage length (Range 25'—29') 0.12
Fuselage length 27’

Length, wing-to-nose (Range 9'-11) 0.08
Length, wing-to-nose 10’

Length, wing-to-tail (Range 8/-10") 0.10
Length, wing-to-tail o

Position of engines NOSE 0.10
Position of engines NOSE

Number of engines 1 0.05
Number of engines 1

Tailspan (Range 12'-14') 0.20
Tailspan 13/
Tail sweep, trailing 88°
Wingspan/tailspan 3.92

(c) (d)

Fig. 11. Aircraft (Renegade) which illustrafes the object model acquisition capabilities of the
ORACLE system. (a) Distorted aircraft image. (b) Polygonal approximation of the aircraft.
(c) Symbolic object features extracted from the aircraft. (d) EBL-generated object model for the
aircraft.

The EBL process is subsequently invoked in an attempt to acquire the unknown
aircraft as a new object model. Figure 11(d) illustrates the EBL-generated object
model produced from the symbolic feature list in Fig. 11(c). The new object model
is then handed to the SCC component so that it can be incorporated in the clas-
sification tree structure. SCC parses the tree using the new object model in an
attempt to leave as much of the tree intact as possible. In the process, the tree is
reclustered at TN-& node to distinguish between the current Malibu object model
and the new Renegade object model. Tail span is found to be the best symbolic
feature that separates the two object models. The revised classification tree, after
insertion of the Renegade object model, is shown in Fig. 12.
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ROOT-NODE
Wing-Span
72 | 98-164' | 239251
TN-1 TN-6 TN-11
Wing-Leading ‘Wing-To-Nose B-747
91°.99 | 114°-118° 2933 | 55-63
TN-2 TN-5 TN-7 TN-8
Wing-To-Tail . Citation Aerospace Engine-Position
g-11' | 13415 ON-WING |FUSELAGI
TN-3 TN-4 TN-9 TN-10
Tail-Span Caravan B-757 MD-87
1214 | 2224
TN-12 TN-13
Renegade Malibu

Fig. 12. Revised object classification tree after insertion of the Renegade aircraft model.

/

IN-14

Wing-To-Nose

13 | 19

\

ROOT-NODE

Fuselage-Length

25-59' | 415 | 194-228°

\

TN-21 IN-26
Wing-To-Nose [ Wing-To-Nose |
2933 | 55-63' 59-65' | 8187

/

N/

\

TN-35 N0 ™z ™A ™z [ INE ]
Wing-To-Tail Engino-Position | | Aecrospace Engine-Position B-747 | MDI1 |
g | 13us FUSELAGE| ON-WING ON-WING [FUSELAGE]
TN-36 | m39 TN-41 TN-44 ™24 1 TN25
Tail-Span | Camvan Tail-Span Meiro B-757 11 MD-87 {
1z4' | 204 1820 | 21328
TIN-37 TN-38 TN-42 TN-43
Renegada Malibu Learjet Citation
Fig. 13. Object classification tree for the object model refinement experiments.

(
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3.6. Object Model Refinement

Object model refinement occurs when the presence of a new symbolic feature is de-
tected for a recognizable aircraft. The classification tree used in these experiments
is shown in Fig. 13. This tree was obtained from the one in Fig. 12 after three more
aircraft models (Metro, Learjet, and MD-11) were acquired. Figure 14(a) shows a
known aircraft whose model is to be refined and the corresponding polygonal ap-

— proximations-indicated-in-Fig-14(b)The list-of symbolic-object-features-obtained———

from this aircraft are presented in Fig. 14(c). The tree is parsed using this feature
information and, although the matching process must hypothesize nodes T'N-36 and
TN-39 during the tree traversal, the aircraft is finally identified as an instance of
the Renegade object model.. The recognition confidence in this case is 86.1%. The
nose shape, leading tail angle, and tail base features in Fig. 14(c) are discovered to
be new model features and thus, the object model refinement operation is invoked.

(@) ®)
Feature Value
Wingspan 50’
Wing sweep, leading 93°
Wing sweep, trailing 85° Feature Value Weight
Wing base chord 5/ Wingspan (Range 48'-52") 0.17
Wing tip chord 3 Wing sweep, leading (Range 91°-95°) 0.10
Wing taper, base/tip 2.08 Wing sweep, trailing | (Range 83°-87°) 0.08
Fuselage length 28/ Fuselage length (Range 26'-30") 0.12
Length, wing-to-nose 10’ Length, wing-to-nose (Range 9'-11') 0.08
Length, wing-to-tail 9 Length, wing-to-tail (Range 8'-10') 0.10
Nose shape ROUND Pos_ition of engines NOSE 0.10
Position of engines NOSE Number of engines 1 0.05
Number of engines 1 Tailspan (Range 12'-14) 0.08
Tailspan 13’ Tail sweep, leading (Range 87°-91°) 0.06
Tail sweep, leading 89° Tail sweep, trailing (Range 86°-90°) 0.06
Tail sweep, trailing 89°
Tail base chord 4/
Wingspan/tailspan 3.68

(c) (d)

Fig. 14. Aircraft (Renegade) which illlustrates the object model refinement capabilities of the
ORACLE system. (a) Distorted aircraft image. (b) Polygonal approximation of the aircraft.
(c) Symbolic object features extracted from the aircraft. (d) EBL-generated object model for the
aircraft.
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The EBL-SCC learning cycle determines if the new feature is relevant in recog-
nizing the aircraft and, if so, where it should be placed in the object classification
tree. EBL processes the Renegade aircraft model using the three new object fea-
tures. In this case, the leading tail angle is found to be relevant along with the
trailing tail angle that was present, but not relevant, in the initial Renegade sym-
bolic feature list. The revised object model is shown in Fig. 14(d). As in the
previous model refinement example, SCC is given the revised model for insertion
into the classification tree. SCC finds that at TN-36, the new leading tail angle is
a better distinguishing feature than the current tail span feature (Fig. 13), so the
classification tree is reclustered at T'N-86. The final structure of the classification
tree, after the object model refinement process, is shown in Fig. 15. It also includes
the result of refining another aircraft model, viz. MD-11.

ROOT-NODE
Fuselage-Length
2659 | 84-159 | 195-228'

/

TN-14 TN-21 TN-26
Wing-To-Nose Wing-To-Nosa Wing-To-Nose
913 | 19-23' 2933 | s5-& 59-65' | 82-88°
N-35 TN-40 [ w2z | TN-23 [Nz [ ™2 |
Wing-To-Tail Engine-Position | | Aerospacs | | Engine-Position | { B-747 ] MD-11 |
11 l 13.18 FUSELAGEI ON-WING ON-WING |FUSELAG!
TN-36 | TN-39 TN-41 | TN-44 ] | TN-24 | | TN-25 |
TalkLeading | | Caravan | [~ TaSpma |[ Mew | [ Ba57 || ™MD& |
87510 | 95°99° 1820 | 23-28°
I TN-45 I | TN-46 | l TN-42 l ' TN-43 |
| Rencgada ]| Malibu B Learjet | { Cimtion |

Fig. 15. Revised object classification tree, after refinement of the Renegade aircraft model.

3.7. Recognition Failure

As with any object recognition system, there will always be instances where the
information processed by the system or the knowledge used to process the infor-
mation is insufficient to perform the recognition task. Such an example is shown
in Fig. 16(a) which contains a previously unknown aircraft image. The polygonal
approximation (Fig. 16(b)) contains only the front part of the aircraft due to the
separation in the fuselage portion of the image. The symbolic feature list obtained
from this approximation is shown in Fig. 16(c). The knowledge-based matching
component uses the feature data to parse the classification tree in Fig. 15. At the
ROOT-NODE, the wing-span value is missing, so nodes TN-14, TN-21, and TN-26

C

(
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are hypothesized. However, at each of these nodes, none of the available branches
are compatible with the aircraft’s feature data, so the model matching process ter-
minates. EBL is invoked to acquire the new aircraft, but is unable to generate an
acceptable object model due to the absence of any tail features. Since EBL cannot
process the available feature data, the aircraft is reported as a recognition failure.

L
1
(a) (b)

Feature : Value
Wingspan . 63’
Wing sweep, leading 98°
Wing sweep, trailing 82°
Wing base chord 9
Fuselage width 7
Length, wing-to-nose 15’
Position of engines ON-WING
Number of engines 2

(©

( ) Fig. 16. Aircraft (Merlin) which illustrates the recognition failure scenario in the ORACLE system.

(a) Distorted aircraft image. (b) Polygonal approximation of the aircraft. (c) Symbolic object
features extracted from the aircraft.

3.8. Evaluation of Recognition/Learning Performance

In order to quantify the performance of the ORACLE system, two sets of experi-
ments were conducted to measure different aspects of system capability. The first
set of tests allowed measurement of statistics relating the order of presenting object
models to the system to the number of recognition/learning cycles. Twenty-four
images (with varying levels of distortion, occlusion, etc.) of the aircraft models
discussed earlier were used to perform these experiments. Nine images were used
during system training to acquire the initial collection of aircraft models. Three of
these training images were used simultaneously to acquire a single object model of
the Boeing 747. Each of the remaining six images contained a different aircraft for
a total of seven aircraft during training. Figure 17 summarizes the performance of
the ORACLE software on the remaining fifteen (test) images.

Among the test images, five resulted in complete recognition, two in incomplete
recognition, while three images provided correct occluded recognition results. The
machine learning capabilities of the ORACLE system are evident from the fact that
four images were used to acquire new object models and two of the five complete
recognition cycles also caused the object model refinement process to be invoked.
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Further, Fig. 17 indicates that in each of the five complete recognition cases, the
feature value monitor was used to update the specific values of numeric features
associated with the object models. Finally, one of the twenty-four images produced a
recognition failure. However, none of the recognition results (complete, incomplete,
or occlusion) resulted in a misclassification in these experiments.

N
-

Total number of images

Training images
Complete recognition
Incomplete recognition
Occluded recogntiion
Object model acquisition
Object model refinement
Feature value refinement

Recognition failure

Q = Gt N A W N G O

Misclassification

Fig. 17. Summary of the ORACLE recognition experiments using the aircraft images. The final
object classification tree contains 11 aircraft.

The second set of experiments was intended to evaluate the robustness and the
extensibility of the ORACLE background knowledge when handling large model
databases. Thirty different commercial aircraft (of which eleven were from the first [~
experimental set) with ten images of each (total of 300 images) were used to generate ™ -
the data set. An initial aircraft classification tree constructed from this data set
is shown in Fig. 18. Each aircraft model was acquired by the EBL component
during training using a good quality image of each object and the classification
tree was computed in one pass. The EBL background knowledge as well as the
SCC goal dependency network were not modified (with respect to the first set
of experiments) in any way to handle the additional aircraft models. As in the
earlier experiments, we see that the aircraft in the tree have been organized to
differentiate between coarse categories of aircraft at the upper levels of the tree
(passenger aircraft, business jets, private aircraft, etc.) and between subclasses of
these categories at the lower levels of the tree. More tests will be performed to
study the limits of the ORACLE system and enhance its capabilities further.

4. CONCLUSIONS

In this paper, we have presented the ORACLE, an object recognition system that
exhibits the standard object recognition system functionalities (complete recogni-
tion, partial recognition, occluded recognition) as well as providing several new
capabilities (object model acquisition and object model refinement). Since the
ORACLE continuously adapts the features present in object models, it ensures
timely response to changes in the dynamic environment. Additionally, through the
use of the object classification tree, the ORACLE is able to recognize unknown
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objects without comparing them with the individual models of the database or
processing them with extensive usage of knowledge. Consequently, the system can
achieve high recognition speed. The contributions of the ORACLE to the field of
machine learning are also noteworthy: modification of EBL to utilize multiple train-
ing examples to eliminate any model biases and to work with generalized feature
ranges and weights in object models; simultaneous usage of symbolic information on
feature utility and numeric information obtained from traditional clustering quality
measures in the goal dependency network of SCC.

Although the experimental results presented in this paper are based on 2D object
models, the ORACLE system can be extended to incorporate 3D models as well.
The additional requirement to handle 3D imaging constraints, e.g. those posed
by viewpoint location, is the availability of a feature extraction component that
can locate and orient the position of a 3D object in the image and subsequently
extract symbolic features. For example, one of our approaches utilizes a generic
aircraft model to hypothesize various orientations and predict the appearance of
specific target features.!’ Within the ORACLE itself, the only changes required
are modifications of the EBL background knowledge to accommodate 3D features
and that of the goal dependency network to allow proper structuring of the object
classification tree. These issues are being currently investigated in the context of
aircraft recognition in perspective aerial imagery.
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