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Abstract 

Real-world image understanding tasks often involve complex object models which are not adequately represented by a single 
representational scheme for the various recognition scenarios encountered in practice. Multiple representations, on the other hand, 
allow different matching strategies to be applied for the same object, or even for different parts of the same object. This paper is 
concerned with the derivation of hierarchical CAD models having multiple representations - concave/convex edges and straight 
homogeneous generalized cylinder - and their use for generic object recognition in outdoor visible imagery. It also presents a 
refocused matching algorithm that uses a hierarchically structured model database to facilitate generic object recognition. Experi- 
mental results demonstrating generic recognition of objects in perspective, aerial images are presented. 
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1. Introduction 

The success of a 3D model-based object recognition 

scheme is dependent on several factors: representation of 
the model (e.g. wire-frame, constructive solid geometry, 
surface boundary or B-rep), types of features in the input 
image, choice of indexing and search techniques to match 
the model and the data. In real-world image understand- 
ing (IU) problems like photointerpretation, there are 
additional factors which complicate the overall model- 
based object recognition process, such as occlusion, 
shadow, cloud cover, haze, seasonal variations, clutter, 
etc. Typically, CAD models of objects are used in IU 
tasks involving man-made objects. By and large, these 
CAD-based IU systems use a single representation 
scheme for the models, and a matching technique 
based on that representation for object recognition. 
However, for many applications, it is unlikely that a 
single representation-based recognition strategy would 
suffice for a variety of complex objects; multiple repre- 
sentations allowing different matching strategies to be 
applied for the same object, or even for different parts 
of the same object, is a better alternative that has not 
been explored in the past. Besides, the imaging condi- 
tions and the viewpoint location can affect the sensory 
data in such a way that the recognition of objects using 
fixed, detailed CAD models may be computationally 
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expensive. The use of generic or variable object models, 
each of which represent a set of distinct objects, can 
reduce the complexity of the recognition process. 

This paper is concerned with (a) building appropri- 
ately detailed, hierarchical models of objects with multi- 
ple representations, and (b) using these models to 
perform generic object recognition in outdoor imagery. 
The use of generic shape models in outdoor image inter- 
pretation has been limited to simple shapes like rectan- 
gles [1,2]. In comparison, our approach derives 
equivalent-shape models or approximations of complex 
CAD models for given resolution of the scene as the 
generic models for recognition. Hierarchical or parts/ 
sub-parts structures based on the decomposition of a 
model’s surface and/or volume are then represented 
using multiple schemes. Psychological studies [3,4] have 
also provided evidence of multiple representations of 
parts in human visual recognition. Apparently, such 
representations are used to guide the extraction of 
image features and, during the matching phase, admit 
cooperative matching strategies and simultaneous verifi- 
cation of parts of a hypothesized object. In addition to 
parts decomposition of individual models, the current 
approach assumes a hierarchical structure of the model 
database which consists of qualitative-to-quantitative 
descriptions of models. Generic class models (e.g. air- 
craft) are at the top of the hierarchy and are described 
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qualitatively, while fixed CAD models (e.g. Boeing 747) 
located at the terminal nodes have precise quantitative 
information; an object subclass (e.g. jumbo aircraft) at 
an intermediate level in the hierarchy has partial quali- 
tative and variable quantitative specifications. The hier- 
archical database is assumed to have been obtained 
through a process of generalization of the fixed CAD 
models. 

The paper is organized in the following way. Section 2 
presents the related background and motivation behind 
the work reported in the paper. Derivation of equivalent- 
shape models from B-spline based CAD models and 
representation of the decomposed parts of these models 
using multiple schemes are described in Section 3. An 
algorithm for generic object recognition using these 
hierarchical models with multiple representations is pre- 
sented in Section 4. Section 5 gives the details of imple- 
mentation and the experimental results using real-world 
data and object class and subclass models. Section 6 
presents the concluding remarks. 

2. Background and motivation 

Generic object recognition or classification of objects 
is accomplished using shape models of variable dimen- 
sions. In comparison, the traditional model-based object 
recognition or identification of objects is based on geo- 
metric models of fixed dimensions. Interestingly, cate- 
gorization or the process of treating nonidentical 
stimuli as equivalent is performed in humans in a highly 
deterministic way and very often occurs at a basic level 
[5]. Basic categories are those which carry most distin- 
guishing features, such as aircraft, bridge, house, tree, 
and typically are the ones which are first discriminated 
in an environment. Besides basic categories, psychologi- 
cal studies have also emphasized the importance of parts 
in recognizing visual objects. In this section, we will 
review the past work related to generic and parts-based 
object recognition. Following this, we will discuss our 
motivation for parametrically modifying CAD models 
depending on the viewing scale to obtain generic shape 
models and using multiple representations for these 
models and their components. 

2.1. Background 

One of the earliest generic object recognition systems is 
the ACRONYM [6]. It uses parametrized objects which 
represent families of objects characterized by sets of free 
parameters. Because of this representational scheme, all 
the features those are characteristics of a specialization 
are also present in the corresponding generic description. 
In ACRONYM, the reasoning about object classes and 
their specializations is carried out at the same time and 
failure to recognize the generalized class causes failure of 

the subclass recognition. In spite of its representational 
elegancy, the ACRONYM system is inadequate in 
addressing the real-world concerns posed by IU pro- 
blems. It has no mechanism for automatically refining 
object models, and shadows, clutter and other nonideal- 
ities are not adequately handled within its framework. 
More recently, the PARVO system [7] has been intro- 
duced for fast and generic recognition of unexpected 
3D objects. The approach is based on the Recognition 
By Components (RBC) theory [3] and generates a coarse 
parts-based volumetric description from a line drawing 
depicting a single view of an object. Unlike the ACRO- 
NYM, which uses quantitative parametrized models, the 
PARVO system utilizes coarse, qualitative models repre- 
senting object classes. The INGEN system [S] has been 
used to interpret scenes containing objects for which only 
simple shape models such as parallelepipeds and cylin- 
ders are available but the sizes of the objects are 
unknown. The interpretation process is based on the 
available range data. Kadono et al. [9] have used hier- 
archical CAD models with size-variable planar surface 
patches to match multiple instances of a class of objects 
in multisensory images. 

In CAD-driven vision, hierarchical or parts-based 
object descriptions are obtained by suitably decompos- 
ing the CAD models [lo]. According to the psychological 
theory of Recognition-By-Components proposed by Bie- 
derman [3], complex objects are recognized not by the 
concepts of the whole object but by the objects’ compo- 
nents described in terms of simple volumetric primitives. 
If some of these basic primitives, called geons, can be 
identified in their specified arrangement, then the identi- 
fication of the object will be fast and accurate. In the 
studies by Tversky and Hemenway [4], parts are the 
basic level of human concepts not only because smaller 
parts are easier to deal with, but also because different 
parts are to be handled differently. They propose that 
part configuration underlies the various empirical opera- 
tions of perception, behavior, and communication which 
converge at the basic level. 

2.2. Motivation 

Since the number of object classes is considerably less 
than that of specific objects in any domain, the com- 
plexity of object classification process using generic mod- 
els is proportionately lower than that of object 
identification using specific models. Additionally, the 
results of the classification process can be used to con- 
strain the identification search process, such as approxi- 
mating the pose of specific objects. Generic CAD models 
which are obtained through a process of generalization 
of the common features of a class of specific CAD 
models are often too detailed for the kind of features 
which may be reliably extracted from images. Instead, 
the resolution limit imposed by the viewpoint location 
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(a) (b) 
Fig. 1. Understanding view-dependent model representation. (a) Geometry illustrating lattice points q’s as function of a free variable z in one 

dimension; (b) perspective projection of a planar curve. 

can be used to obtain simplified generic models. Under 
real-world conditions such as partial occlusion, the 
recognition of a complex object model is difficult unless 
the given model is structured into components. Each 
component is then detected in the input data and the 
evidence of the object is sought in the spatial relation- 
ships among the detected components. 

To understand the need for viewpoint-dependent 
model representation, first consider the following 1D 
problem. Let x0, x2,. . . , xN denote N + 1 lattice points 
in [a, b] spaced Ax apart and let f = [fo, fi, . . . , &IT be 
the observed values of a functionf(x) at these locations. 
Suppose p(x) E P)N is a polynomial fit to the J;‘s: 
p(x) = cc , o a,x’, where P)N is the set of all polynomials 
of degree at most equal to N. The N + 1 coefficients 
a= [ao,al,... , aNIT are obtained as unique solutions of 
the system of equations a = V-If, where V is the 
(N + 1) x (N + 1) Vandermonde matrix of the basis 
functions 1, x, x2,. . . , xN evaluated at the lattice points. 

Now, consider that the lattice point spacing, Ax, is a 
function of a free variable z as shown in Fig. l(a). 
According to the figure, the relation 
is expressed as 

Ax= ]xk+i -xkl = ]tan&+i -tan& 

= z]&+i - @,I = zlAO\ 

between Ax and z 

(1) 

under the conditions of z > x. In the context of model- 
based object recognition, the polynomial correspond to 
shape descriptors such as the components (axis, cross 
section, etc.) of a generalized cylinder (GC), while the 
variable z corresponds to the distance of the sensor 
from an instance of a model. The parameter A0 is 

determined by the resolution of the sensor and, therefore, 
it is fixed. From Eq. (l), it follows that the lattice spacing 
Ax increases as z increases subject to the condition that 
A6’ is constant. An increase in Ax for a fixed interval 
[a, b] implies that there are fewer elements of the vector 
f. Hence, it may be concluded that the number of coeffi- 
cients of p(x) gets smaller or the polynomial descriptor 
becomes smoother (of lower order) as z increases. 

Generic object models accommodate the concept of 
adequate model description which can be supported by 
the sensory data. Space (3D) curves used to define these 
generic models correspond to the polynomial descriptor 
in the above 1D example, while z represents the viewing 
scale. Thus, utilizing the knowledge of the latter, it is 
possible to select appropriate (order of) space curves to 
define generic models for a given resolution. The notion 
of shape, as in shape recognition problems such as gen- 
eric object recognition, is meaningful only if it is accom- 
panied by a specified resolution at which the shape is to 
be assessed. This is well motivated by the fact that shapes 
appearing dissimilar at a high resolution can be identical 
at a low resolution [l 11. We therefore emphasize the use 
of appropriately detailed models, to be called the diffused 
models, for the purpose of model-image matching. In 
these models, the degree of detail is determined by the view- 
ing conditions or the imaging parameters. Nasr and Bhanu 
[12] and Bobick and Bolles [13] have advocated multiple, 
concurrent object descriptions for such applications as 
robot navigation where the descriptions are to be refined 
over time due to changes in the scene resolution. 

Recognition of generic object models is further facili- 
tated by organizing the individual models in a hierarch- 
ical fashion, a fact supported by past psychological 
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studies. A CAD-based vision system can acquire hier- 
archical models directly from a CAD database. Each 
subpart of a decomposed CAD model can then be inde- 
pendently described using more than one representation. 
The use of multiple representations facilitates coopera- 
tive interaction among different matching strategies, 
which may be pursued to exploit the benefit of the indi- 
vidual representational schemes. Since the goal of parts- 
based recognition is to verify, in the image data, the 
spatial arrangement of the parts, the multiple represen- 
tation scheme leads to a more efficient recognition, par- 
ticularly in unconstrained environments, than a single 
representation-based recognition method. As each repre- 
sentation imposes its own set of constraints on the image 
observables, the different representations only enrich the 
overall constraint set which increases the possibility of 
detecting the parts reliably and reduces the number of 
alternate hypotheses those need to be pursued during 
verification of the spatial arrangement of the detected 
parts. 

When the image understanding task requires identifi- 
cation of specific objects, the object recognition process 
must continue beyond classification in terms of generic 
models. In such situations, access to more specific models 
is necessary. This requirement is satisfied by arranging 
the model database in a hierarchical fashion (in addition 
to hierarchical decomposition of individual models). The 
generic object models are coordinated to be near the top 
of the arrangement, while more specific models are dis- 
posed further down the hierarchy. Using this database, 
reasoning about objects and their classes can be cascaded 
without requiring the presence of the same features (for 
matching) at all levels. The matching process can also 
search a lower level for distinguishing features should a 
categorization be not possible at a particular level 
because of the lack of suitable features. Thus, the 
flow of control during matching is bi-directional - 
between a generalized class and its more specialized 
subclasses. 

3. Building generic object models with multiple 
representations 

We begin with the derivation of the conditions, as 
functions of the imaging geometry, under which view- 
dependent or diffused generic model descriptions may 
be obtained for given CAD models. This is followed by 
a description of creating multiple representation-based 
hierarchical components of diffused models. 

3.1. Conditions for difSused model representation 

Consider the perspective projection of a planar curve 
as illustrated in Fig. l(b). Let the planar curve, C, be 
described by the implicit equation p(X, Y) = 0, where 

p(.) is a multivariate polynomial such that p(.) E PN. 
Also, let X1 = (X,, Yt , 2,) and X2 = (X2, Y,, Zs) denote 
two points on C. The corresponding frame-based coor- 
dinates (i.e. in OFrc system) are 

p) _ F_&’ 
1 - 

and ry) = %,Xr) 

where ‘AC is the homogeneous transformation matrix 

given by 

Here, (7, C) denote the frame coordinates of 01, f is the 
focal length of the imaging system, and k, and ky are 
internal parameters of the sensor. Now, referring to 
Fig. l(b), 

Ar=lr2-rll=fAiX --XI and 
zo 

2 1 

Ac=]~-cr+~~/Y 
zo 

2 -Y I. 1 

In order for X1 and X2 to be distinct, Ar > 1 pixel and 
AC 2 1 pixel, i.e. the resolution at the plane Z = Z. must 
be 

Ax=IX2-x1]>f$- and AY=lY2-Y,]>f$. 
Y x 

(5) 
A diffused model of C for the given resolution (Ax, A Y) 
is such that the two shapes, due to the original and dif- 
fused models, are equivalent. 

To compare two shape models, we utilize the notion of 
‘&-neighborhood’ ([l 11, based on point set topology) for 
our shape metric. By definition, &-neighborhood of a 
point is a spherical region of radius E centered at that 
point and the ‘spherical &-neighborhood of an arbitrary 
region is the union of all e-neighborhoods of points 
belonging to that region. Thus, the ‘distance’ between 
two shapes is the smallest value of E for which each 
shape is completely contained within the spherical neigh- 
borhood of the other, perhaps after some arbitrary 
displacement. 

Proposition 1 Two shapes are said to be ‘equivalent’ if 
the distance between them is within the limit of the speci- 
fied resolution. 

In our case, the smallest E corresponding to the distance 
between C and its diffused model is E = [(Ax)2+ 

(AY) 1 . 2 ‘I2 Let the diffused model of p(.) be represented 
by the implicit equation q(X, Y) = 0, q(.) E PM and 
M < N. The Vandermonde matrix corresponding to 
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the original model is 

1 X0 y, . . xr . & y’, . . . yr . . . J-;; . . . y; 

v= . . . . . . . . . . . . . . . . . . . 

1 & y, . . . J-m, . . . x;yi, . . . y; . . . x;; . . . y”, I 

321 

where (X0, Yo, ZO), . . . , WN, Y,v, ZO) are any N + 1 points belonging to the curve p(.) and 0 < i +j < m. The rank, 
r(V), of V which is an (N + 1) x (N + 1) matrix with N = (“z’) - 1, is thus Y(V) 5 N. Let these N + 1 points be 
perturbed such that the resultant Vandermonde matrix is 

[ 

1 X0 -60 Yo-vo ... (Xo-eo)m ... (Yo - l/O)m .‘. (Yo - VoY 
v=. . . . 1 . . . . . . 

. I 1 X,-Q Y,-v, ... (XN-Q)m ... (YN-VN)m ... (YN-VN)n 

where 6 and v are the perturbation amounts such that ]Ei] < AX and ]vi] < A Y, i = 0,. . . , N. The Vandermonde matrix, 
V, corresponding to the diffused model is an (M + 1) x (M + 1) submatrix of f containing elements of the form X’Y’, 
0 5 i +j < m, such that A4 = (“,” ) - 1 and r(V) 5 M. Thus, the necessary condition for the existence of an m-th order 
diffused model of p(,) is that ]det( V) 1 = 0 and according to Hadamard’s inequality this condition is satisfied ifs V has a 
zero column vector. If AX (AY) is such that IX - E] < 1 (1 Y - I/] < 1) and (X - E)~ + 0 ((Y - v)~ + 0), then 
]det( V)l + 0. Hence, it follows that coarser the resolution, i.e. AX and A Y large, better is the chance of identifying 
6 and Y such that the m-th order diffused model exists. The sufficient conditions for the existence of an m-th order 

diffused model, q(.), of p(.) are r(V) < M and max I]p(X, Y) - q(X, Y)ll < E. These conditions can be used in the 
derivations of diffused models as discussed next. 

3.2. Multiple representations of diffused models 

The generic CAD models used in this work are created using the Alpha-1 solid modeling system [14], developed at the 
University of Utah. Alpha-1 models the geometry of solid objects by representing their boundaries using NURBS 
(Nonuniform Rational B-spline Surfaces). Using Alpha-l, generic objects are designed with various geometric opera- 
tors, such as extrude, bend, stretch, warp, etc., or combinations of them using boolean operations, set union, difference, 
intersection, etc. [lo]. Fig. 2(a) shows an airplane CAD model whose decomposition is shown in Fig. 2(d). The 
decomposition is obtained by first deriving a polyhedral approximation of the B-spline model (Fig. 2(b)) of Fig. 
2(a), and then finding the concave edges (Fig. 2(c)) which separate the different subparts. The final object models are 
represented by constructing relational links between their respective part decompositions. The details of the approach 
appear in Bhanu and Ho [lo]. Several other techniques for representing surfaces by edges are given in Bhanu et al. [ 151. 
Once the CAD models are derived, appropriate diffusion techniques can then be applied to each object model. 

Given a 3D curve and a diffusion limit E based on resolution, it is possible to obtain a (nonunique) diffused model of 
the curve by incrementally deforming the original curve to obtain progressively lower-order space curves. At each step 
of the iterative process, position and orientation of the most recent deformed curve can be calculated with respect to the 
original curve to verify that the amount of displacement is within the resolution limits. Suppose the 3D curve has the 
following parametric representation which is the most common representation for curves and surfaces in CAD: 
x(t) = [x(t)y( t)z(t)]*, t E [a, b] c W, where i(t) = dx/dt # 0. Let the curve be reparametrized (without affecting its 
shape) using the arc length parameters, where s = s(t) = Ji lljrlldt and ]].]] d enotes the norm of a vector. Also, let t-n-b be 
the Frenet frame at a points along the curve; t is the tangent vector to the curve at s, i.e. t = x’, n is the principal normal 
vector, i.e. the unit vector normal to the contour and lying in the plane containing t and t’, and b is the binormal vector, 
i.e. the unit vector normal tot and n at s. Here, “’ denotes differentiation with respect to s. The Frenet-Serret formulas 
relating these vectors to their derivatives are given by [16] 

t’ = m, n’ = --Kt + Tb, b’ = -rn, (6) 

where the terms K and r are called the curvature and torsion, respectively. The curvature may be defined both in terms of 
the original parameter t and in terms of s as [17] 

K. = & .” $11 
llx113’ 

and K = K(S) = J/x”]]. 

Similarly, the torsion is defined as [17] 

det[jr, X, %] 
r = 7(t) = /,ir x ..,/* and r = T(.s) = $det[x, x”, x”‘]. 
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Fig. 2. A generic airplane model. (a) B-spline model of an airplane, (b) polyhedral approximation of (a), (c) edge detection using (b), (d) decomposition 

of(b) along concave edges of(c). 

The above 3D curve is subjected to an infinitesimal defor- 
mation such that the new (deformed) curve is represented 
as x+6x, where Sx = at + on+ yb. If X denotes the 
amount of deformation along the curve, i.e. 6(ds) = Xds, 
then the curvature of the new curve is obtained as 

K. + SK = CL’ + K( 1 - X) + TV. (9) 

Here, X = o’ - KP, p = p’ + (YK - yr, and v = y + ,&-, 
while “’ denotes differentiation with respect to s. Thus, 
given the original and the diffused curves in parametric 
form and hence their respective curvatures and torsions 
according to Eqs. (7) and (8), an iterative deformation of 
the original curve in steps of Sx allows one to determine 
the smallest degree of the diffused curve in terms of the 
degree of the original curve using Eq. (9). During this 
iterative process, it must be ensured that the total defor- 
mation p of the original curve, where p = xi 1/6xi/l, i 
being the number of iterations, is such that p < E for a 
given value of E, the allowed perturbation amount. 

To illustrate the above diffusion procedure, consider a 
GC-based description of a CAD model whose axes and 

cross-sections are typically described by low-order 
polynomials. If an approximate estimate of the viewing 
scale is known (this is often available for applications like 
photointerpretation), then the scene resolution is 
obtained using Eq. (5), which in turn is used to determine 
the tolerance, E, of diffusion. For every subpart of a 
decomposed object model represented using a GC, it is 
tested whether a straight homogeneous generalized cylin- 
der (SHGC) approximation is feasible for that part, i.e. 
the axis curve can be approximated by a straight line, and 
all the different cross-sectional functions can be replaced 
by a single homogeneous function. If the conditions are 
satisfied, then an SHGC-based representation is 
obtained for that subpart. Fig. 3(a) shows the cross 
sections of GCs. Fig. 3(b) shows the axes of GC repre- 
sentations of the subparts of the original (non-diffused) 
airplane model and Fig. 3(c) describes the axes of the 
corresponding subparts of the diffused model using the 
SHGC representation. The model of Fig. 3(c) can be 
further approximated depending on E-value to obtain a 
diffused model in which small SHGCs, i.e. ones with axes 
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(b) (cl 
Fig. 3. Generalized cylinder representation of subparts of an airplane. (a) Cross-sections of generalized cylinders, (b) axes of generalized cylinders, 
(c) axes of straight homogeneous generalized cylinder-approximations of generalized cylinders in (b). 

lengths nearly equal to or smaller than E, are ignored, e.g. 
the SHGCs connecting the wings or the tails to the fuse- 
lage in Fig. 3(c). 

Multiple-representation descriptions are maintained 
for each of the decomposed subparts using polyhedral 
approximation, concave/convex edges, curvature 
extrema, surface normals, and generalized cylinders. 
Unlike Constructive Solid Geometry or other techniques 
commonly applied for representing object decomposi- 
tions in CAD systems, the selected representational 
schemes are quite suitable for computer vision applica- 
tions. Most man-made objects encountered in typical IU 
applications are conveniently represented using one or 
more of these selected methods. For example, GCs are 
well suited for objects having axes of symmetry; similar 
objects have similar axes and cross sections, while any 
small difference between similar objects will be reflected 
by a small difference in the axes or cross sections. Poly- 
hedral representation is widely used because of its sim- 
plicity and good support of both geometrical and 
topological information. Two examples of multiple 

representations of object models are shown for the 
airplane model: the edge points of Fig. 2(c), and the 
generalized cylinder representation of Fig. 3. 

4. Recognizing generic object models with multiple 
representations 

Given multiple representations of hierarchical, dif- 
fused CAD models, the goal of object recognition is to 
utilize these multiple representations of the subparts for 
model feature extraction from images. Spatial arrange- 
ment of the subparts extracted from images as indicated 
in the object model specification is verified through accu- 
mulation of evidence during matching. The recognition 
process initiates with the most generic, diffused CAD 
models. Guided by the hierarchical object model data- 
base, a cycle of increasingly specific feature extraction 
and finer recognition, called refocused matching, then 
allows the system to interpret a scene in terms of indivi- 
dual (more specific) CAD models. The algorithm for 
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Fig. 4. A flow diagram of the generic object recognition algorithm 

generic object recognition consists of the steps shown in 
Fig. 4 and the overall process is supervised by a controller. 

The input to the recognition system is a 2D image and 
ancillary data about the imaging and platform para- 
meters and scene conditions. Initially, a multiresolution 
search is performed to determine the regions of interest 
(ROIs) which are likely to contain the target objects. 
Once the ROIs have been identified, each of them is 
subjected to the recognition process described below in 
succession. 

4.1. SHGC representation-based dominant axes 
extraction 

Axes are important features for recognizing objects 
represented by generalized cylinders. Of these, the domi- 
nant axes correspond to the longest axes of the SHGC 
representations of CAD models. Normally, the contours 
of SHGCs are used for determining the axes of SHGCs 
from edge images [18,19]. However, in outdoor images, 
where contrast and image quality can vary greatly, a 
reliable extraction of edges is often not possible. In our 
approach, the 2D shapes of objects are used to extract 
the dominant axes from the images. Such shapes are 
identified by segmenting image regions which may 
correspond to the objects of interest. The segmentation 
is based on the joint relaxation of a two-class (object/ 
background) region-based approach and a two-class 

(edge/no edge) edge-based approach [20]. 
To extract dominant axes of an SHGC-based repre- 

sentation, we note that the curvature at an end point of 
the axis of an SHGC is inversely proportional to the 
distance from its origin of scaling. The approach for 
extracting the potential dominant axes of an SHGC 
representation-based shape involves identification of 
the high curvature points of the region boundaries cor- 
responding to the contours of the subparts represented 
using SHGCs. Consequently, an axis can be generated by 
connecting the midpoints of the opposite ends of an 

SHGC contour at the points of high curvature. To deter- 
mine the high curvature points along the region bound- 
aries, the minimum bounding polygon (MBP), i.e. the 
smallest (area-wise) convex polygon, that completely 
encloses the object region is found. It can be shown 
that the vertices of the MBP lie close to the local extrema 
of curvature points along the region boundaries. 

Now, more than one ‘extreme’ point may be identified 
within a small neighborhood along the region boundary 
in the vicinity of a polygon vertex, e.g. when there are 
multiple local extrema points in a certain segment of the 
boundary. In that case, nearby ‘extreme’ points are 
grouped into clusters and the cluster centers are chosen 
to represent the region extremities. A potential dominant 
axis is a line that connects two such extreme points which 
are not the centers of adjacent clusters. Lines whose sig- 
nificant portions are not contained within the segmented 
region are ignored. 

4.2. Edge representation-based primitive feature 

extraction 

Detection of intensity edges is the initial step for most 
feature extraction processes. Intensity edge pixels are 
identified by applying multiple thresholds to the output 
of an edge detector and are thinned to one-pixel width. 
Next, long edge segments which are made up of high 
magnitude edge pixels are found to form linked edge 
segments through an optimization step. Each set of 
linked edge segments or a configuration level constitutes 
perceptually salient contours corresponding to one 
threshold value. These sets are handed over to the primi- 
tive feature extraction process in a regulated manner, 
starting with the top-level configuration (see Fig. 4). 
The details of the linked-segment extraction step appear 
in [21]. 

The extraction of primitive features involves edge- 
based representation of shapes. Since this representation 
is derived from polygonal approximations of B-spline 
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CAD models, the primitive features comprise linear seg- 
ments. The input to this line extraction algorithm, which 
is similar to the one proposed in [22], is a set of regulated 

intensity-edge segments. Now, the model edges intersect 
in 3D corners whose projections are 2D corners. Thus, in 
addition to lines, our algorithm also detects corners by 
obtaining gradient and curvature measurements at pixels 
in the grey scale image [23]. 

4.3. Symbolic feature extraction 

Symbolic features may be derived using perceptually 
grouped primitives. We adopt a two-stage approach for 
the extraction of symbolic features. First, the line 
primitives are organized into convex groups using 
domain-independent perceptual measures. Second, 
SHGC-based representation of the hierarchical object 
models are used to extract symbolic features from these 
convex groups. These symbolic features correspond to 
the different subparts of a generic object. 

4.3.1. Edge representation-based convex grouping 
Polyhedral edges are either convex or concave; sub- 

parts modeled using convex edges give rise to convex 
groups of lines in the images. Initially, groups of lines 
are formed based on the perceptual measures of proxi- 
mity and collinearlity. The motivation here is that if the 
elements of a group belong to a region boundary, then 
the segmentation results would help to determine the 
interior of the region and hence to verify the ‘convexity’ 
of the group. 

A convexity test is performed for every pair of lines in 
a selected group. If a line of a selected pair fails the con- 
vexity test, then that line is removed and put in a new 
group by itself. After all the initial groups have been 
considered, this process creates the first set of convex 
groups and isolated lines removed during the convexity 
test. The second pass considers whether an isolated line 
can be put in a convex group based on proximity, colli- 
nearity and convexity. 

4.3.2. SHGC representation-based symbolic feature 

extraction 
The high-order symbolic features are obtained as 

assemblies of the lower-order perceptual groups by 
accessing the object models. When these models are 
represented using SHGCs, the symbolic features corre- 
spond to the contours of SHGCs. Since the rules for 
deriving the symbolic features are based on one repre- 
sentation (viz., SHGC) while the primitive features are 
extracted based on another representation (viz., convex 
edges), there must exist a transformation from one repre- 
sentation to the other. To facilitate this transformation, 
we consider one class of SHGC, the linear right SHGC 
(LRSHGC), whose contour can be represented using a 
convex group of lines. For generic models such as the 

aircraft model of Fig. 2(a), subparts can be represented 
using LRSHGCs for certain degree of diffusion as in 
aerial image interpretation. 

The following are some useful properties of RSHGC 
and LSHGC representations which are utilized during 
the symbolic feature extraction: 

Property 1 The occluding contour of an RSHGC is al- 

ways planar in an end or side view. In an oblique view, the 
occluding contour of a Linear RSHGC always lies in a 

plane [24]. 

Property 2 The 2D image of the occluding contour of a 

Linear RSHGC is a line. 

Property 3 The 20 image of a solid corner formed by two 
contour generators of a Linear RSHGC or by two inter- 
secting Linear RSHGCs is a corner. 

Based on these properties, the contour of an LRSHGC 
can be represented using a convex group of lines. Con- 
sequently, it is possible to extract the contours of 
LRSHGCs from convex groups of lines. In our aircraft 
example, convex groups of lines are used to extract sub- 
parts like wings, tails, and the rudder sections of the 
generic aircraft model. 

4.4. Evidence-based reasoning for recognition by parts 

Our approach to reasoning is ‘exact’ or non-mono- 
tonic which we shall refer to as evidence-based. This 
particular reasoning method accumulates evidence, i.e. 
determines the number of positive evidences, in support 
of the hypothesized generic object. (In this work, we do 
not consider negative evidences for a hypothesized 
object.) 

Once the symbolic features have been derived, these 
need to be matched to the generic object model through 
the evidence accumulation process. It primarily involves 
verifying the mutual connectedness of the symbolic fea- 
tures those represent the different parts of a generic 
object. The exact manner in which this verification is to 
be carried out is specified by the production rules asso- 
ciated with this object model, but in all cases we empha- 
size simultaneous verification of hypotheses. The 
combined support of a body of evidence for a hypothesis 
is the total number of positive evidences those can be 
found in the input data. The final output are the identi- 
fied symbolic parts of the generic object. 

4.5. Refocused matching 

The labeled symbolic parts are now used to direct the 
image-based search for more localized features which are 
available at lower levels of the database hierarchy. The 
symbolic features may have associated qualitative or 
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Fig. 5. The coordinate systems relating an object model to its projec- 

tion for pose computation. The vectors in the systems u-v-w and i-j-k are 

unit vectors. 

quantitative information. When the latter is available, it 
may be used to derive constraints for the subsequent 
identification of the detected generic object. We now 
describe a method for utilizing quantitative information 
in refocused matching. It makes use of the pose compu- 
tation approach of DeMenthon and Davis [25]. 

Referring to Fig. 5, let the model coordinate axes be 
centered at a point MO and let Mi denote any other model 
point. Also, let X0 and Xi denote the coordinates of these 
points in the sensor-based world coordinate system and 
r. and ri denote the same in the frame coordinates, 
respectively. Then, by using perspective projection rela- 
tions one obtains 

ro-ri=fk,(Yo-Y.)-s.I.MM. 
z I2 0 I> 

co-ci=fk,(xo-X.) =s j-M 
I x 

M. 0 II 

where it is assumed that Z. = Zi = Z and i, j, k denote 
the unit vectors along X, Y and Z-axes, respectively. The 
unknown multiplicative factors S, =fk,/Z and 
sy =fk,,/Z signify the scaling of the model in X- and 
Y-directions, respectively. Let u, v and w denote the 
unit vectors along the three axes of the model-centered 
coordinate system where the sensor and the model unit 
vector systems are related as [i j klT = R[u v WI=, R 
being a 3 x 3 orthonormal rotation matrix with rows 
[iU i, i,], [j, j, j,] and [k, k, k,]. For m model points, 
i.e. i== l,... , m, the corresponding systems of equations 
are represented using matrix vector notation as 

r = AI, c=AJ. (11) 

Here, A is an m x 3 matrix of the coordinates (in the 
model-based system) of the m model points, r and c are 
m x 1 vectors of the frame coordinates of these points 
relative to that of MO, and I = [s,i, S& s&,]’ and 

J = IL& wi &I’~ If m = 3 and the corresponding 
points are non-coplanar, then A has a full rank and I 
and J can be uniquely solved and hence i j, k and R. 

The magnitude of the translation vector is obtained as 

IT] = dxi + Yi + Zi and its direction is given by the 
vector OIMo. The translation vectors corresponding to 
all other model points can be similarly obtained. These, 
together with T, allow updating the estimates of MoMi’s, 
which are known only approximately due to the generic 
nature of the object model, and refining the pose compu- 
tations in an iterative manner. Once the algorithm has 
converged, this will yield better estimates of the model 
parameters than available initially. These improved esti- 
mates can subsequently be used in the identification step. 

(define-rule GENERIC-AIRCRAFT 
“The description of a generic aircraft” 
(model-description = Edge, RSHGC) 
(symbolic-feature = WING)(satisfy = TRUE) 
(symbolic-feature = FUSELAGE)(satisfy = TRUE) 
(symbolic-feature = TAIL)(satisfy = 0) 
(symbolic-feature = RUDDER)(satisfy = 0) 
(symbolic-feature = NOSE)(satisfy = 0) 
(connected-to (WING, FUSELAGE)) 
(connected-to (TAIL, FUSELAGE)) 
(connected-to (RUDDER, FUSELAGE)) 
(connected-to (NOSE, FUSELAGE)) 
(closer-to (WING, NOSE, TAIL)) 
(closer-to (WING, NOSE, RUDDER)) 
(closer-to (TAIL, RUDDER, WING)) 
(closer-to (RUDDER, TAIL, WING))) 

(a) 

(define-rule LARGE-AIRCRAFT 
“The description of a large aircraft class” 
(symbolic-feature = ENGINE) 
(location (ENGINE, WING))) 

(b) 

(define-rule MEDIUM-AIRCRAFT 
“The description of a medium aircraft class” 
(symbolic-feature = ENGINE) 
(location (ENGINE, WING)) v 
(location (ENGINE, FUSELAGE))) 

cc> 
(define-rule SMALL-AIRCRAFT 

“The description of a small aircraft class” 
(symbolic-feature = ENGINE) 
(location (ENGINE, 0))) 

(d) 

Fig. 6. Descriptions of hierarchical CAD models with multiple representations. (a) A generic aircraft, and the three aircraft classes (b) large, 

(c) medium (d) small. 
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5. Experimental results 

The results reported in this paper are based on one 
generic object - aircraft - and its three subclasses - 
large, medium, and small (see Fig. 6). Fig. 7(a) shows 
an aerial photograph (4K x 4K) which has several 
aircraft - four C-130’s and one F-18. Using the multi- 
resolution focusing approach, several ROIs are identified 
as shown in Figs. 7(b)-(d). These ROIs are analyzed by 
the object recognition system in succession. Here, we 

present the results of analyzing the bottom ROI 
(162 x 240) from Fig. 7(d) (contains the F-18 aircraft). 
The ROI and the output of the multi-threshold edge 
detection step are shown in Figs. 8(a)-(c). In our imple- 
mentation, we have selected five threshold (t) values 
which are fixed for all images. The result of extracting 
globally salient edge contours is presented in Fig. 8(d) 
which shows the top-level configuration, consisting of 
the aircraft in this case. The following step is to extract 
the primitive features from this global structure. The 

(b 1 

Fig. 7. An aerial view of an airfield. (a) Original image (4K x 4K), (b) preliminary regions of interest (ROIs, black regions) in (a), (c)a close-up of the 

preliminary ROIs of(b), (d) new ROIs found in (c). 
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Fig. 8. Results of low-level processing the bottom ROI in Fig. 7(d). (a) Original ROI image (162 x 240). Extraction of thinned edges using different 

thresholds for edge magnitude: (b) t = 225, (c) t = 50. Results of feature extraction: (d) detection of most salient edge contours, (e) fitting straight lines 

to the contours of(d) and showing the straight lines superimposed on (a), (f) segmented regions and extracted dominant axes for the largest foreground 

region. 

result of line fitting to the salient structures is shown in 
Fig. 8(e). Segmented regions and the dominant axes of 
regions are shown in Fig. 8(f). Fig. 9(a) shows the six 
convex sets of lines identified using convex grouping pro- 
cedure. These are used to extract trapezoid-like features 
shown in Fig. 9(b) which are the symbolic descriptions of 
some of the subparts, like wings, tails and rudder. 

During the generic object recognition step, the domi- 
nant axes are used to support or refute a selected sym- 
bolic feature as a wing of the aircraft or the fuselage. 
Once all the conditions of connectivity and relative loca- 
lization of the different subparts as specified in Fig. 6 
have been satisfied, can their ensemble be recognized as 
a generic aircraft. The identified subparts are shown in 
Fig. 9(c). The connectivity information of the parts is 
exploited to obtain more complete descriptions of the 
subparts, followed by the extraction of the shape 
skeleton. These results are shown in Figs. 9(d)-(e). 

Note that no precise model has been utilized in this 
recognition step. Next, an improved classification of 
the generic aircraft is sought based on the engine location 
(Fig. 6). However, no elongated blob-like region 
(symbolic description of an engine) is detected that 
may indicate presence of engines. Therefore, the generic 
aircraft is identified as belonging to a small class 
(Fig. 9(f)). 

The quantitative information associated with the three 
subclasses of the generic aircraft category is indicated in 
Table 1. Also available to the system are the location of 
the sensor, (527, 337, 560) m in a reference world coor- 
dinate system, and the range-to-ground, 805 m, along the 
line of sight (LOS). The sensor- and model-based 
coordinate systems for computation of the approximate 
dimensions of the classified aircraft are shown in Fig. 5. 
The range of 2 (refer to Section 4.5) measured along the 
LOS is obtained as 798-801 m based on Table 1 data and 
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Total Engines found on the Left Wing: 0 

Total Engines found on the Right Wing: 0 

Total Engines found on the Left Rear Fuselage: 0 

Aircraft Class: C-z small aircraft >> 

Fig. 9. Results of qualitative object recognition. (a) Six convex groups of lines identified in Fig. 8(e), (b) trapezoid-like shapes identified using these 

groups, (c) structural parts found during generic object recognition, (d) refined structural parts that are also labeled, (e) finding the skeleton of the 

shape, (f) class recognition, 

Table 1 
Approximate dimensions of the three subclasses of a generic aircraft 

Feature Value 

Large Medium Small 

Wingspan 136’-251’ 66’-107’ 30’-70’ 

Wing Sweep, Leading 112”~131” 114”-121” 93”-115” 

Wing Sweep, Trailing 97”-116” 99”-104” 84”-100” 

Fuselage Length 126’-228’ 52’-91’ 30’-56’ 

Length, Wing-to-Nose 55’-65’ 19’-34’ lo’-25’ 

Length, Wing-to-Tail 45’-78’ 20’-40’ 9’-20’ 

Position of Engines On-Wing On-Wing/Fuselage Concealed 

Tailspan 49’-92’ 23’-44’ 23’-28’ 

Tail Sweep, Leading 116”-128” 118”-122” 94”-99” 

Tail Sweep, Trailing 97”- 104” 99”-104 85”-89” 

Height, Overall 38’-65’ 18’-34’ 9’-15’ 

Fig. 5. The four line segments, indicated as MoMl, 
MOM2, MO, M3 and MOM4 in Fig. 5, of the small aircraft 
model which are to be used in computing R are further 
described in Table 2. The A matrix of Eq. (11) consisting 
of the coordinates of the model points M,, M2, M3, M4 

Table 2 

Line segments for computing approximate pose. The pixel values are 

obtained from Fig. 9(e) and the model dimensions from Table 1 

Segment 

i 

‘+fOMl 

MOM2 

MOM3 

MOM4 

Offset relative to Ma 

in pixels in pixels 

ra - ri co - ci 

0 -130 
50 8 

-57 33 
0 45 

Model dimension 

in meters 

3.5-11.0 
5.0-11.8 

5.0-l 1.8 
2.7-6.0 
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Table 3 

Approximate dimensions of the recognized subclass (small) of a generic 

aircraft corresponding to a set of best (lowest) G scores. The high- 
lighted entry is the closest to the groundtruth, i.e. an F-18 

Dimensional parameters 

b 
(in meters) 

Y 
(in degrees) 

Goodness 

Score 

G 

8 6 95 0.59 
11 6 115 0.59 

3.5 5 93 0.49 
6.5 9 93 0.53 
9.5 12 93 0.53 
8.5 6 115 0.59 

10.5 6 115 0.59 

(4 

(b) 
Fig. 10. Aerial view of an airfield. (a) Original image (4K x 4K), (b) a 
ROI image (120 x 140) of the aircraft marked with a x in (a), (c) most 

salient contour configuration. 

relative to MO is 

0 a 0 

A= 
-b sin y -bcosy d 

1 1 bsiny -bcosy d ' 

0 -c 0 

where 3.5 5 a 5 11 m, 5.0 < b 5 11.8 m, 2.7 < c < 6 m, 
0 < d < 1 .O m and 93” 5 y < 115”. To compute i, j and 
k, the model line MOM, is not used since it is collinear 
with MoMi. Thus, A is actually a 3 x 3 matrix without 
the last row. The goodness of the computed rotation 
matrix is evaluated by obtaining the following score: 
G = Ii .i -j. jl + Ii. jl. The objective here is to identify 
the range of the 4-tuples a, b, d, y for which G is the 
lowest. In this experiment, a value of d = 0.5 m is 
selected, which denotes the height of the wings above 
the u-v plane (since this information is not usually avail- 
able), and the space of a - b - y is searched. The most 
significant mode of G is observed around 0.6 (an interval 
size of 0.1 is used to partition G E [0, 11). It is observed 
that at least one of a, b and y values corresponding to the 
interval of G around this mode agrees with the ground- 
truth, i.e. the dimensions of an F-18 aircraft. The ranges 
of a, b and y values for this interval are observed as 8- 
11 m, 6-6.5 m, and 95”-115”, respectively. Some of the 
triplets belonging to this interval are listed in Table 3. 
Triplets with lower G values that are not associated with 
any significant mode are also included in Table 3 for 
comparison. The range values are more precise than 
the ones listed in Table 1 for the small aircraft class 
and should facilitate more focused search for the specific 
object models. 

A second aerial image is shown in Fig. 10(a). In this 
example, we present the results of generic recognition at 
the subclass level. The results involve analysis of the ROI 
of Fig. 10(b). The top-level (most salient) configuration 
of perceptually salient contours is shown in Fig. 10(c). 
The linear segments of this structure are displayed in 
Fig. 11(a). The ROI is segmented into three sets - 
shadow, object and background - using recursive 
application of the segmentation algorithm [20]. The 
dominant axes of the largest object region are shown in 
Fig. 11(b). The shadow lines in Fig. 11(a) are identified 
using bimodality test of neighborhood histograms and 
are removed. Next, convex groups of the non-shadow 
lines are used to extract trapezoid-like symbolic features. 
The details of the non-shadow symbolic feature extrac- 
tion process appear in [21]. Structural parts identified 
during evidence-based recognition are shown in 
Fig. 11(c) and are further refined as shown in Fig. 
11(d). Finally, the class of the generic aircraft is deter- 
mined to be large based on engine locations as seen in 
Fig. 1 l(e). 



S. Das et al./Image and Vision Computing 14 (1996) 323-338 337 

Total Engines found on the Left Wing: 1 

Total Engines found on the Right Wing: 1 

Aircraft Class: << large aircraft >> 

Fig. 11. Results of feature extraction. (a) Straight lines fitted to the most salient contours, (b) dominant axes for the largest object region. Results of 

qualitative object recognition: (c) structural parts found during generic object recognition, (d) refined structural parts, (e) class recognition. 

6. Conclusions 

In this paper, we have presented an approach to recog- 
nition of generic objects using hierarchical, diffused 
CAD models with multiple representations. Our 
approach has been based on identifying the hierarchical 
subparts of a generic object model in the input image and 
verifying their spatial ordering as specified by the generic 
model. The novel aspects of our work are parametrically 
modifying CAD models depending on the viewing scale 
to obtain generic shape models, and the use of multiple 
representations for the hierarchical subparts of these 
models. The multiple representations have been demon- 
strated to be useful for extraction of object features and 
as constraints during recognition. The generic object 
recognition strategy emphasized in this paper can serve 
as the initial step for any model-based object recognition 
technique. In particular, the results obtained here can be 
used to perform increasingly focused search of the 

precise models in the database. We have demonstrated 
this by seeking further classification of a recognized 
genetic object and computing the approximate dimen- 
sions of the object. 
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