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Many types of existing vehicles contain an inertial navigation system (INS) that can be
utilized to greatly improve the performance of motion analysis techniques and make
them useful for practical military and civilian applications. This article presents the
results obtained with a maximally passive system of obstacle detection for ground-based
vehicles and rotorcraft. Automatic detection of these obstacles and the necessary guid-
ance and control actions triggered by such detection will facilitate autonomous vehicle
navigation. Our approach to obstacle detection empioys motion analysis of imagery
collected by a passive sensor during vehicle travel to generate range measurements {0
world points within the field of view of the sensor. The approach makes use of INS data
and scene analysis results to improve interest point selection. the matching of the
interest points. and the subsequent motion-based range computations. tracking, and
obstacle detection. In this article. we concentrate on the results obtained using lab and
outdoor imagery. The range measurements that are made by INS integrated motion
analysis are compared to a limited amount of ground truth that is availabie. © 1992 John
Wiley & Sons. Inc.
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1. INTRODUCTION

A variety of active sensor-based techniques for obstacle detection have been
explored to date.'-* These approaches mainly focus on the processing of laser
range (ladar) imagery and millimeter wave (MMW) radar data. In our approach.
we prefer a passive sensor that will enable the vehicle to be covert and there-
fore minimize any possible threat to the vehicle and the pilot. Of equal impor-
tance are the field of view. resolution of the data used for obstacle detection.
and the access time of such data. Both MMW and ladar suffer in one of these
categories.

Passive sensors, such as a TV camera. are also being used to detect obstacles
for ground vehicles.*-” However. state-of-the-art motion analysis techniques
for obstacle detection are not robust and reliable enough for many practical
applications. Many of these techniques require that unrealistic constraints be
placed on the input data to make them work. The largest sources of errors are
unknown sensor motion and incomplete/ambiguous information in the sensed
image data. However, many types of land and air vehicles contain an inertial
navigation system (INS) whose output can be used for applications beyond the
original intent of the system. Within such vehicles, the INS information can be
used to greatly simplify some of the functionalities normaily provided by com-
puter vision, such as obstacle detection, target motion detection, target track-

" ing, etc.

In this article, we describe the use of INS measurements to enhance the
quality and robustness of motion analysis techniques for obstacle detection and
thereby provide vehicles with new functionality and capability. The objective
of the work presented in this article is to present the results of our obstacle
detection approach when applied to sequences of indoor (laboratory) and out-
door imagery for which synchronized INS data exist.

Before entering into the technical discussions of our approach to motion
analysis, we will first provide the reader with a brief description of an INS and
the type of data it generates. An INS includes an inertial reference unit (IRU)
and all necessary hardware for stabilizing and processing the IRU outputs to
derive values for the position and velocity (of whatever platform to which the
INS is attached) in a desired reference frame.? An IRU is defined as an assem-
bly of instruments capable of providing full 3-D measurement of absolute rota-
tion and nongravitational acceleration. The measurements are typically made
relative to a stationary nonrotating coordinate frame, with the use of gyro-
scopes and accelerometers. Initially, gyroscopes were constructed of a spin-
ning mass attached to a gimballed platform whose attitude, relative to the
vehicle, was measurable. Modern gyroscopes consist of inertial instruments
(e.g., ring lasers) mounted to the vehicle’s axes (one per axis). Such systems
are referred to as strapdown systems due to their lack of movement relative to
the vehicle. The modern gyroscope has its output stabilized computationally
(with the aid of computers) instead of mechanically. Regardless of the method
of implementation, the gyroscope provides an absolute measure of the rotation
difference between the vehicle’s coordinate frame and a fixed, geographic,
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reference frame. Such knowledge of the vehicle's artitude is important in pro-
cessing the measurements made by accelerometers (one per vehicle axis).

Accelerometers make measurements of vehicie acceleration along the three
vehicle axes. Hence, to convert the acceleration measurements such that they
are relative to the fixed, reference coordinate frame, the knowledge of the
vehicle’s attitude relative to the reference frame is crucial. for obvious reasons.
With the knowiedge of vehicle acceleration relative to the reference frame,
time integrals of the acceleration measurements are performed to generate
values of vehicle velocity and position. Of particular interest to this article are
the measurements of vehicle velocity, 0. and attitude. (¢, 6, ¢). The exact use
of ¥ and (¢, 0, ¥) will be described in detail later in the article.

In Section 2. we briefly review our approach to motion analysis by describing
the fundamental details of the approach. Section 3 describes the results we
have obtained with our INS integrated motion analysis algorithm. Finally,
Section 4 provides the conclusions.

2. INERTIAL SENSOR INTEGRATED MOTION ANALYSIS

The purpose of this section is to describe the inertial sensor integrated mo-
tion analysis approach we have undertaken. The block diagram of this system
is illustrated in Figure 1. The system uses inertial sensor integrated motion
analysis, scene analysis, and selective applications of active sensors to provide
an obstacle detection capability.*

As shown in Figure 2, the data input to the obstacle detection algorithm
consists of a sequence of digitized video or FLIR frames that are accompanied
by inertial data consisting of rotational and translational velocities. This infor-
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Figure 1. Inertial sensor integrated motion and scene analysis using both passive and
selective applications of active sensors provide robust image analysis useful for obstacle
detection/avoidance by a robotic land vehicle or helicopter.
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Figure 2. Inertial sensor integrated motion analysis technique.

mation, coupled with the temporal sampling interval between frames. is used to
compute the distance vector, d. between each pair of frames and the roll. pitch.
and yaw angles. (¢, 0. ), of each frame. Both d and (¢. 6. ¥ are crucial to the
success of the algorithm, as will be described later.

The blocks shown in Figure 2 define the major steps involved within the
obstacle detection using inertial navigagion data (ODIN) motion analysis algo-
rithm suite. In the subsections that follow, we briefly address the function of
these blocks.

Before starting a detailed discussion of the major steps in the algorithm. let
us first describe the coordinate systems that are used. The digitized imagery
contains pixels addressed by row and column with the origin of the 2-D coordi-
nate system located in the upper left corner of the image. The horizontal axis,
¢, points to the right and the vertical axis, r, is in the downward direction. This
image plane is perpendicular to the x-axis of a 3-D coordinate system and is
located at a distance of the focal length, F, from the origin with the z-axis in the
downward direction. Therefore, the pixels in the image plane can be described
in the 2-D coordinate frame as (c, r) and in the 3-D coordinate frame by the
vector (F, y, z). The geometry described above is graphically illustrated in
Figure 3. With knowledge of the sensor field of view and F, the transformation
between (c, r) and (F, y, 2) is easily computed.

2.1. Distinguishing Features

The features within the imagery (TV or FLIR) that are most prominent and
distinguishing mark the world points to which range measurements will be
made. These prominent world points, known as interest points, are (by defini-
tion) those points that have the highest promise of repeated extraction through-
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N

[ z

Figure 3. The coordinate system geometry of the sensor’s image plane is perpendicu-
lar to the x-axis. located at the distance of the focal length, F, from the origin of the

coordinate system.

out multiple frames. The interest points within the field of view of the monocu-
lar sensor are of fundamental and critical importance to motion analysis
calculations. In the following subsections, the extraction of interest points is
described.

2.1.1. Image Segmentation

Unfortunately, not all regions within a scene can contain reliable interest
points. Hence, we employ scene analysis techniques to ascertain a measure of
goodness for each region prior to interest point selection.® The resulting inter-
est point extraction routine takes as input a segmentation of the original image
and returns n;, 0 < j < N, interest points in each of the N segments. The value
of n; for segment j is proportional to the segment size and other segment
features. More than n; interest points can exist per segment; only the points
with the highest interestingness values are reported. The result of incorporating
scene segmentation results into interest point extraction is that, for a given
scene, the interest points are more uniformly distributed.

The outcome of the two-phase segmentation procedure, initial segmentation
(based upon image texture) and region merging, is the allocation of a number of
interest points to each region. This number is indicated by a percentage of the
total number of interesting points for the whole image that are desired within
each individual region. In assigning the region percentages we use edge infor-
mation and the gray value mean and variance within each region. Regions that
have very high mean are indicative of sky regions in which interest points are
few uniess wires and poles protrude into the sky. For regions of high mean. the
presence of edges is of paramount importance in computing the desired number
of interest points. If the number of edge pixels in sky regions is sufficiently
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high, the region’s gray scale variance and area (in terms of pixels) are used to
compute the region's percentage, i.e.,

region percentage = 100(w

area; variance;
" + w, -
area,gu varianceo

Region percentage is computed similarly for nonsky regions. It is important to
note that the region segmentation is intentionally kept coarse; it would be
counterproductive to reduce region size to the point where regions are so smaill
that each region is homogeneous in gray level. Such homogeneous regions
would be featureless.

Scene segmentation is also used in range point interpolation/surface fitting.
Range to interest points that all lie within one region will be interpolated to-
gether to generate one surface. All of the resulting range surfaces belonging to
the various regions will be joined together at their respective boundaries to
form one continuous surface.

The scene segmentation procedures requires several processing steps that

can be divided into two groups, initial segmentation and region merging, as
described below.

[nitial Segmentation

1. Compute the local mean ‘‘image’’ and the local standard deviation image
of the input image. The local region used to compute mean and standard
deviation is a 7 X 7 window.

2. Compute the texture gradient image of the input image using the mean and
standard deviation images. The texture gradient is the maximum of four
measurements made with the arrays of mean and standard deviation num-
bers: ty, ty, Ly, L.

te = Amj, + Acy t, = Ami + Aoy
ty = Amf” + AO'(:” ty = Am/:, + AG'/:,

The variable m represents local gray level mean, and o represents the
local gray level standard deviation. The use of A indicates a local differ-
ence in the values of m or o. The subscripts on m and o (dr, v, dl, h)
indicate the directions in which the differences were taken (diagonal to the
left, vertical, diagonal to the right, and horizontal, respectiveiy). To com-
pute the differences, the spatial distance between values of m and o is
chosen as the window size used to compute m and o (i.e.. 7 pixels). The
resulting value of texture gradient is the maximum of ¢4, ¢,, t4, and ¢,,.

3. Generate an initial binary segmentation based upon two user-selected
thresholds. All thresholds within the segmentation process are chosen by
empirical means and take the form of percentages of the maximum of their
respective variables. '
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4. Generate a thinned image by shrinking the binary segmentation image so
that only a one-pixel wide skeleton of the segmentation remains.

5. Generate a multi-gray-level segmentation based on the evidences gath-
ered by muitiple (user-specified) thresholds applied to the mean image.

6. Combine the multi-gray-level segmentation with the skeletonized binary
segmentation to create a constrained edge image. '

7. Link the edges in the constrained edge image. The unconnected edge ends
are identified. and for each edge end the closest unconnected end is found
and the two are connected. The resuit is a map of the boundaries of the
regions extracted in this phase of processing.

Region Merging

|. Create a new image by overlaying the region boundary image on the
original image.
2. ldentify ail the bounded regions.

Describe the boundary of each region.

4. Merge all ‘“*small’’ regions with an adjacent region on the basis of the size
of the common border. The small region size is defined empirically (usu-
ally chosen to be greater than 75 pixels).

5. Construct a new edge image to account for the merging process.

6. Compute the gray level mean and variance for each of the resulting re-

gions.
7. Merge the regions based upon their computed features.

I

The result of the initial segmentation and region merging steps is a segmented
image that will be used by the interest point selection algorithm.

2.1.2. Interest Point Selection

We compute a set of distinguishable points by passing an operator. which is a
combination of the Hessian and Laplacian operators,'® over each frame of
imagery. The operator. [, takes the form

I(g) = g.%y — Brex8w

where g is the local gray level “‘function’’ and g, €.g.. is the local second
derivative in the x direction. The interest operator, I, actually computes a
measure of gray level curvature. In computing I(g) for a particular image, the
image is first smoothed by convolution with a small Gaussian kernel. The
derivatives are then computed on the smoothed image by convolution by the

3 x 3 kernels

W
19| =
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This combination of smoothing and small kernel derivatives used in computing
the interest operator has resulted in a more temporally consistent set of interest
points being extracted than any other approach implemented by the authors.
Stated in another way, the benefit of this particular implementation is that an
interest point corresponding to a particular world feature will more consistently
remain on that feature throughout multiple frames. Larger kernels were found
to blur the imagery excessively and result in decreased resolution in interest
point location.

The locations of interest points is determined by first locating all local max-
ima of I(g). At each of the maxima with value greater than some threshold
value. we search for the closest local minimum with a value approximately
equal to the negative of the maximum value. The interest point lies where the
line joining the maximum and minimum crosses {/(g) = 0. At this approximate
point of curvature inflection. an interest point is defined. Note that this point is
not rounded to the location of the nearest pixel: the actual value in (F, v, )
space is recorded. Hence, we have sub-pixel accuracy in the computation of
interest point location. The exact benefit of sub-pixel accuracy in interest point
location has not been evaluated in light of image quantization error and image
signal-to-noise ratio.

The interpolation between local maximum and minimum has the effect of
smoothing the temporal interest point location variations. The temporal varia-
tions occur due to image quantization effects. sensor vibration. and motion
distortion. to name a few. The smoothing enhances our ability to track interest
points through muitiple frames. and it improves the accuracy of the computed
range values. :

Our implementation of the / operator ranks the detected interest points by
the magnitude of their corresponding local maximum. By this ranking. only the
strongest n; interest points within a particular image segment. j, are used to
satisfy that segment's interest point allotment (see Section 2.1.1).

2.2. Point Feature Matching

Given a set of point features (i.e.. interest points) within each image in a
sequence of imagery, and the associated attitude and position at which each
image was obtained, an algorithm has been developed that can robustly match
the point features contained in consecutive frames and can track the matched
features through multiple frames. In the following subsections. a description of
the manner in which point features are processed prior to use by the feature
matcher is provided along with a description of the matching process.

2.2.1. Interest Point Derotation

To aid the process of interest point matching, we must make it seem as
though image plane m + 1 is parallel to image plane m. If this is done. the FOE
and each pair of matched interest points between frames m and m + 1 would
ideally be co-linear should the image planes be superimposed. Inertial data
make this process possible.
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The pixels in the image plane can be described in the sensor’s 3-D coordinate
frame by the vector (F, y. z), where F is the focal length of the sensor. To make

. the image planes parallel. derotation is performed for each vector, (F, y;, g;)

that corresponds to each interest point in frame m + |. The equation for the
derotation transformation and projection (in homogeneous coordinates) is

F F F

vV V;

N s
— =1 =1 =1 — m NED
=P Rrb.,.Rf’delmR'.'/.n—nR9..,-[be..._| =P C:’VED C;n-.-l

Zj Zj L
1 1 1

where (¢, 8. i) are the roll. pitch. and yaw angles, respectively, of the frames m
and m + 1, and where

1 0 0 0 cos9 0 —sinéd O
0 cosed sing O 0 | 0 0
R,h = Rg = .

0 —sing cos¢d O sinf 0 cosé O
0 0 0 1 0 0 0 I

cosy sinyg 0 O 1 0 0O

—-sindy cosy O O 0 1 0 0

R'I» = P =,
0 0 1 0 0O 01 0
0 0 0 1 F' 0 0 0

The matrix P is the perspective projection transformation. All inertial measure-
ments of sensor attitude rate and sensor veiocity are made in a north—east—.
down (NED) coordinate frame.

The matrix P projects a world point onto an image plane and is used to
compute the FOE. FOE = P d, where d = 0At. The matrix Cigp converts
points described in the NED coordinate frame into an equivalent description
within a coordinate frame parallel to the sensor coordinate frame when image
frame m was acquired. Likewise. the matrix Ci=} converts the descriptions of
points in the sensor coordinate frame that corresponds to image frame m + 1
into descriptions in a coordinate frame parallel to the NED frame.

2.2.2. Interest Point Matching

The matching of interest points is performed in two passes. The goal of the
first pass is to identify and store the top three candidate matches for each
interest point in frame n(= m + 1). (F. v, Z.). The second pass looks for
multiple interest points. (F. ¥, , Z,). being matched to a single point in frame m.
Hence. the result of the second pass is a one-ro-one match between the interest
points in the two successive frames. For our application. a one-to-one match of
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interest points is necessary. We acknowledge that the projection of a world
object onto the image plane of a sensor will grow in size as the sensor moves
toward the object. This situation might imply that a one-to-one match does not
make sense because what was one pixel in size in frame m might become two or
more pixels in size in frame n. In this work, we assume that the growth of an
object’s projection, in terms of pixel count, is negligible. This assumption is
based on the fact that our approach is point based. i.e., only one point (of
sufficient interest) in each of two consecutive image frames is all that is re-
quired to fall upon an object’s surface for the range to the object to be com-
puted. The selection of the interest points is independent of object size.

The goal of interest point matching is to identify and store the best match in
frame m for each interest point in frame n. (F, v, , Zn). Several metrics/con-
straints assist us in this task. To determine the candidate matches to (F. v, ,
Zn,), each of the interest points in frame m is examined with the successive use
of four metrics.

The first metric makes certain that candidate matches lie within a cone-
shaped region. with apex at the FOE, bisected by the line joining the FOE and
the interest point in frame n. The second metric constrains the distance be-
tween an interest point and its candidate matches. This is done by imposing
maximum and minimum range constraints upon the resuiting match.

The third metric requires that the interestingness. edge magnitude, and edge
direction of both points of a candidate match are nearly equivalent. Edge
direction is treated differently than the other parameters. We recognize that
when an edge’s normal is perpendicular to the line connecting the edge’s pixels
to the FOE. any interest points on this edge will not be reliably matched and
ranged. This is due to the way interest points travel radially away from the
FOE. The interest points along these special edges are weighted differently
because they are more difficult to track and therefore less reliable.

The fourth metric restricts all candidate matches in frame m to lie closer to
the FOE than the points in frame n(= m + 1) (as physical laws would predict
for stationary objects).

Hence, the first, second, and fourth metrics combine such that for an interest
point in frame m, m;, to be a candidate match to point n;, m; must lie in a region
shaped like a sector of an annulus.

The reasoning behind the maximum and minimum range restriction is that
world objects of range less than R, are not possible considering the sensor
mounting location on the vehicle and its field of regard. Stated another way,
world objects that would lie closer than some R, have been visible for some
time and have been detected and therefore avoided by the vehicle navigator
(machine or human). Likewise, objects at a range greater than R, are not yet
of concern to the vehicle.

2.2.3. Matching and Range Confidence Factors

We further improve range computations (based upon three or more sequen-
tial frames) by predicting and smoothing the range to each interest point that

Roberts ant¢

can be tra
smoothing
a pair of ir
ranges. On
applied an

The ma:

where

The varia
perpendic
matched -
connectin
the norm¢
|6 alist
(see Sects

The rai
ing set of

If (R 7 predt

Else, if (



—1992

world
noves
es not
WO or
of an
ion is
nt (of
is re-
com-

tchin
/con-
N .VII;v
e use

>one-
< and
¢ be-
osing
¢
E\Qge)
that
ixels
| and
1 the
>ntly

2rto
xdict

:rest
gion

that
nsor
vay,
ome
ator

yet

len-

the-
N

Roberts and Bhanu: Motion Analysis for Vehicle Navigation 827

can be tracked through multiple frames. The procedure for prediction and
smoothing of range using multiple frames is to compute. for alil interest points in
a pair of images, the matching confidence, confidence in range, and predicted
ranges. Once the confidences and predicted range are computed. thresholds are
applied and a smoothed range is computed.

The matching confidence of the ith point in frame m is given by

llmi _ [njl ]
m. = —
Mi w,[l max l; — min L,
7" — min d|
+ W [ — L + ‘V}Ié N Ci[

max d{" — min d/

i 1

where

max Imn = max (Imiv llli)! min lmn = m.in (Imh Im')v

t i

wy, wa, w3 = 0and wy + wa + wy = 1

The variable Iy; is the interestingness of the ith point in frame X and d; is the
perpendicular distance between the ith point and the line that passes through its
matched point and the FOE. The unit vector 4 is in the direction of the line
connecting the FOE and the ith point in frame m. The unit vector 4 represents
the normal to the edge on which the ith interest point is located. The purpose of
|6 + d| is to cause the match confidence to fall when 6 and 4 are perpendicular

(see Section 2.2.2). ’
The range confidence., C%;, of the ith point in frame X is given by the follow-
ing set of equations
R?ﬁnal = R?predicled = R?meu.\'ured and C(i)il =1 (1)

— po=l ” :
R?prmlicu'tl - R?ﬁnul - U(.’[OCI[_V,' X time (2)

if (R?predicled = Q) then

R?ﬁnul = R;,predic'lyd = R?meaxured and C’kl =0.5 (3)

Else~ lf (1 —a< R?predicled/R:"meu.\'ured <1+ a) then

Ch: = 3 Cct ‘:Cn—l + l (1 9 R?meaxured —_ R?predi('led >:| (4)
Ri — 5§ Mi Ri 5 - £

' 2 ) ' 2 R:'lmw.\'ured + R?predicled

R?ﬁnal = R?meu.s‘ured + (1 — 'Iizi)(R?prediued - R?mea.\'ured) (5)
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If (R e < 0) then

R} R} preci
n . i measured\ i predicted
ifinal — n n

R i measured + R i predicted

(6)

The variable « is a user-defined parameter that controls the range of the ratio
Ri predicted/Ri meusured +

2.3. Range Calculation and Interpolation

After the interest point matching process is complete. the matched pairs of
interest points can be used to compute the range to the corresponding world
objects. Given this collection of sparse range measurements, a range or obsta-
cle map can be constructed. The obstacie map can take many forms.!"!? the
simplest of which consists of a display of bearing vs. range. In what follows. the
range calculation is described and the important issue of range interpolation is
discussed.

2.3.1. Range Calculation

Given pairs of interest points matches between two successive image frames
and the translational velocity of the sensor during the time interval between
frame acquisitions. it becomes possible to compute the range to the objects that
correspond to the interest points. Our approach to range computation is de-
scribed by the equation -

$

yo—= v
R =AX—F—
¥ — v COS @,

(7

where

vr = the distance between the FOE and the center of the image plane,

y = the distance between the pixel in frame #1 and the center of the image
plane.

v’ = the distance between the pixel in frame m + | and the center of the image
plane,

AX = |0|At cos ar = the distance traversed in one frame time, At. as measured
along the axis of the line of sight,

ar = the angle between the velocity vector and the line of sight.

a,, = the angle between the vector pointing to the world object and the line of
sight,

¥' — yr= the distance in the image plane between (F, v,, 2, ) and the FOE, and

7

y' — y = the distance in the image plane between (F. Vu,s Zu) and (FL ¥y, i)y

These variables are illustrated in Figure 4. This range equation is used to
compute the distance to a world point relative to the lens center of frame m (a
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Figure 4. Geometry involved in the range calculation is illustrated here. The figure
shows the imaged world point in motion rather than the sensor. thus simplifying the

geometry.

similar equation would compute the distance from the lens center of frame n).
The accuracy of the range measurements that are produced by eq. (7) is very
sensitive to the accuracy of the interest point extraction process. the matching
process. the accuracy of the INS data. and the accuracy of the sensor model.

2.3.2. Range Interpolation

The task of range interpolation is the last processing step required of the
passive ranging system (this ignores any postprocessing of the range that may
be required before it gets passed to the automatic vehicle control and display
systems). The purpose of this task is to create. by means of interpolation
between the sparse range samples generated from the motion analysis-based
measurements, a dense range map representing the objects within the field of
view. Essentially, this task is one of surface fitting to a sparse, nonuniform set
of data points. To obtain an accurate surface fit that physically corresponds to
the scene within the field of view, it is necessary that the sparse set of range
samples be as uniformly spread throughout the field of view as possible. This
will require processing steps described in previous sections, namely, scene
understanding/segmentation must be used to create regions from which oniy a
computed maximum number of interest points can be extracted.

The type of surface fitting is important because the resulting surface (i.e., the
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range map) must pass through each of the range samples. It would be especially
dangerous (in the sense of obstacle avoidance) if the surface passed under any
range samples. There are many techniques of surface fitting available to our
task. To date. we have explored a method of bivariate interpolation over irregu-
larly spaced samples proposed by Akimo.'* This technique uses fifth degree
polynomials to interpolate over the triangular regions formed by triangulation
of the range sample locations. The major drawback associated with this ap-
proach is its assumption that all of the given points fall within a convex region.
A solution to this problem is to use an improved Delaunay-based triangulariza-
tion of the range samples. proposed by DeFloriani et al..'" that works over
arbitrarily shaped regions of interest. Neither approach generates a surface that
is guaranteed to pass through the range samples. The resulting surface is also
quite undulating artificiaily due to the fifth degree polynomials that are used.

A less elaborate technique of range interpolation consists of fitting planar
patches to the available range samples after performing a Delaunay triangula-
tion of the samples. This approach gets the job done quickly and efficiently and
does succeed in passing through each range sample. although the resulting
surface, due to its planar patch construction. contains discontinuities in range.

All techniques of range interpolation should be careful to avoid interpolation
over depth/range discontinuities that occur between range samples on the sur-
face under investigation. With the use of scene analysis/segmentation. the
smoothing of discontinuities can be avoided by interpolating only internal to the
smooth regions or segments of the scene. Techniques of joining the regions
after interpolation would then be employed. Such techniques have vet to be
developed.

Finally, there is some concern as to the purpose of interpolation. Surely,
interpolation will aid an operator/pilot in the interpretation of the results of
passive range measurements, but its use by automatic vehicle control is in
question. Also. a large number of interest points can be selected and matched.
so there may not be any need for elaborate interpolation. These issues are being
explored further.

3. EXPERIMENTAL RESULTS

Our inertial navigation sensor integrated motion analysis algorithm has been
used to generate range samples from both indoor/laboratory imagery with sim-
ulated INS data and outdoor imagery with real INS data that was obtained from
onboard a moving vehicle. In this section, we describe the conditions under
which the data was created/collected and provide images illustrating the resuits
of the major steps in the motion analysis algorithm.

3.1. Indoor Data

A sequence of imagery was collected inside of a computer lab by moving a
camera forward in discrete 2.0-ft. steps. The velocity and attitude of the camera
were estimated as 2 ft./s forward with no attitude changes throughout all five
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Figure 5. Five-frame sequence of indoor/lab imagery.

frames. The first and last frames of the resulting imagery are displayed in
Figure 5. The field of view of the camera used to collect these images is 43.2° X
18° and the focal length is 12.5 mm. An example of the processing that was
performed is displayed in Figure 6. The results of the various steps are illus-
trated: (a) segmentation, (b, ¢) interest point extraction, and (d) matching.

The image in Figure 7 is the cumulative resuit of processing the five-frame
sequence. Ideally, we would see a chain of connected circles that would denote
the location of strong interest points that were tracked.through all five frames.
In this case. we see very few instances of chains of circles due in part to the
large separation between frames.

For the lab images, we have a limited amount of ground truth information.
By ground truth, we mean that we have actually measured the range between
the camera and various lab objects. With this information, we can begin to
study the accuracy of the motion analysis-generated range values. Figure 8
shows the locations of the objects for which ground truth exists. Table I pro-
vides a comparison of ground truth range values and the range values generated
through motion analysis for four pairs of imagery. Note that some motion
analysis range values are missing. This is because a computer-selected interest
point did not fall on the corresponding ground truthed object. For the table
entries provided, there exists an interest point that fell on the corresponding
ground truthed object.

Table II illustrates the effect that the smoothing filter has on interest point
range values when a world object is tracked through multiple frames. The final
range values, as described in Egs. (1)-(6), are dependent upon the listed values
of match confidence, range confidence, predicted range, and measured range.

The indoor/lab sequence of imagery, as described above. was not collected
with a fixed configuration of hardware (i.e., INS and camera). Due to the large
amount of movement of the sole camera. the accuracy of the ‘‘inertial data’
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{b)

Figure 6. Results of processing one pair of the indoor imagery: (a) the segmentation of
both frames. (b} the interest points in the first frame. (c) the interest points in the second
frame. and (d) the set of matched points.

and the alignment of the camera between image acqusitions is largely responsi-
ble for the error between the ODIN-generated range measurements and the
ground truth as shown in Table I. It is also important to note that a certain
amount of error exists in the ground truth measurements because they were
manually obtained and registered with the camera’s coordinate frame. In gen-
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Table I. Comparison of ground truth and motion analysis range values for the indoor

imagery.
Ground 1-2 Range (ft.) 2-3 Range ({t.) 3-4 Range (ft.) 4-5 Range (ft.)
truth

location Actual ODIN  Actual ODIN Actual ODIN  Actual ODIN
A 13.76 13.96 11.80 — 9.84 10.47 7.57 10.90
B 14.28 14.15 12.33 —_ 10.40 10.63 8.50 —_
C 14.00 14.60 12.05 — 10.12 _ 8.22 —
D 20.95 20.52 19.00 — 17.02 21.05 15.07 13.47
E 18.13 — 16.16 21.41 — 17.63 12.24 —
F 20.64 20.97 18.65 16.70 16.67 21.51 14.70 15.64
G 21.14 — 19.14 17.26 17.15 23.87 15.16 —
H 20.14 18.50 18.14 15.31 16.14 12.37 14.14 —
I 22.37 20.68 20.37 — 18.38 19.82 16.38 15.80
J 23.00 21.16 21.02 — 19.04 — 17.08 —
K 20.66 20.59 18.73 16.98 16.80 14.83 14.91 —

of the;sequence.

Columns labeled Actual contain the ground truth values and the columns labeled ODIN contain
the motion-analysis-generated range.

Figure 7. Cumulative result of processing five frames of indoor imagery. Every inter-
est point that was matched and assigned a range is superimposed here on the first trame
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Table II. Set of three world points that appear as interest
points in three or more consecutive frames.

Range (ft.)
Range smoothing resuits 1-2 2-3 3-4 4-5
Measured —_ 14.12 15.89 18.14
Predicted —_— — 12.17 13.22
Final — 14.12 15.16 16.53
Match confidence —_ 0.60 0.88 0.88
Range confidence — 0.5 0.80 0.67
Measured —_ 14.12 15.89 —_
Predicted —_ — 12.17 —
Final —_ 14.12 15.16 —
Match confidence — 0.60 0.88 —
Range confidence —_ 0.5 0.80 —
Measured 26.78 20.02 —_ —
Predicted —_ 24.80 — —
Final 26.78 23.06 —_ —
Match confidence 0.88 0.61 — —
Range confidence 0.5 0.36 —_ —

One can see the effect of the smoothing filter in generating the final
range values and the filter's dependence upon the confidence factors.

Figure 8. Locations of the lab points that have associated ground truth information.
Video frames with time stamp are recorded at 5 Hz synchronously with IRU data. IRU
data with time stamp is collected at 50 Hz.
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Table IIf. Actual attitude and velocity measurements that were made
in synchronism with the acquisition of five frames of outdoor imagery.

Attitude (rad) Velocity (ft./s)
Frame Roll Pitch Yaw Unorth Ugast Udown
1 3.49e-02 2.72e-02 1.33 2.24 8.36 -0.149
2 2.99¢-02 2.75e-02 1.328 2.30 8.32 -0.150
3 2.61e-02 2.90e-02 1.327 2.23 8.23 —0.150
4 2.42e-02 3.0le-02 1.326 2.19 8.23 -0.120
5 2

.53e-02 2.99e-02 1.325 2.01 8.23 —0.133

These measurements are in the NED coordinate frame of the INS that shows
that vehicle motion is roughly in the E-NE direction.

eral. we claim that the accuracy of the motion analysis-generated range mea-
surements (obtained on the indoor imagery) is within 15% of the ground truth
values, but the ground truth itself is subject to at least a 5% error.

3.2. Qutdoor Data

A sequence of outdoor imagery was collected along with INS data generated
by a Honeywell HG1050 inertial measurement unit. Table 11I indicates the roll.
pitch. yaw, and velocity of the camera associated with the sequence of outdoor
frames that were used. The velocity and attitude measurements are made in the
coordinate frame of the INS. Figure 9 illustrates the hardware used to collect

VME Chassis ¢

68020 CPU
Serial System <€
Pornt Clock
| A 50 Hz
A 7 Data
Transter

I/O Prototype Board  f«€

> 1050 RLG IRU

'Y

DataCube Hardware

Digimax

A

hanm— ¥ 4

MaxGraph
e

SHz
Synchronized
Frame Record

Laser Disk Recorder

Figure 9. Hardware used to collect the outdoor imagery and INS data.
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Figure 10. First and last frames in a five-frame sequence of outdoor imagery.

the imagery. The video frames were stored on optical disk at a 5-Hz rate that
was synchronized with the collection of INS data. The INS data was collected
at a 50-Hz rate and stored with a time stamp. To determine the correspondence
between video frame and INS data packet. it is a simple matter to read the time
stamp that was written on the frame when it was stored and then locate the
corresponding INS data packet.

The first and last frames of a five-frame sequence of the collected imagery are
presented in Figure 10. The field of view of the camera used to collect these
images is 32.6° x 22.1° and the focal length is 15.1 mm. The elapsed time
between each pair of frames for this experiment was 0.3 s. An example of the
processing that was performed is displayed in Figure I1. The results of the
various steps are illustrated: (a) segmentation. (b. ¢) interest point extraction
and derotation. (d) matching, and (e) computed range. Note that only the
interest points in the second frame of the pair are derotated. The derotated
locations of the points are represented by diamonds and their original positions
are shown as squares. The points in the first image of the pair are denoted by
circles. The image in Figure 12 is the cumulative resuit of processing the five-
frame sequence. .

For the outdoor images in Figure 11, we also have a limited amount of
ground truth information/data. These data were collected using a theodolite
and were manually registered with the camera's coordinate frame. Figure 13
shows the locations of the objects for which ground truth exists. Table 1V
provides a comparison of ground truth range values and the range values gener-
ated through motion analysis for four pairs of imagery. Again. note that some
motion analysis range values are missing because no interest points fell on the
appropriate ground truthed object.

The outdoor sequence of imagery suffers from distortion due to camera
motion and vibration. The distortion is visualized in the form of image blur and
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(a)

(b)

Figure 11. Results of processing one pair of the outdoor imdgery: (a) the segmentation
of both frames, (b) the interest points in the first frame, (c) the interest points in the
second frame, and (d) the set of matched points.

in the manner that adjacent lines of the imagery are shifted. The line shifting is
attributed to the NTSC interlaced video signal that was recorded. In addition, it
is also important to note that a certain amount of error exists in the ground truth
measurements because they were manually obtained and registered with the
camera’s coordinate frame. These combined effects are largely responsible for
the error between the ODIN-generated range measurements and the ground
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( ) i ’ Figure 11. (continued)(c).

Figure 11. (continued)(d).
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Table IV. Comparison of ground truth and motion analysis range values.

1-2 Range 2-3 Range 3—4 Range 4-5 Range
Ground (fr.) (ft.) (ft.) (ft.)
truth
location Actual ODIN Actual ODIN Actual ODIN Actual ODIN
A. Telephone 231 185 228 276 226 245 223 202
pole
B. Telephone 486 367 483 366 480 427 478 —
poie
C. Treeline #1 502 — 499 — 497 430 494 —
D. Treeline #2 665 300 663 298 660 — 658 446
E. Treeline #4 388 — 385 —_— 383 255 380 —
F. Pole by gate 214 298 212 — 209 236 206 175
G. Red light 153 186 150 322 148 — 145 165
post (closest
to road)
H. Red light 136 167 153 343 151 114 148 157
post (closest
to gate)
I. Fence post by 169 160 167 172 164 — 162 161
gate (west
end, closest)
J. Fence post by 156 209 153 — 151 165 148 153
gate (west '

end. farthest)

The columns labeled Acrual contain the ground truth values and the columns labeled ODIN
contain the motion analysis-generated range.

truth as shown in Table 1V. In general, we claim that the accuracy of the
motion analysis-generated range measurements (obtained on the outdoor imag-
ery) is within 25% of the ground truth values. but the ground truth itself is
subject to at least a 5% error.

4. CONCLUSIONS

In this article, our latest work on INS integrated motion analysis has been
presented. The most important lesson learned from this research is that the
incorporation of inertial data into the motion analysis problem greatly improves
the analysis and makes the process more robust. In addition, the benefit of
scene analysis as a tool to guide the interest point extraction and surface
interpolation has been learned, and we have gained insight into the sensitivity
of the motion analysis-based range computation to shifts in interest point posi-
tion and to INS errors.

Our ongoing efforts at Honeywell include the development of a real-time
system for passive ranging that is to be implemented in a single VME chassis of
commercial off-the-shelf hardware. With the real-time system. flight testing can
be performed to validate the performance of the passive ranging algorithm
suite. In support of the validation process, additional data collection efforts are
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‘required to produce the high-quality data and the accompanying ground truth
data needed for validation. Additional ongoing efforts include algorithm en-
hancements in the areas of feature selection, feature matching, and range inter-
polation.

This material is based upon work supported by NASA Ames Research Center under
Contract NAS2-12800. The authors thank Dave Duncan. J. C. Ming, and Scott Snyder
for their contributions to this work.
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