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This paper describes an  adaptive approach for the important 

image processing problem of image segmentation that relies on 

learning from experience to adapt and improve the Segmentation 
performance. The adaptive image segmentation system 

incorporates a feedback loop consisting of a machine learning 
subsystem, an image segmentation algorithm, and an  evalualion 
component which determines segmentation quality. The machine 

learning component is based on genetic adaptation and uses 

(separately) a pure genetic algorithm (GA) and a hybrid of GA 

and hill climbing (€IC). When the learning subsystem is based 

on pure genetics, the corresponding evaluation component is 
based on a vector of evaluation criteria. For the hybrid case, the 
system employs a scalar evaluation measure which is a weighted 
combination of the different criteria. Experimental results for 

pure genetic and hybrid search methods are presented using a 
representative database of outdoor TV imagery. The multiobjective 

optimization demonstrates the ability of the adaptive image 
segmentation system to provide high quality segmentation results 

in a minimal number of generations. The results of the hybrid 
method show the performance improvement over the pure GA. 
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Image segmentation is an important and, perhaps, 
the most difficult low-level task. Segmentation 
refers to the grouping of image elements that exhibit 
“similar” characteristics. All subsequent interpretation 
tasks-feature extraction, object recognition, and 
classification-rely heavily on the quality of the 
segmentation process. The difficulty arises when the 
segmentation performance needs to be adapted to the 
changes in image quality. Image quality is affected 
by variations in environmental conditions, imaging 
devices, time of day, etc. Despite the large number 
of segmentation techniques presently available [4, 11, 
141, no general methods have been found that perform 
adequately across a diverse set of imagery. When 
presented with a new image, selecting the appropriate 
set of algorithm parameters is the key to effectively 
segmenting the image [5]. However, no segmentation 
algorithm can automatically generate an “ideal” 
segmentation result in one pass (or in an open-loop 
manner) over a range of scenarios encountered in 
real-world applications. Any technique, no matter how 
“sophisticated” it may be, will eventually yield poor 
performance if it cannot adapt to the variations in 
unstructured scenes. 

In reality, there exist several factors which make 
the parameter adaptation process very difficult. 
First, the number of parameters present in a typical 
segmentation algorithm is usually quite large. 
Therefore, the search for the optimal parameter set 
can be prohibitively large, unless the parameter space 
is traversed in a highly efficient manner. Second, the 
parameters mutually interact in a complex, nonlinear 
fashion, which makes it difficult or impossible to model 
their behavior in an algorithmic or rule-based fashion. 
Third, since variations between images cause changes 
in the segmentation results, the objective function 
that rcpresents segmentation quality also varies from 
image to image. Consequently, the search technique 
used to optimize the objective function must be able 
to adapt to these variations between images. Finafb, 
the definition of the objective function itself can be a 
subject of debate because there is no single, universally 
accepted measure of segmentation performance 
available with which to uniquely define the quality of 
the segmented image. 

Consequently, there exists a need to apply an 
adaptive segmentation technique that can efficiently 
search the complex space of plausible parameter 
combinations and locate the values which yield optimal 
results. The approach should not be dependent 
on the particular application domain nor should it 
have to rely on detailed knowledge pertinent to the 
selected segmentation algorithm. While there are 
adaptive threshold selection techniques [18, 22, 251 for 
segmentation, these techniques do not accomplish any 
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learning from experience to improve the performance 
of the system over time. Genetic algorithms (GAS), 
which are designed to efficiently locate an approximate 
global maximum in a search space, have the attributes 
described above and show great promise in solving the 
parameter selection problem encountered in the image 
segmentation task. 

segmentation technique that uses a GA and a GA 
plus hill climbing (HC) as the machine learning 
components. The key elements of the adaptive image 
segmentation system are as follows: 

1) A closed-loop feedback control technique 
which provides an adaptive capability. The feedback 
loop consists of a learning component, an image 
segmentation algorithm, and a segmented image 
evaluation component. 

2) A learning subsystem which optimizes 
segmentation performance on each individual image 
and accumulates segmentation experience over time 
to reduce the effort needed to optimize subsequent 
images. 

3) Image characteristics and external image 
variables are represented and manipulated using 
both numeric and symbolic forms within the genetic 
knowledge structure. Segmentation control parameters 
are represented and processed using a binary string 
notation. 

4) Image segmentation performance is evaluated 
using multiple measures of segmentation quality. These 
quality measures include global characteristics of the 
entire image as well as local features of individual 
object regions in the image. The global and local 
quality measures are optimized simultaneously (using 
a GA) and in a weighted combination (using a GA plus 
HC). When the local and global measures are to be 
optimized simultaneously, the problem becomes one of 
muhiobjective optimization. 

5)  The learning subsystem is very fundamental 
in nature and is not dependent on any specific 
segmentation algorithm or  type of sensor data (visible, 
infrared, laser, ctc). The performance of the overall 
adaptive system is limited by the capabilities of the 
segmentation algorithm, but the results are optimal 
for a given image based on thc evaluation criteria. 

The next section discusses image segmentation 
as an optimization problem. Consequently, it argues 
that the GA is an appropriate search technique for 
the parameter adaptation task. It also explores the 
combination of the GA with other search techniques, 
such as HC, which draws on the mutual strengths of 
the individual techniques to result in an efficient hybrid 
algorithm. A brief introduction to the problem of 
multiobjective optimization is given Section 111. Section 
IV describes the baseline adaptive image segmentation 
process that we have developed. We explain the choice 

This work describes an adaptive image 

of a particular segmentation algorithm as well as the 
manner in which segmentation quality is measured. 
Section V presents the experimental results on a 
sequence of outdoor images using both the genetic and 
the hybrid algorithms. Finally, Section VI provides the 
conclusions of this paper. 

II. IMAGE SEGMENTATION AS AN OPTIMIZATION 
PROBLEM 

In the absence of any rigorous theory, the problem 
of image segmentation is best described in terms of 
its goal. The criteria for good segmentation are [14], 
1) the segmented regions should be uniform and 
homogeneous with respect to some characteristic, 
such as gray value or texture, 2) region interiors 
should be free of holes and region boundaries should 
be smooth and spatially accurate, and 3) adjacent 
regions should be differing significantly based on 
the characteristic on which they are uniform. If one 
represents this criteria set in terms of a hypothetical 
function, then the problem of (good) segmentation is 
one of optimizing this objective function by selecting 
appropriate segmentation parameters. Fig. l(a) 
illustrates an objective function that is typical of an 
image segmentation process. The figure depicts an 
application in which only two segmentation parameters 
are being varied, as indicated by the x and y axes. The 
z axis indicates the corresponding segmentation quality 
obtained for any pair of algorithm parameters. Because 
the algorithm parameters interact in complex ways, the 
objective function is multimodal and presents problems 
for many commonly used optimization techniques. 
Further, since the surface is derived from an analysis 
of real-world imagery, it may be discontinuous, may 
contain significant amounts of noise, and cannot be 
described in closed form. As an example, Figs. l(b)-(d) 
show an indoor image and the corresponding global 
and local segmentation quality (to be discussed in 
Section IV D) surfaces and Figs. I(e)-(f) show the 
segmentation results corresponding to the global and 
local segmentation evaluation criteria. 

A. Selection of Optimization Technique 

The multimodality of the segmentation criterion 
function exemplified in Fig. 1 emphasizes the need for 
a highly effective search strategy which can withstand 
the breadth of performance requirements necessary 
for the image segmentation task. We have reviewed 
many of the techniques commonly used for function 
optimization to determine their usefulness for this 
particular task. In addition, we have also investigated 
other knowledge-based techniques which attempt to 
modify segmentation parameters using production rule 
systems. The drawbacks to each of these methodologies 
[2, 13, 261 are as follows: 
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Fig. 1. Example of adaptive image segmentation task. (a) Spica1 objective function which must be optimized in adaptive image 
segmentation problem. @) Indoor image for segmentation. (c) Global segmentation quality surface. (d) Local segmentation quality surface. 

(e) Global segmentation results. (f) Local segmentation results. 

1) Exhaustive Techniques (random walk, depth first, function is available. Discontinuities and multimodal 
complexities are present in the objective function. 

best first, branch and bound, dynamic programming, 
A*): HC is plagued by the foothill, plateau, and 
ridge problems. Beam, best first, and A* search 
techniques have no available measure of goal distance. 

breadth first, enumerative): Able to locate global 
maximum but computationally prohibitive because of 
the size of the search space; 

2)  Calculus-Based Technques (gradient methods, 
solving systems of equations): 
mathematical representation of the objective 

3 )  Partial Kizowledge Techniques (HC, beam search, 

No closed-form 
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Branch and bound requires too many search points 
while dynamic programming suffers from the curse of 
dimensionality. 

4) Ihowledge-Based Techniques (production rule 
systems, heuristic methods): These systems have a 
limited domain of rule applicability, tend to be brittle 
[16], and are usually difficult to formulate. Further, the 
visual knowledge required by these systems may not be 
representable in knowledge-based formats. 

GAS are a family of adaptive search methods 
that are modeled after genetic evolution process. 
The search process is independent of the problem 
domain. The basic elements of a GA are called 
knowledge structures or individuals. A collection of 
individuals is referred to as a population. At each 
iteration, known as a generation, each individual 
is reproduced and recombined with others on the 
basis of its fitness. The learning operators that are 
responsible for creating a new generation of individuals 
consist of a “mating operator” (it selects .individuals 
according to their fitness values and produces 
offsprings through the process of reproduction) and 
“genetic operators” (these determine the genetic 
makeup of offspring from the genetic material of 
the parents through the processes of crossover and 
mutation). The expected number of times an individual 
is selected for recombination is proportional to its 
fitness relative to the rest of the population. The 
mechanics of reproduction and crossover are fairly 
simple, involving nothing more complex than random 
number generation, string copying, and some partial 
string exchanges. Nevertheless, analytical and empirical 
studies have demonstrated that the combined emphasis 
of reproduction and crossover gives GAs much of 
their power [13]. Mutation provides for occasional 

*disturbances in the crossover operation by inverting 
one or more genetic elements during reproduction. 
An abstract procedure of a simple GA is given below, 
where P ( t )  is a population of candidate solutions to a 
given problem at generation t .  

t = q  
initialize P(t ) ;  
evaluate P(t);  
while not (termination condition) 

begin 
t = t + l ;  
reproduce P(t )  from P(t - 1); 
recombine P(t);  
evaluate P(t); 

end; 

The inherent power of GAs lies in their ability to 
exploit accumulating information about an initially 
unknown domain in a highly efficient manner. By 
allocating more reproductive occurrences to above 
average individuals, GAS can bias subsequent search 
towards the more productive subspaces containing 

groups of highly fit individuals. The bias is attributed 
to certain important similarities that exist among these 
highly fit individuals. Holland [15] introduces the 
framework of schemata as a means of understanding 
the interaction among the various genetic individuals 
or strings. In this framework, a schema is a similarity 
template for comparing subsets of strings with 
similarities at certain string positions. Fer example, 
the schema **01* matches the patterns 10011 and 
00010. Consequently, the explicit processing of strings 
causes implicit processing of many schemata during 
each generation. To understand the growth and decay 
of the many schemata contained in a population, we 
introduce the following notations [13]. A(t) represents 
the population in generation t consisting of strings 
of length 1 each and 7 is the average fitness of 
the population; o ( H )  is the order of a scheme H ,  
i.e., the number of fixed positions in the template 
(number of Os and 1s using a binary alphabet for 
the template); 6 ( H )  is the defining length of H ,  i.e., 
the distance between the first and last specific string 
positions; m(H, t )  is the number of individuals of 
A(t )  that match H and f(H) is the average fitness 
of these strings. Assuming that the reproduction and 
crossover operations are mutually independent, the 
expected number of individuals matching H in the 
next generation under reproduction, crossover, and 
mutation is given by [13] 

where pc and pm are the crossover and mutation 
rates, respectively, and pm << 1. The conclusion of 
(1) is that short (i.e., small 6(H)) ,  low-order (i.e., 
small O(H)) ,  above-average (i.e., f ( H )  > f) schemata 
receive exponentially increasing samples in subsequent 
generations. 

GAS are able to overcome many of the problems 
mentioned earlier in the context of current 
optimization techniques. They search from a population 
of individuals (search points), which make them ideal 
candidates for parallel architecture implementation, 
and are far more efficient than exhaustive techniques. 
Since they use simple recombinations of existing high 
quality individuals and a method of measuring current 
performance, they do not require complex surface 
descriptions, domain specific knowledge, or measures 
of goal distance. Moreover, due to the generality 
of the genetic process, they are independent of the 
segmentation technique used, requiring only a measure 
of performance, which is referred to as segmentation 
quality, for any given parameter combination. 

The importance of GAS as function optimizers is 
well established and the topic has been the subject of 
several Ph.D. dissertations [1,3, 8-10 12, 271. GAS are 
especially appropriate when the objective function is 
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multimodal, high-dimensional, and/or contaminated 
by noise. (It is known that the GA performance is 
inferior to HC methods for unimodal, low-dimensional, 
and noiseless functions [l].) GAS allow the possibility 
of achieving the global maximum without exhaustive 
search. For example, during global optimization of 
gas pipeline operations [12], near optimal results 
were found after examining an infinitesimal fraction 
(lop6 to of the search space. Additionally, 
the performance of every GA is evaluated using an 
external evaluation procedure. By appropriately biasing 
the performance evaluation criteria, greater control 
over the genetic search process is possible than in 
other optimization techniques. On the other hand, 
optimizing functions, called GA-hard, tend to have 
remote, highly isolated optima and are difficult for any 
optimization technique (except exhaustive search). 

B. Hybrid Search Techniques 

GAS have been proven [13, 151 and shown to 
provide robust search performance across a broad 
spectrum of problems. However, hybrid techniques 
[l] have the potential for improved performance 
over single optimization techniques since these can 
exploit the strengths of the individual approaches 
in a cooperative manner. One such hybrid scheme 
which is the focus of this work combines a global 
search technique (GA) with a specialized local search 
technique (HC). HC methods are not suitable for 
optimization of multimodal objective functions, such as 
the segmentation quality surfaces, sincc they only lead 
to local extrema and their applicability depends on the 
contour shape of the objective functions. The hybrid 
scheme provides performance improvements over 
the GA alone by taking advantage of both the global 
search ability of the GA and the local convergence 
ability of the HC. In a sense, the GA first finds the 
hills and the HC climbs them. 

where J(X)S are the objective functions and 2;s are 
the corresponding optimal criterion values and S 
is the feasible region. However, it is only in the 
trivial case, that there exists a single point in S 
which simultaneously maximizes all k objectives. A 
typical approach in multiobjective (or vector-valued) 
optimization is to consider the utility of the 2;s. Thus, 
a point in S is optimal if it maximizes the decision 
makcr’s utility function. To be optimal, however, a 
point must be efficient or Pareto optimal [24]. 

The key concept of Pareto optimality is the 
“partially greater than” ( p  >) relation between two 
vectors of the same dimension. Given two vectors 
a = (q,. . . ,un) and b = (bl,.. .,b,,), a is said to be 
partially greater than b (ap > b) if each element of a 
is greater than or equal to the corresponding element 
of b and at least one element of a is strictly greater 
than the corresponding element of b, i.e., 

(ap > b) --t (V i)(a; 2 b;)  (3 i)(a; > bi). 
Under these conditions, we say that a dominates b 
or b is inferior to a. If a vector is not dominated by 
any other vector, it is said to be nondominated or 
noninferior. 

In the multiobjective optimization context, if 
(xo, zo) maximizes the utility function, then the point 
xo is Pareto optimal and the criterion vector zo is 
nondominated, i.e., not dominated by the criterion 
vector of some other point in S. In other words, it 
is not possible to move feasibly from xo to increase 
an objective without decreasing at least one other 
objective, i.e., zo is no longer nondominated. The set 
of all nondominated vectors is called Pareto-optimal 
set. The goal of a search for optima in a vector-valued 
space is, then, locating Pareto-optimal set. In practice, 
very often one is satisfied with a “near optimal” 
solution, one that is close enough to being optimal to 
be useful, to a multiobjective optimization problem. 

Ill. MULTIOBJECTIVE OPTIMIZATION WITH 
GENETIC ALGORITHMS 

A single-objective optimization problem is 
concerned with optimizing a single objective such 
as minimizing cost or maximizing profit. However, 
in many real-world applications, it is important that 
optimization techniques be capable of handling 
multiple noncommensurable objectives. In this 
section, we provide the basics of multiple objective 
optimization and discuss how a GA might be suitable 
for such problems. 

A. M u  ltiobjective Optimization 

problem is of the form 
A multiple objective constrained optimization 

max[f;:(x) = z;], i = 1, .. . , k ,  such that x E S 

B. Genetic Algorithm for Multiobjective Optimization 

To show that a point is inefficient, one has to 
simply find another point in the feasible region whose 
criterion vector dominates that of the former. On the 
other hand, to show that a point is efficient or Pareto 
optimal requires an exhaustive test. It must be shown 
that none of the criterion vectors of other points in 
the feasible region dominates the criterion vector of 
the point in question. Recall that GAS work with a 
population of candidate solutions instead of a single 
solution. Thus, in the context of multiple objective 
optimization using GAS, the goal of the optimization 
is to identify an efficient schema. Since a single schema 
matches several individuals (i.e., points) in the genetic 
population belonging to the feasible region (refer 
to the discussions in Section I1 A), one associates a 
set of fitness (i.e., criterion) vectors, each of which 
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corresponds to an individual, to a schema. Let Z ( H )  
denote the set of fitness vectors corresponding to the 
schema H .  

DEFINITION. 
Pareto-optimal if and only if (iff) there does not exist 
another schema z such that Z ( z ) p  > Z ( H ) ,  Z ( H )  # 

A schema H in S is eflicient or 

Z ( H ) .  
Consequently, Z ( H )  is the Pareto-optimal set if 

H is an efficient schema. According to (I), among all 
schemata of the same order and defining length, the 
most preferred schema is one whose average fitness is 
the highest. Now, the average fitness of a schema H is 
the average of the fitness values of the vector elements 
of Z ( H ) .  Since the average fitness is maximum for a 
Pareto-optimal set in any given generation, the genetic 
evolution is biased towards an efficient schema. This 
property of a GA makes it ideal for multiobjective 
optimization problems. 

The use of GAS in multiobjective optimization 
problems has been limited [20, 211. In Schaffer [20], 
vector evaluated genetic algorithm (VEGA) creates 
equally sized subpopulations for selection along each 
of the criteria components in the fitness vector. The 
selection process is carried out independently for each 
criterion; however, reproduction and crossover are 
performed across subpopulation boundaries. Schaffer 
and Grefenstette [21] applied the VEGA to multi-class 
pattern discrimination problems which could not be 
solved by the single-objective GA. The problem with 
this latter mode of GA was that knowledge structures 
containing complementary knowledge were forced to 
compete by the GA using a scalar fitness function. In 
this work, the VEGA is used as a learning component 
to identify the knowledge structure that contains the 
most promising classification rule. The use of fitness 
vectors helps to overcome two major deficiencies of a 
scalar GA: the inability to identify promising rules in 
the early stages of the task when successes are rare, 
and the inability to distinguish the better rules in the 
latter stages when promising rules are abundant. 

IV. ADAPTIVE SEGMENTATION ALGORITHM 

Adaptive image segmentation requires the ability 
to modify control parameters in order to respond to 
changes that occur in the image as a result of varying 
environmental conditions. The block diagram of our 
approach to adaptive image segmentation is shown 
in Fig. 2. After acquiring an input image, the system 
analyzes the image characteristics and passes this 
information, in conjunction with the observed external 
variables, to the machine learning component (GA or 
GA-HC hybrid). Using this data, the machine learning 
system selects an appropriate parameter combination, 
which is passed to the image segmentation process. 
After the image has been segmented, the results are 
evaluated and an appropriate reward is generated and 
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Fig. 2. Block diagram of adaptive image segmentation system for 
multiobjective optimization. 

passed back to the learning subsystem. This process 
continues until a segmentation result of acceptable 
quality is produced. The details of each component 
in this procedure are described in the following 
subsections. 

A. Image Characteristics 

The inputs to the adaptive image segmentation 
system are color images of an arbitrary scene. These 
images must be analyzed so that a set of features can 
be extracted to aid in the parameter selection process 
performed by the machine learning component. A set 
of characteristics of an image is obtaincd by computing 
specific properties of the digital image itself as well as 
by observing the environmental conditions in which 
the image was acquired. Each type of information 
encapsulates knowledge that can be used to determine 
a set of appropriate starting points for the parameter 
adaptation process. 

Corresponding to each input image, the system 
computes twelve statistics for each oi the red, green, 
and blue components of the image. These statistics 
are based on the first-order image properties and 
histogram properties. They include mean, variance, 
skewness, kurtosis, energy, entropy, x intensity 
centroid, y intensity centroid, maximum peak height, 
maximum peak location, interval set score, and interval 
set size. The last two features measure histogram 
properties used directly by the Phoenix [17, 231 
segmentation algorithm and provide useful image 
similarity information. Since we use a blacwwhite 
version of the image to compute edge information 
and object contrast during the evaluation process, we 
also compute the twelve features for the Y (luminance 
component) image as well. Combining the image 
characteristic data from these four components yields 
a list of 48 elements. External variables such as the 
time of day, time of year, cloud cover, temperature, 
humidity, and other environmental factors such 
as the presence of rain, snow, haze, fog, etc. can 
also be used to characterize an input image. In our 
approach, two external variables, time of day and 
weather conditions, are used to characterize the 
image. These factors specify the conditions under 
which the image was acquired and provide useful 
information in representing the overall characteristics 
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of the input image. The variations in these image 
characteristics affect the quality of the image, which 
in turn necessitates changes in the control parameters 
of the segmentation algorithm. The external variables 
are represented symbolically in the list structure (e.g., 
time = 9 am, 10 am, etc. and weather conditions = 
sunny, cloudy, hazy, etc). The distances between these 
variable values corresponding to two different images 
are computed symbolically when measuring image 
similarity. Addition of the two external variables to 
the list of image characteristics results in a 50 element 
list for the outdoor experiments. 

B. Machine Learning Subsystem 

Once the image statistics and external variables 
have been obtained, the machine learning subsystem 
uses this information to select an initial set of 
segmentation algorithm parameters. A database of 
knowledge structures is used to represent the image 
characteristics and the associated segmentation 
parameters. Fig. 3 shows an example of a knowledge 
structure. The knowledge structure stores the 
current fitness of the parameter settings, the image 
statistics and external variables of the image, and 
the segmentation parameter set used to process 
images with these characteristics. The image statistics 
and external variables form the condition portion 
of the knowledge structure, C1 through CI+J ,  
while the segmentation parameters indicate the 
actions, AI through A N ,  of the knowledge structure. 
For the pure-GA approach, the fitness or the 
segmentation quality W is vector valued in local 
and global quality measures each of which ranges 
in value from 0.0 to 1.0. However, the fitness is 
scalar for the hybrid algorithm. In our experiments, 
the global quality measure is the weighted sum of 
edge-border coincidence and boundary consistency 
with each measure having equal weight. Similarly, 
the local quality measure is the weighted sum of pixel 
classification, object overlap and object contrast with 
each measure having the same weight. The evaluation 
measures are discussed in Section IV D. Only the 
fitness value(s) and the segmentation parameters 
of a knowledge structure are subject to genetic 
adaptation; the conditions remain fixed for the life 

of the knowledge structure. We have adopted two 
approaches for the adaptation process. The first one 
is based on pure genetics, while the second approach 
is a hybrid of genetics and HC. These are now 
described. 

image statistics and external variables, the genetic 
learning system selects a small set (short-term 
population) of plausible parameter combinations from 
the current collection of parameter sets (long-term 
population). The long-term population represents 
the accumulated segmentation experience for all 
images that the system has processed, whereas 
the short-term population contains the set of 
segmentation parameters processed by the GA 
during the optimization for the current image. If the 
fitness values are not acceptable, the individuals are 
recombined and the process repeats. The generation 
cycle (segmentation, evaluation, recombination) 
continues until the stopping criterion is fulfilled. 
Each control parameter set in the final short-term 
population is then passed to the Phoenix algorithm. 
Fig. 2 schematically describes the adaptive image 
segmentation system based on multiobjective 
optimization of the segmentation quality measures. A 
description of the multiobjective optimization approach 
for image segmentation using a pure GA is given 
below. 

1. Compute the image statistics. 
2. Generate an initial population. 
3. 
4. 
5. 
6. 
6a. 

6b. 

6c. 
6d. 
6e. 

7. 

1) Genetic Algorithm-Based Search: Using the 

Segment the image using initial parameters. 
Compute the global and local quality measures. 
Examine nondominancy of each individual. 
WHILE not (stopping conditions) DO 

select subgroups of individuals using each 
dimension of the quality measures 
generate new population using the 
crossover and mutation operators 
segment the image using new parameters 
compute the global and local quality measures 
examine nondominancy of each individual 

END 
Update the knowledge base using the new 
knowledge structures. 

The process of selecting the short-term population 
in each generation is carried out for each dimension 
(i.e., global and local) of the segmentation quality 
vector and the number of individuals selected for 
each dimension is equal to the short-term population 
size divided by the vector size. The generation of 
a new population consists of the following steps: 
1) select subgroups of individuals using each dimension 
of the quality measure in turn; 2) shuffle all the 
selected individuals; and 3 )  combine the individuals 
using crossover and mutation operators. This simple 
procedure ensures that any segmentation parameter 
which has above average performance on any quality 
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measure is likely to survive and it gives appropriate 
selection preference to parameters that are above 
average on more than one quality measure. 

has been applied, the nondominancy of each 
segmentation parameter is examined by comparing it 
with all other parameters in a population. It should 
be noted that this nondominancy or “dominate” test 
is strictly local. Pareto’s concept of nondominancy 
implies comparison of a point to all other points in 
the search space, but our “dominate” test is limited 
to the current population. While a locally dominated 
point is also globally dominated, the converse is not 
necessarily true. A segmentation parameter which is 
nondominated in one generation may be dominated by 
a parameter which may emerge in a later generation. 
The “dominate” test is still useful because the set 
of nondominated parameters in each generation 
represents the current best guess of the Pareto-optimal 
set that will be improved in the future generations. 

The stopping criteria for the multiobjective 
optimization system consist of two conditions. First, 
the process terminates if an utopian parameter 
set, i.e., the one for which both local and global 
quality measures are above a predefined threshold of 
acceptance, is located. The thresholds for acceptable 
segmentation is 90% of the best segmentation. 
This criterion is useful only when the best for each 
segmentation quality surface is known a priori. Second, 
the process terminates if both the average local quality 
and the average global quality of the populations 
decrease for three consecutive generations or fail to 
improve for five consecutive generations. If either 
of these conditions is met, the segmentation of the 
current image is stopped and the nondominated 
parameter sets are represented as the current best 
estimates of the Pareto-optimal set. 

During the training phase, when there is no 
a priori knowledge available, the initial or seed 
population is created randomly. The objective of 
the training phase is to measure the optimizing 
parameters of the GA such as the convergence rate 
and the termination criterion. The knowledge base 
for the testing phase is created by collecting the final 
population corresponding to each training image to 
form the long-term population. During the testing 
phase, the seed population is created by selecting 
an initial set of segmentation parameters from the 
long-term population using the characteristics of the 
test images. Testing is carried out both sequentially and 
in parallel. In sequential testing experiments, the final 
population corresponding to each processed image 
is added to the long-term population to be used by 
the subsequent test images, unlike in parallel testing 
experiments where the results are not put back in the 
long-term population. 

2) Hybrid Search Combining Genetic Algorithm 
and Hill Climbing: 

After the image segmentation evaluation procedure 

The hybrid search scheme is 

Input , , Image 

Fig. 4. Block diagram of adaptive image segmentation system 
using hybrid search scheme. 

implemented in this research by switching control 
between the GA and the HC process according to 
simple transition rules. The block diagram of the 
adaptive image segmentation system using the hybrid 
optimization scheme is shown in Fig. 4. The image 
segmentation and evaluation components of Fig. 2 are 
grouped in one box in Fig. 4. According to these rules, 
the switch of control from the GA mode to the HC 
mode takes place when the GA finds a new maximum 
point and passes it to the hill climber as the starting 
point. Consequently, the hill climber passes the control 
over to the GA when it reaches a local maximum, a 
point that is better than all of its adjacent points. The 
local maximum point replaces the maximum point in 
the current population that has been the starting point 
for the hill climber, and the GA proceeds with the 
updated population. A description of hybrid algorithm 
is now given. 

1. Compute the image statistics. 
2. Generate an initial population. 
3. 
4. 
5. 

5HCa. 

5HCb. 

5HCc. 
SHCd. 

5GAa. 

5GAb. 

Segment the image using initial parameters. 
Compute the segmentation quality measures. 
WHILE not (stopping conditions) DO 

IF  (new maximum found) /* Hill climbing */ 
generate all points (i.e., parameters) 
adjacent to the current point 
segment the image using adjacent 
parameters 
compute the segmentation quality measures 
climb to new maximum point if it exists 

ELSE /* Genetic algorithm */ 
select individuals using the reproduction 
operator 
generate new population using the crossover 
and mutation operators 
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5GAc. 
5GAd. 

6. 

segment the image using new parameters 
compute the segmentation quality measures 

END 
Update the knowledge base using the new 
knowledge structures. 

The search through a space of parameter values 
using HC consists of the following steps [l]. 1) Select 
a starting point. 2) B k e  a step in each of the fixed set 
of directions. 3) Move to the best alternative found. 
4) Repeat until a point is reached that is higher than 
all of its adjacent points. An algorithmic description of 
the HC process is as follows. 

la. 
lb. 
2a. 
2b. 

3. 

3a. 

Select a point x, at random. 
Evaluate the criterion function, i.e., obtain V(x, ) .  
Identify points XI,. . . ,x, adjacent to x,. 
Evaluate the criterion function, i.e., obtain 

Let V(x, )  be the maximum of V ( x i )  for i = 
1,. . . ,n. 
If V ( x m )  > V(xc)  then 

v(xl),...,v(~"). 

set x, = x,, V(x , )  = V(x , )  
goto Step 2. 

3b. Otherwise, stop. 

In the above, a set of points that are "adjacent" to 
a certain point can be defined in two ways. First, it can 
denote the set of points that are a Euclidean distance 
apart from the given point. Thus, the adjacent points 
are located in the neighborhood of the given point. 
Second, adjacent points can denote the set of points 
that are unit Hamming distance apart from the given 
point. Each point in this set differs by only one bit 
value from the given point in binary representation 
of points. It defines the set of points with varying 
step size from the given point. The set of Hamming 
adjacent points was used in this research. Hamming 
adjacent points have an advantage over Euclidean 
adjacent points in our implementation because all 
the segmentation parameter values are represented as 
binary strings when using the GA. The set of Hamming 
adjacent points also represents the set of points which 
can be generated by a genetic mutation operator from 
the given point. 

A conventional HC approach, as described above, 
finds the largest V(x, )  from V(x; ) ,  i = 1, ..., n, and 
the search moves to its corresponding point, x,. For 
a space of n adjacent points, it rcquires n function 
evaluations to make each move. To reduce the cost 
of evaluating all the adjacent points before making 
each move, the hybrid approach is designed to try 
alternatives only until an uphill move is found. The 
first uphill move is undertaken without checking 
whether there are other (higher) possible moves. After 
the HC process has examined all the adjacent points 
by flipping each bit in the binary representation of the 
current point, in turn, without finding an uphill move, 
the current point is taken as a local maximum and the 

process passes the control to the genetic algorithm. 
The algorithmic description of the HC process used in 
the hybrid search scheme is as follows. 

1. Select a starting point x, with fitness value V(x , )  
from the genetic population. 

2. Set i = 0. 
3. Set j = i. 
4a. Generate an adjacent point x ,  by flipping the ith 

bit in x,. 
4b. Obtain V(x, ) .  Set i = (i + 1)modn. 
5. If V ( x , )  > V(x , )  then 

set x, = x, 
goto Step 3. 

Else if i < j then 
goto Step 4 

Otherwise, pass the control to the GA. 

The GA employed in the hybrid approach is the 
same as the one used in the pure genetics approach. 
The termination criteria for the hybrid search 
process consist of three conditions. First, the process 
terminates when either the GA or the hill climber finds 
a parameter set with a segmentation quality equal to 
or higher than a predefined threshold. The threshold 
(90%) is chosen to be the same as in the pure genetics 
case. Second, the GA terminates if the average fitness 
value of the short-term population continuously 
decreased for three consecutive generations or failed 
to improve for five consecutive generations. Third, the 
GA terminates after 50 generations. This condition 
is included only to ensure the termination of the 
algorithm. If any one of these three conditions is met, 
the processing of the current image is terminated and 
the long-term population is updated using the high 
quality individuals in the short-term population. 

C. Image Segmentation 

The image segmentation component is the Phoenix 
algorithm [17, 19, 231 which has been extensively 
tested on color imagery and has been assimilated 
into the DARPNSRI Image Understanding Testbed 
[17]. The Phoeaix algorithm is a recursive region 
splitting technique. An input image typically has red, 
green, and blue image planes, although monochrome 
imagcs, texture planes, and other pixel-oriented data 
may also be used. Each of the data planes is called 
a feature or feature plane. The algorithm recursively 
splits nonuniform regions in the image into smaller 
subregions on the basis of a peawvalley analysis of 
the histograms of the red, green, and blue image 
components simultaneously. Segmentation begins with 
the entire image, considered to be a single region, 
based on histogram and spatial analyses. If the initial 
segmentation fails, the program terminates; otherwise, 
the program fetches each of the new regions in turn 
and attempts to segment them. This process terminates 
when the recursive segmentation reaches a predefined 
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depth, or when all the regions have been segmented 
as finely as various user-specified parameters would 
permit, 

a histogram for each feature plane, analyzes it and 
selects thresholds or histogram cutpoints (a set of 
thresholds is called an interval set) which are likely 
to isolate significant homogeneous regions in the 
image. Initially, the histogram is smoothed with an 
unweighted window average, where the width of the 
window is specified by the hsmoofh threshold. It is 
then broken into intervals such that each begins with a 
valley, contains a peak, and ends on the next valley. (A 
valley is considered as the right and left “shoulders” of 
its two surrounding intervals.) An interval is retained 
if the ratio of the peak height to the height of its 
higher shoulder, expressed in percentage, is greater 
than or equal to the m u m i n  threshold. There are 
additional tests to decide whether an interval should be 
retained or not; however, these are not discussed due 
to space limitations. When an interval is eliminated, 
it is merged with the neighbor sharing the higher of 
its two shoulders. The process of merging intervals 
with low peak-to-shoulder ratio is continued until 
the number of intervals reach a prespecified limit. A 
score is also computed for each interval in the set. The 
interval set score is the maximum of all the interval 
scores. 

analysis, selects the interval sets with highest 
scores (one set per feature plane), thresholds the 
corresponding feature planes and extracts connected 
components for spatial evaluation. The histogram 
cutpoints are now applied to the feature plane as 
intensity thresholds and connected components 
are extracted. Patches smaller than noise pixels are 
considered to be “noise” regions. After each feature 
has been evaluated, the one producing the least total 
noise area is accepted as the segmentation feature, 
provided that the total noise area is less than certain 
percentage of the total region area. If no suitable 
feature is found, the original region is declared 
terminal. Otherwise the valid patches, merged with 
the noise patches, are converted to new regions and 
added to the segmentation record. In either case, a 
new segmentation pass is scheduled next. 

Phoenix: contains seventeen different control 
parameters [17], fourteen of which are used to control 
the thresholds and termination conditions of the 
algorithm. There are id3 conceivable parameter 
combinations using these fourteen values. Of the 
fourteen values, we have selected two of the most 
critical parameters that affect the overall results of 
the segmentation process: maxmin and hsmoofh. From 
an analysis of the Phoenix algorithm, we find that 
incorrect values in the two main parameters lead to 
results in which, at one extreme, the desired object is 
not extracted from the background, and at the other 

In the histogram analysis phase, Phoenix: computes 

The spatial analysis phase, following the histogram 

extreme, the object is broken up into many small 
regions that have little significance for higher level 
processes. By measuring segmentation performance 
using appropriate quality criteria, the genetic process 
attempts to identify a parameter set that yields results 
between these two extremes. 

D. Segmentation Evaluation 

After the image segmentation process has been 
completed by the Phoenix algorithm, the overall quality 
of the segmented image must be measured. There are 
a large number of segmentation quality measures that 
have been suggested in the literature [4], although none 
has achieved widespread acceptance as a universal 
measure of segmentation quality. In order to overcome 
the drawbacks of using only a single quality measure, 
we have incorporated an evaluation technique that 
uses five different quality measures described below to 
determine the overall fitness for a particular parameter 
set. In the following, boundary pixels refer to the pixels 
along the borders of the segmented regions, while 
the edges obtained after applying an edge operator 
are called edge pixels. The five segmentation quality 
measures are as follows. 

1) Edge-Border Coincidence: Measures the 
overlap of the region borders in the segmented image 
with the edges found in the original image using an 
edge operator (Sobel operator). Let E be the set of . 
unthinned edge pixels and let S be the set of boundary 
pixels. Thus, 

E = { P l , P 2 ,  ...,P E }  

= { ( X ,  1,  Y ,  11, ( X P 2 ,  Y p 2 ) r . .  . > ( X p E ,  Y p E  11 

= ~(Xql,Y,I>,(XqZ,YqZ),. . . > ( X q S , Y q S ) }  

s = {qllqz,...>qSl 

edge-border coincidence 

E n S  = { ( x k , y k ) ,  k = 1 ,..., m where ( x k , y k )  E E and S } .  

Here, n ( A )  denotes the number of elements in set A.  
Similar to edge-border 

coincidence, except that region borders which do 
not exactly overlap edges can be matched with each 
other. In addition, region borders which do not match 
with any edges are used to penalize the segmentation 
quality. The Roberts cdge operator is used to obtain 
the required edge (unthinned) information. For each 
pixel in thc boundary pixel set S ,  a neighboring pixel in 
the edge pixel set E ,  that is within a distance of d,,,, 
is sought. A reward for locating a neighbor of the ith 
boundary pixel is computcd using 

2)  Boundary Consistency: 

dmax - di  
dmax 

Ri = , where d,,, = 10, 
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and d; = the distance to the nearest edge pixel. Thus, 
if the boundary and edge pixels had overlapped, 
R; = (10 - 0)/10 = 1. Pixels that do not directly overlap 
contribute a reward value that is inverserly related to 
their distance from each other. As matching pairs of 
pixels are identified, they are removed from the region 
boundary and edge pixel sets (i.e., from S and E).  The 
total reward for all matching pixel pairs is obtained 
using 

RTCYIAL = Ri. 
t 

Once all neighboring pixel pairs have been removed 
from E and S, the remaining (i.e., nonoverlapping and 
nonneighboring) pixels correspond to the difference 
between the two images. These pixels are used to 
compute a penalty as follows 

n(al1 remaining pixels in E and S) 
2 P =  

Finally, since the value of boundary discrepancy must 
be positive, we define an intermediate value M as 
M = (RTOTAL - P)/n(E). 

Then, boundary consistency = M ,  if M 2 0, and 
zero otherwise. 

3) Pixel Classification: This measure is based on 
the number of object pixels classified as background 
pixels and the number of background pixels classified 
as object pixels. Let A be the set of object pixels in the 
groundtruth image and B be the set of object pixels in 
the segmented image. Formally, we have 

A = {Pl,P2,...9PA) 

= { (xpl ,ypl), (xp2,yp2), ... ,(xpA,YpA)) 
B = {qlr42,--.,4B) 

{ (xql,yql), (xq2,yq2), ' " 7  (xqB,yqB)). 

Since pixel classification must be positive, we define 
the intermediate value N as follows 

1 -  (n(A) - n(A n B ) )  + (n(B) - n ( A  n B ) )  
n(A) 

N = l -  

where A f l  B = { (xk,yk), k = 1,. . . , m where (Xk,Yk) E 
A and B } .  Using the value of N ,  pixel classification 
can then be computed as 

pixel classification = N ,  if N 2 0, 

and zero otherwise. 
Measures the area of 

intersection between the object region in the 
groundtruth image and the segmented image. Once 
again, let A denote the set of object pixels in the 
groundtruth image and B denote the set of object 
pixels in the segmented image. Then, object overlap 
can be computed as 

4) Object Overlap: 

n(A n B )  
object overlap = 

44 

where A n  B = { ( x k , y k ) ,  k = 1,. . . ,m where ( x k , y k )  E 
A and B}.  

between the object and the background in the 
segmented image relative to the object contrast in the 
groundtruth image. Let A and B be the sets of object 
pixels in the groundtruth and the segmented images, 
respectively. In addition, we define a bounding box 
( X  and Y )  for each object region in these images. 
These boxes are obtained by enlarging the size of the 
minimum bounding rectangle for each object ( A  and 
B )  by 5 pixels on each side. The pixels in regions X 
and Y include all pixels inside these enlarged boxes 
with the exception of the pixels inside the A and B 
object regions. 

(C:;PZ(j))/Rmax, for each of the four regions A, B, 
X ,  and Y ,  where I ( j )  is the intensity of the j th  pixel 
in some region R, and R,,, is the total number of 
pixels in region R. The contrast of the object in the 
groundtruth image, CGT, and the contrast of the object 
in the segmented image C ~ I  can be computed using 

5 )  Object Contrast: Measures the contrast 

We compute the average intensity, ZR = 

The object contrast quality measure is then computed 
as 

Csr 
CG T 

object contrast =-, if CGT 2 Csr or 

The maximum and minimum values for each of 
the five segmentation quality measures are 1.0 and 
0.0, respectively. The first two quality measures, i.e., 
edge-border coincidence and boundary consistency, are 
global measures since they evaluate the segmentation 
quality of the whole image with respect to edge 
information. Conversely, the last three quality 
measures are local measures since they only evaluate 
the segmentation quality for the object regions of 
interest in the image. When an object is broken up into 
smaller parts during the segmentation process, only the 
largest region which overlaps the actual object in the 
image is used in computing the local quality measures. 

The three local measures require the availability 
of groundtruth information in order to correctly 
evaluate the segmentation quality. Since groundtruth 
data may not always be available, the adaptive 
segmentation system is designed to use three separate 
methods of evaluating segmentation quality. First, 
segmentation quality can be measured using global 
evaluation method alone. Second, if groundtruth data 
is available and we are only interested in correctly 
segmenting the object regions in the image, then 
the local evaluation method can be used alone. 
Finally, if we desire good object regions as well as 
high quality overall segmentation results, then the 
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Fig. 5. (a) Sample frames of outdoor image sequence. 

global and local quality measures together can be 
used to obtain a scalar-valued or a vector-valued 
segmentation quality measure that maximizes overall 
performance of the system. The maximization of the 

vector-valued segmentation quality measure is in 
effect a multiobjective optimization problem where 
the global and the local measures represent the 
“noncommensurable” criterion functions. 

BHANU ET AL.: ADAPTIVE IMAGE SEGMENTATION USING GENETIC AND HYBRID SEARCH METHODS 1279 



:oo 000 

b6 6 6 0  

11 1333 

: o o  0 0 )  

66 6667 

11 3333 

: 30000 

100 001 

13 3333 

(f ) 

Fig. 5. (b)-(f) Segmentation quality measures for frame 1. (b) Edge-border coincidence. (c) Boundary consistenq. (d) Pixel classification. 
(ej Object overlap. (f j  Object contrast. 

V. EXPERIMENTAL RESULTS The original images are digitized at 480 x 480 pixels 
in size and are then subsampled (average of 4 by 
4 pixel neighborhood) to produce 120 by 120 pixel 
images for the segmentation experiments. Fig. 5(a) 

A database of 20 outdoor images of a static scene, 
collected over a 5 h period, is used by the system. 
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Fig. 5 .  (g>-(i) Segmentation quality measures for frame 1. (9) Global. (h) Local. (i) Combined. 

shows frames 1, 7, 12, 18, 19, 20 of the database. 
The car in the image is tbe object of interest for the 
pixel classification, object overlap, and object contrast 
segmentation quality measures. The groundtruth image 
for the car is obtained by manual segmentation of 
frame 1 of the image sequence. The segmentation 
quality surfaces, both global and local, for each frame 
are exhaustively defined for preselected ranges of 
maxmin and hsmooth parameters of the Phoenix 
algorithm. Default values are used for the remaining 
parameters. Figs. 5(b) to 5(f) show the segmentation 
quality surfaces for edge-border coincidence, boundary 
consistency, pixel classification, object overlap, and 
object contrast for the frame 1 shown in Fig. 5(a). Figs. 
5(g), 5(h) and 5(i) show global, local, and combined 
quality surfaces for frame 1. The combined quality 
surface for frame 1 is a combination of equally 
weightcd five quality measures shown in Figs. 5(b) 
to 5(f). 

The outdoor image sequence is separated into 
two halves, 10 images for training and 10 images 
for testing. To ensure that the training and testing 

imagery are representative of the entire outdoor image 
sequence, the odd-numbered images (1,3,. . . ,19) are 
selected as the training data, while the even-numbered 
images (2,4,. . . ,20) are used for testing. Note that 
these images exhibit diversity in the environmental 
conditions which varied from bright sun to overcast 
sky. There are significant variations from image to 
image due to the changing position and intensity of the 
sun. This movement creates varying object highlights, 
moving shadows, and many subtle contrast changes. 
Colors of most objects in the image are subdued. 
The auto-iris mechanism in the color video camera 
(JVC GXF700U) was functioning. Even with the 
auto-iris capability built into the camera, there is still 
a wide variation in image characteristics across the 
image sequence. This variation requires the use of 
an adaptive segmentation approach to compensate 
for these changes. This type of image data simulates 
a photointerpretation scenario in which the camera 
position is fixed and the image undergoes significant 
change over time. 

BHANU ET AL.: ADAPTIVE IMAGE SEGMENTATION USING GENETIC AND HYBRID SEARCH METHODS 1281 



Fig. 6. (a) and (b) Color images for outdoor experiments (frames 3 and 4). Frames have been selected as representative frames of 
outdoor sequence for demonstrating results. (c)-(f) Global and local segmentation quality surfaces for frames 3 and 4. (c) Frame 3 global 

quality. (d) Frame 3 local quality. (e) Frame 4 global quality. (f) Frame 4 local quality. 

We have selected frames 3 and 4 shown in global and local quality surfaces of each image in the 
database. 

A. Genetics.Based ~ ~ ~ ~ ~ ~ - ~ ~ l ~ i ~ b , ~ ~ ~ i ~ ~  

Figs. 6(a) and 6(b) as the representative frames of the 
outdoor imagery for demonstrating results in this work. 
The global and local quality surfaces for these frames 
are shown in Figs. 5(c) to 5(f). The genetic component 
uses a long-term population size of 100 individuals, 
a short-term population size of 10, a crossover rate 
of 0.8, and a mutation rate of 0.01. The stopping 
criteria is 90% of the global and local maxima of the 

Optimization 

Each training image is processcd 100 times, 
each with a diffcrcnt (randomly sclcctcd) sccd 
population. Framc 3 is sclcctcd to describe the 
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fig. 7. Search point locations visited at each generation for frame 3. (a) Generation 1 global quality. (b) Generation 1 local quality. 
(c) Generation 2 global quality. (d) Generation 2 local quality. (e) Generation 3 global quality. (f) Generation 3 local quality. 

representative experimental results of training during 
the multiobjective optimization. Fig. 7 illustrates the 
genetic search process at different generations using 

frame 3. The individuals of the short-term population 
are indicated on the quality plane in Fig. 8. The 
upper right corner of the plane represents the utopian 
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each generation for frame 3 of outdoor image database. Dark 
squares represent locally nondominated points at each generation 

Global and local segmentation quality of each individual at 
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Fig. 9. Maximum and average fitness values of global and local 

quality measures at each generation for representative frame. 
Maximum fitness is indicated by top (dark-squared) line and 
average fitness is indicated by bottom line in these graphs. 

(a) Global performance. (b) Local performance. 

point which has the maximum fitness values in both 
dimensions (i.e., global and local) of the segmentation 
quality measure. The squares in these plots represent 
the locally nondominated points at each generation. 
The plotted planes have less than 10 points (the 
current population size), because some individuals 
in the population have the same fitness values and 
are plotted at the same location. As an example, 
the four points located at the bottom plateau of the 
surfaces (i.e., global and local segmentation quality of 
0.0) in Figs. 7(a)-@) are plotted at the lower-hand 
corner of the graph in Fig. 8(a). Fig. 8(c) displays 
the utopian point at the upper right corner, which 
caused the termination of the genetic search process 
after third generation. In this figure, segmentation 
performance over 90% is denoted as 100%. Fig. 9 
shows the maximum and average fitness values of the 
global and local quality measures corresponding to the 
generations referred to in Fig. 7. 

Fig. 10 displays the segmentation results for frame 
3. These results were obtained from the individuals in 
the short-term population with maximum global fitness 

Fig. 10. Segmented images corresponding to frame 3. (a) Initial 
global results. (b) Final global results. (c) Initial local results. 

(d) Final local results. 

(i.e., the best global segmentation quality) or maximum 
local fitness (i.e., the best local segmentation quality). 
An increase in overall segmentation quality between 
the initial and final results can be seen in these figures. 
The global segmentation result, which optimized the 
segmentation quality measure of the whole image, 
shows more precise boundary representations for 
all objects including the car. The local segmentation 
result, which optimized the segmentation quality 
measure of the object regions of interest (i.e., the 
car in this case), indicates that the portion of the car 
extracted from the image becomes larger in the final 
results. Notice that the bottom of the car is extracted 
as a separate region from the background in the final 
result, although this region is still not combined with 
the top portion of the car to form a single region. The 
performance of the multiobjective training experiments 
is summarized in Fig. 11. According to these plots, 
the maximum number of generations has been 10, 
the minimum number is 2, and the average number 
is 5.6. The small number of generations corresponding 
to frame 1 and frame 3 are caused by utopian points 
which perform well in both the global and the local 
measures. 

from the long-term population obtained at the 
end of the training experiments. Since the fitness 
values of the testing seed population are usually 
high, the GA converged to the Pareto-optimal set 
much faster during the testing experiments than 

During testing, the seed population is selected 
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Summary of performance for multiobjective optimization Fig. 11. 
training experiments. Starting with set of random seed points on 
quality surfaces, adaptive image segmentation system optiniized 
global and local quality measures of each image in number of 

generations indicated in graph. 

in the training experiments. Fig. 12 shows the 
genetic search process at different generations for 
the test image of frame 4. The global and local 
quality measures of the short-term population in 
these generations are shown in Fig. 13 and the 
corresponding maximum and average values are 
indicated in Fig. 14. Frame 4 segmentation results 

130 a 0 0  

Ob bhb? 

33 3333 

0 oooon 

using the parameters corresponding to the initial and 
final maximum values of the global and local measures 
are displayed in Fig. 15. The improved quality of 
the initial segmentation results during testing can be 
visually compared with the initial results acquired 
during training (Fig. 10). As with the training results, 
the segmentation quality in each of these images is the 
best possible result available using the Phoenix 
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Fig. 12. Search point locations for frame 4 during testing experiments. (a) Generation 1 global quality. (b) Generation 1 local quality. 
(c) Generation 2 global quality. (d) Generation 2 local quality. 
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Fig. 14. Maximum and average fitness values of global and local 
quality measures at each generation for frame 4. Maximum fitness 

is indicated by top (dark-squared) line and average fitness is 
indicated by bottom line in these graphs. (a) Global performance. 

(b) Local performance. 
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Fig. 15. Segmented images corresponding to frame 4. (a) Initial 
global results. (b) Final global results. (c) Initial local results. 

(d) Final local results. 
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Fig. 16. Performance comparison of training and testing 
experiments for multiobjective optimization. By using experience 

stored in long-term population obtained from training experiments, 
adaptive segmentation system reduced the effort needed to 

optimize segmentation quality measures during testing phase. 

algorithm. Fig. 16 compares the performance of 
the adaptive system during the training and testing 
phases. The average number of generations shows that 
the training results reduce the search efforts during 
testing. Overall, the simultaneous optimization of the 
global and local segmentation quality measures results 
in promising performance for the adaptive system. 
Elsewhere, we have compared the performances of GA 
and random search and have shown the effectiveness 
of the crossover and mutation operations which 
demonstrate that the genetics-based search is useful 
[61. 

B. Hybrid Search-Based Results and Comparison 
with Pure Genetics 

The same outdoor imagery database is used for 
the hybrid algorithm. Also, the training and testing 
sequences are kept unchanged. Recall that the fitness 
is now a scalar, combining the global and local 
segmentation quality measures, for each individual of 
the genetic population. In the training experiments, 
the hybrid search process was invoked with randomly 
selected locations on the combined surface for each 
training image and the convergence rate of the process 
was measured. Also, as in the baseline experiments 
(pure genetics), each training image was processed 
100 times, each with a different collection of random 
starting points. The stopping criteria are discussed in 
Section IV B2. 

To describe the complete training results of the 
hybrid scheme, frame 3 of the outdoor image database 
(Fig. 5(a)j is again selected as the representative 
frame. The progression of the hybrid search process at 
each generation corresponding to frame 3 is illustrated 
in Fig. 17. Each individual in the short-term population 
is plotted on the quality surfaces for the six generations 
that were necessary to optimize the segmentation 
quality. Generations 2 and 6 were processed by the 
hill climber after the GA produced the new maximum 
points in the previous generations. Notice that the 
movement of the maximum point (the rear corner 
point in Fig. 17(f)) between Generations 5 and 6 is 
due to the HC search process. Fig. 18 indicates the 
maximum and average fitness values of the short-term 
population during each generation. It is seen that the 
maximum fitness values increase continuously because 
the best individual in the population is always retained 
from one generation to the next. Average fitness 
values, on the other hand, fluctuate as the individuals 
visit different regions of the surface in search of highly 
fit areas. However, they increase gradually as the 
hybrid search process progresses. 

To provide a visual indication of the performance 
improvements achieved by the adaptive segmentation 
system using the hybrid search scheme, the segmented 
image results are shown for frame 3 in Fig. 19. These 
results are obtained using the individual from the 



100 a00 

b6 6661 

33 3331 

0 O O O D O  

Fig. 17. Search point locations visited at each generation for frame 3 in hybrid experiments. (a) Generation 1. (b) Generation 2. 
(c) Generation 3. (d) Generation 4. ( e )  Generation 5. (f) Generation 6. 
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Fig. 18. Maximum and average fitness values of combined quality 
measures at each generation for frame 3 in hybrid experiments. 

Maximum fitness is indicated by top (dark-squared) line and 
average fitness is indicated by bottom line in these graphs. 
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fig. 19. Segmented images corresponding to frame 3 in hybrid 
experiments. (a) Generation 1. (b) Generation 2. (c) Generation 5 .  

(d) Generation 6. 
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Fig. 20. Summary of performance during training experiments of 
hybrid scheme. Total number of segmentations required by GA and 
HC to optimize segmentation quality of each image are indicated 

in graph. 

short-term population that has the maximum fitness 
(i.e., correspond to the best segmentation quality). 
Each of these segmented images shows a tendency 
to obtain more precise boundary representations for 
each of the background objects as well as the border 
of the car. The performance of the system on the 

. 
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Fig. 21. Performance comparison of hybrid scheme and pure 
genetics training experiments. By combining GA with HC, the 
hybrid scheme reduces average computation effort needed to 

optimize segmentation quality of outdoor imagery. 
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Fig. 22. Performance comparison of hybrid scheme and pure 
genetics training experiments. Hybrid scheme shows no clear-cut 
performance improvement over pure genetic approach because 

training results provide highly fit seed points for testing 
experiments in both schemes. 

training images is illustrated in Fig. 20. It shows the 
total number of segmentations needed to optimize the 
segmentation quality of each image as sum of those 
required by the GA and the HC, individually. The 
maximum number of segmentations for these images 
was 86, the minimum number was 27, and the average 
numbers of segmentations required by the GA, the 
HC and the hybrid processes were 33, 17, and 50, 
respectively. Fig. 21 compares the performance of the 
hybrid scheme experiments with that of the baseline 
experiments. To ensure the fairness of the performance 
comparison, the computational efforts were measured 
by the number of segmentations (i.e., the number 
of points visited on a segmentation quality surface) 
required by the search processes. The hybrid scheme 
results surpassed the baseline results in 8 (out of 10) 
training images when the number of segmentations 
required to optimize the segmentation quality was 
reduced. On the average, an improvement of 15.3% 
in performance was observed with the training images. 

The testing phase of the hybrid scheme experiments 
was also conducted similar to the baseline experiments. 
As in the baseline experiments, it was designed to 
measure the reduction in effort obtained by initializing 
the hybrid search process with nonrandom starting 
points. The long-term population (100 individuals) 
for each testing image was created by collecting the 
final short-term population of all the training images. 
The testing seed population (10 individuals) for each 
image was then selected from its own long-term 
population. Fig. 22 compares the performance of 



the hybrid scheme experiments with that of the 
baseline experiments during testing. The hybrid 
scheme results are no better than the baseline results, 
because the training results supplied the testing seed 
points located in highly fit regions of the search 
space which could hardly be optimized by the HC 
process. In summary, the hybrid search process 
performed well for the training experiments which 
proceed with random starting points. However, it 
could not improve performance over the pure GA 
for the testing experiments which proceeded with the 
highly fit starting points. In general, the hybrid scheme 
performs better than the pure GA for the frames 
which require less computational effort to optimize the 
segmentation quality, i.e., for the frames which have 
simpler segmentation quality surfaces. 

VI. CONCLUSIONS 

This paper has been concerned with an adaptive 
approach to the important low-level vision problem 
of image segmentation. It argued that adaptation is 
an important characteristic of an intelligent system 
and is essential for future computer vision systems 
which must operate in dynamic outdoor environments. 
The adaptive image segmentation system described 
incorporates a feedback loop consisting of a machine 
learning subsystem, an image segmentation algorithm, 
and an evaluation component which determines 
segmentation quality. The machine learning component 
is based on genetic adaptation and uses (separately) a 
pure genetic algorithm and a hybrid of GA and HC. 
When the learning subsystem is based on a pure GA, 
the corresponding evaluation component is based 
on a vector of evaluation criteria. For the hybrid 
case, the system employed a scalar measure which 
is a weighted combination of the different criteria. 
We have presented the detailed experimental results 
for pure genetic and hybrid search methods using a 
representative database of outdoor TV imagery. The 
multiobjective optimization demonstrates the ability 
of the adaptive image segmentation system to provide 
high quality segmentation results in a minimal number 
of generations. The results of the hybrid method 
show the performance improvement over the GA 
alone. Elsewhere we have shown the ability of the 
adaptive image segmentation (with pure GA and scalar 
evaluation measure) that the adaptive segmentation 
system provides high quality (> 95%) segmentation 
results in a minimum number of segmentation cycles. 
It consistently performs better than the default 
parameters or the traditional techniques commonly 
used in image processing and computer vision. Further, 
we have shown that learning from experience can be 
used to improve the performance of the system with 
time [7]. 

The adaptive image segmentation system can 
make use of any segmentation algorithm that can be 
controlled through parameter changes. No extensive 
knowledge pertaining to the selected algorithm is 
required. In addition, one can choose to adapt the 
entire parameter set or just a few of the critical 
parameters, depending on time constraints and the 
desired quality of the final segmentation results. 
Although only color images have been used in this 
work, the adaptive technique itself is applicable to any 
type of imagery whose characteristics can be properly 
represented. This set includes infrared, laser radar, 
millimeter wave, sonar, and gray-scale imagery. The 
adaptive image segmentation system can utilize local, 
global, or combined segmentation quality measures 
to achieve the appropriate segmentation results. If we 
need a highly accurate segmentation of specific object 
regions only, the local quality measures can be used to 
produce this result. Conversely, if we require a good 
segmentation of the entire image, the global quality 
measures allow us to obtain this results. The combined 
quality measures provide intermediate segmentation 
results between these two extremes. However, it may 
be noted that to use any of the segmentation results 
presented in this work for higher level processing such 
as object recognition some form of grouping of the 
labeled region pixels will be necessary. 

The adaptive image segmentation system is only as 
robust as the segmentation algorithm that is employed. 
It cannot cause an algorithm to modify the manner in 
which it performs the segmentation task. It can only 
optimize the manner in which the algorithm converges 
to its best solution for a particular image. However, 
it may be possible to keep multiple segmentation 
algorithms available and let the GA itself dynamically 
select the appropriate algorithm based on image 
characteristics. Further, it is possible to define various 
evaluation criteria which can be automatically selected 
and optimized in a complete vision system. The 
adaptive image segmentation system may soon be 
able to benefit from advances in parallel computing 
and very large scale integration (VLSI) technology. 
These hardware improvements would make it possible 
to achieve high quality image segmentation results at 
near-realtime processing rates. 
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