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analysis remains one of the more difficult 
and challenging areas of vision research. 
Many practical outdoor applications re- 
quire algorithms that can withstand com- 
plex vehicle maneuvers and responses by 
other  independent  ent i t ies ,  detect  and  
t rack objects moving in the face of occlu- 
sions, and operate in high-clutter and low- 
contrast situations when objects are far 
away and when environmental conditions 
and the terrain are changing. There are no 
practical motion systems that can robustly 
and accurately determine dense depth in 
real scenes. 

However, researchers are actively ex- 
ploring several promising directions. In a 
companion article (see p. 45), we present 
the basic elements of dynamic-scene and 
motion analysis and the qualitative mo- 
tion-understanding approach, including 
computing the fuzzy focus of expansion 
and performing qualitative reasoning to 
interpet image changes. Here we describe 
other dynamic-scene and motion analysis 
techniques, developed at the University of 
Massachusetts and the University of South- 
ern California, to support the DARPA Stra- 
tegic Computing program’s Autonomous 
Land Vehicle effort. We also discuss the 
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SEVERAL MOTION- UNDERSTANDING TECHNIQUES 
USlNG DlSPLACEMENT FIELDS, 3D MOTION AND 

STRUCTURES, AND FEATURE CORRESPONDENCE SHOW 
PROMISE. BUT THERE ARE MANY ISSUES TO ADDRESS 

AND PROBLEMS TO SOLVE BEFORE WE ACHIEVE ROBUST 
DYNAMIC-SCENE AND MOTION ANALYSIS. 

issues and technical advances to be made 
in this important area. 

We used the term “optical flow” in the 
first article to mean the two-dimensional 
velocity of image pixels. When measured 
on discrete image frames, optical flow is 
often called a displacement field. We have 
used these terms interchangeably. Other 
terms are defined in a glossary on p. 61. 

Reliable computation of optical flow. 
Researchers at the University of Massa- 
chusetts have developed a unified hierar- 
chical computational framework that uses 
correlation matching to determine dense 
displacement fields from a pair of images 
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(see Figure l).’ A key idea is the separation 
of computations according to scale: Large- 
scale (or low spatial-frequency) intensity 
variations can provide approximate mea- 
surements over a large range of magnitudes 
of motion, while small-scale (or high spa- 
tial-frequency) variations can provide more 
accurate measurements over a smaller 
range. This leads to the first three compo- 
nents of the framework: spatial-frequency 
decomposition (filtering) to separate in- 
tensity variations according to scale, a lo- 
cal parallel match-criterion within each 
scale, and a control strategy for combining 
measurements from different scales. 

The fourth component is a directionally 
dependent confidence measure, which as- 
sociates different confidences with each of 
the displacement vector’s directional com- 
ponents. Since image displacement is a 
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vector quantity, its reliability can vary ac- 
cording to direction. An image feature such 
as a high-contrast boundary might have a 
reliable match in one direction (for exam- 
ple, perpendicular to the boundary), but 
not in the other direction (parallel to the 
boundary). This suggests that a direction- 
ally dependent confidence measure would 
be useful. Also, while an area might be 
homogeneous at one scale, it could have 
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information useful for reliable matching at 
a different scale. Therefore, confidence 
measures should be separately computed 
with each spatial-frequency channel. To 
obtain a dense displacement field given 
unreliable displacement vectors, we might 
have to propagate reliable displacements 
to their less reliable neighbors (for example, 
regional boundaries are more likely to have 
reliable matches than interior points if the 

-~ 

region is relatively homogeneous). This leads 
to the last essential component of the frame- 
work, a smoothness constraint that speci- 
fies the criterion for propagating reliable 
displacements as a function of confidence. 

This integrated system (see Figure 1 )  
uses the minimization of the sum-of- 
squared-differences (SSD) of gray values 
as the local criterion for determining sub- 
window matches between frames. The sys- 
tem computes confidence matches based 
on the shape of the SSD surface, and for- 
mulates the smoothness assumption as the 
minimization of an error function. 

The  confidence measure  is a two- 
dimensional vector. It is convenient to de- 
scribe it in terms of two orthogonal basis 
vectors emax and emin, which vary from 
pixel to pixel in an image.* The displace- 
ment vector D can be decomposed in terms 
of its components along these basis vec- 
tors, and confidence measures C,,, and 
C,,, are associated with these components. 
We can easily understand basis vectors 
and confidence vectors by their behavior 
at the image’s high-curvature points, edge 
points, and homogeneous areas. At a high- 
curvature point, both C,, and Cmin are 
high, indicating that all the components of 
a displacement vector are reliable. In this 
case, the exact directions of emox and emin 
are not crucial; they depend on the precise 
shape of the contour. At an edge point, 
C,, is high and Cmin low, and emox and emin 
are perpendicular and parallel to the edge, 
respectively. At a homogeneous area, both 
the confidences are low, and the directions 
of the basis vectors depend on the details of 
the image intensity variations at that point. 

The error function consists of two terms. 
Approximation errors measure how well a 
given displacement field approximates the 
local match estimate, while smoothness 
errors measure the global spatial variation 
of a given displacement field. The system 
uses the finite-element method to solve the 
minimization problem. The functional- 
minimization problem formulated in the 
matching technique converges to the min- 
imization problem used in gradient-based 
techniques3 In particular, by relating an 
approximation error function used in the 
matching approach to the intensity con- 
straint used in the gradient-based approach, 
we can identify confidence measures ex- 
plicitly that have been used only implicitly 
in the gradient-based approach. 

Figure2 shows two 128x128-pixel input 
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Figure 3. The smoothed displacement vector 
field superimposed on the first frame of 
Figure 2. 

images of toy animals. The scene consists 
of a toy dinosaur, a toy chicken in the 
background, and a tea box in the fore- 
ground, all of which rest on a tabletop with 
agridpatternon it.The3Dmotionbetween 
the two frames consists of a translation of 
the camera to the right along its x axis. and 
with a leftward rotation ( 1.5 degrees) about 
the vertical y axis, as well as an indepen- 
dent movement of the toy dinosaur. 

Figure 3 shows the smoothed displace- 
ment field superimposed on the first frame 
of Figure 2. Only a 32x32-pixel sample of 
the displacements are shown to improve 
their visibility. The algorithm works well, 
and the smoothness constraint has “filled 
in” several areas of the image; for example, 
the lower right portion of the dinosaur, part 
of the chicken, and the floor. To make the 
behaviors ofthe confidence measures more 
explicit at corners, edges, and homogeneous 
areas, image pixels are classified according 
to the values of C,,,,, and C ,,,, n ,  as we de- 
scribed earlier. 

Figure 4 presents the results of this clas- 
sification. Two interesting areas in the im- 
age are the boundary between the chicken 
and the dinosaur, and the boundary between 
the tea box and the floor. The first area has 
been maintained correctly during smooth- 
ing, primarily because the confidence val- 
ues are rather large for the vectors on either 
side of this boundary, preventing those 
vectors from changing during smoothing. 
However, the area of the floor just left of 
the tea box has incorrect displacements, 
because the reliable displacements at the 
edges of the tea box have influenced their 
less reliable neighbors. Thus, although er- 
rors due to occlusion boundaries can be 
reduced, they still occur. The problem of 
detecting depth and motion discontinuities 
remains an important unsolved problem. 

~ _ _ _ _ ~ ~  
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Figure 4. The input image (top-left quadrant) and classifications of the image’s pixels as 
corners (top-right quad;ant),’edges (bottom-left quadrant), and homogeneous areas (bottom- 
right quadrant) as a function of the confidences C,,,, and Cmjn at each pixel. 

Optical flow for detecting motion and 
determining structure. T o  interpret opti- 
cal flow, a system must recover the three- 
dimensional motion parameters of the sen- 
sor and any visible moving objects, as well 
as the depth of visible points and surfaces. 
Researchers at the University of Massa- 
chusetts have developed a two-step algo- 
rithm for determining general sensor mo- 
tion (five degrees of freedom) in an 
environment where other objects are mov- 
inging independ~nt ly .~  Input to this algo- 
rithm consists of a flow field and associated 
confidences. In the first step, the algorithm 
segments the flow field into connected sets 
of flow vectors, where each set is consis- 
tent with the rigid motion of an approxi- 

unnecessary when there are no indepen- 
dently moving objects, and the next step of 
the algorithm can treat the entire static 
environment as a single rigid object. 

In the second step, the algorithm groups 
together the segments found in the first 
step under the hypothesis that they have 
been induced by a single, moving, rigid 
object (that is, the planar-surface assump- 
tion is dropped). The algorithm computes 
the optimal motion parameters and related 
error measure for each segment using a 
least-squares approach, which minimizes 
the deviation between the measured flow 
fields and those predicted from the esti- 
mated motion and surface structure. This 
step involves grouping flow-field segments 

mately planar patch. The segmentation is that are consistent with the same motion 
based on a modified version of the gener- 
alized Hough transform, with displacement 
vectors voting for motion paiameterv Each 
segment is expected to correspond to the 
motion of a portion of only one rigid ob- 
ject This approach makes it possible to 
deal with independently moving objects 
This stage of segmenting the flow field is 

~~~~ ~~~~~~~ 

parameters. After computing the 3D mo- 
tion parameters, the algorithm can easily 
compute the depth if it knows the total 
translation between frames. 

For the image pair shown in Figure 2, the 
algorithm extracted segments correspond- 
ing to the main surfaces in the environment 
(see Figure 5) .  However, their boundaries 
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Figure 5. A segmented flow field. The white oreas correspond to 
flow vectors with zero confidence. The areas with the densest 
pattern correspond to unsegmented vectors. 

Figure 7. The error function, shown inverted, corresponding to the independently moving object. 

are inaccurate because of errors in the com- 
puted flow field, and because of the conti- 
nuity of flow fields that cross boundaries 
between regions. These regions correspond 
to surfaces at similar depths relative to 

~ 
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their distance from the sensor. Since seg- 
mentation is based only on the flow field, 
the algorithm does not use information from 
intensity images (other than that used to 
compute the flow vectors). T o  evaluate the 

segmentation results, we must examine Fig- 
ure 6, which shows not only the flow field 
used as input to the segmentation process, 
but also how the flow vectors have been 
grouped into segments using various shapes 
of the vector tails. The "correct" bound- 
aries are also drawn. In general, we should 
combine flow-field segmentation and inter- 
pretation with intensity-data analysis. 

The algorithm then determined a correct 
and unique grouping of segments into ob- 
jects, and found three segments correspond- 
ing to stationary parts of the environment. 
The translation axis and rotation parame- 
ters of the camera were determined, and 
were in reasonable agreement with the ac- 
tual values. The error function correspond- 
ing to the independently moving object is 
shown inverted in Figure 7. The translation 
axis (manifested by the peaks in the figure) 
cannot be determined reliably. 

This demonstrates the potential inability 
to recover the motion parameters of inde- 
pendently moving objects due to certain 
inherent ambiguities in all algorithms based 
on optical-flow a n a l y ~ i s . ~  The first ambi- 
guity is in recovering motion parameters 
from a noisy flow field generated by rigid 
motion, since there might be a large set of 
incorrect solutions that induce flow fields 
similar to the correct one. If the field of 
view corresponding to the region con- 
taining the interpreted flow field is small, 
and the depth variation and translation 
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Figure 8. The CMU Navlab image sequence (from left to right): interest points marked on frame 1; frame 1 with displacement vectors for frames 
1-3; frame 9 with displacement vectors for frames 9-1 1. 

magnitude are small relative to the object’s 
distance from the camera, then the deter- 
mination of 3D motion and structure will 
be very sensitive to noise - and practical- 
ly impossible in the presence of a realistic 
noise level. 

The second ambiguity is in the decom- 
position of the flow field into sets of vec- 
tors corresponding to independently mov- 
ing objects. Two independently moving 
objects can induce optical flows that are 
compatible with the same motion parame- 
ters; therefore, there is no way to refute the 
hypothesis that one rigid object generated 
those flows. The rigidity assumption has 
been found to be inappropriate for noisy 
flow fields.‘ That is, the consistency of 
flow vectors with the same motion param- 
eters, up to the estimated noise level, does 
not guarantee that they are really induced 
by the motion of one rigid object. In this 
work, we assume‘ that a connected set of 
flow vectors consistent with a planar sur- 
face’s rigid motion is induced by a rigid 
motion. This assumption is weaker than 
the first version of the rigidity assumption 
in the sense that i t  can only be applied in 
more restricted situations and, therefore, it 
is more likely to be correct. 

Passive ranging using optical flow. 
Figure Xa shows a typical image from a set 
of data, collected from the Carnegie Mel- 
Ion University Navlab, that was used to 
evaluate the performance of the algorithms 
discussed earlier.’ To speed up computa- 
tion, flow fields were restricted to 100 
distinctive points (labeled in Figure 8a) 
that were obtained using the Moravec op- 
erator on the images.’ The flow fields are 
shown in Figures Xb and 8c for image pairs 
1-3 and 9- 1 I ,  respectively, taken at four- 

~~ 
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foot intervals. The segmentation part ofthe 
algorithm was unnecessary because there 
is only one moving object. The algorithm 
obtained the motion parameters shown in 
Table 1. The translation results are all the 
same. Since the vehicle was trying to exe- 
cute pure translation over this sequence, 
the algorithm found the translation vector 
quite well. The results also indicate an 
approximate constant rotation of 0.4-0.5 
degrees about they axis, a small and vary- 
ing component about the x axis, and a 
random rotation about the z axis. This is 
consistent with 

a road surface that deviates slightly from 
being planar, either because of bumps o; 

Table 1. Results for motion parameters. 
(U,V,w) is  the unit translational vector, 

and A, B, and Care the rotational 
components in degrees. 

FRAME PAIRS 
1-3 3-5 5-7 7-9 9-11 

U -0.09 -0.09 -0.09 -0.09 -0.09 
V -0.25 -0.25 -0.25 -0.25 -0.25 
W -0.96 -0.96 -0.96 -0.96 -0.96 
A -0.19 0.17 -0.10 -0.04 -0.03 
B 0.39 0.56 0.53 0.49 0.43 
C -0.30 0.01 0.07 0.06 0.28 

because the surface itself is nonplanar 
( x  axis); 

(y  axis); and 
some random motion, probably due to 
vehicle roll (: axis). 

finding the corresponding features in 

tions; and 
computing motion estimates based on a 
series of correspondences. 

a small drift of the vehicle to the right multiple images using matching Opera- 

However, we did not have any measure- 
ments of the rotation components to verify 

Line correspondences: depth-from- 
looming structure. Researchers at the 

how accurate the derived rotational param- 
eters are. Using the same set of algorithms, 
we measured the depth of the road obsta- 
cles for selected frame pairs (shown in 
Table 2) using 100 points (see Figure 8a). 
The average depth error is about 15 per- 
cent, which is promising for applications 
on real vehicles. 

Feature- based approat hes 
Feature-based approaches generally 

involve 

extracting a set of reliable features, such 
as “interesting” points (like corners), 
lines, contours, and regions; 

University of Massachusetts developed a 
method to approximate perspective pro- 
jection using a scaled orthographic projec- 
tion when the depth to the centroid of an 
environmental structure is large with re- 
spect to the camera’s focal length, and the 
total extent in depth of the structure is small 
compared to the depth of its centroid. An 
environmental structure satisfying these two 
requirements is called a shallow structure.y 
Assuming that an environmental structure 
of length L satisfies the shallow-structure 
requirement and lies at a distance z from 
the image plane, its projected length is 
1, = Lf/z, where f is the camera’s focal 
length. If the imaging device is translating 
into the environment with velocity T,  then 

~ 
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Table 2. Depth values for selected frame pairs of some points over a sequence of frames. 
* indicates that the point was not among the top 100 Moravec points. 

** indicates that the point is  absent in the image pair. 

FRAME PAIRS 

1-3 1-3 9-1 1 9-1 1 
OBJECT POINT EXPERIMENTAL TRUE EXPERIMENTAL TRUE 

DEPTH (FEET) DEPTH (FEET) DEPTH (FEET) DEPTH (FEET) 

Cone 1 1 
2 

Cone 2 3 
4 

Cone 3 5 
6 

Cone 4 7 
8 

Can 9 
10 
11 

Cone5 12 
13 
14 

Cone6 15 
16 
17 
18 

65.7 
66.9 

61.4 
60.8 

50.2 
51 . I  

59.3 
46.3 

44.1 
t 

* 

31 .O 
31.1 
31.9 

18.1 
18.4 
18.9 
18.6 

76 
76 

76 
76 

56 
56 

56 
56 

46 
46 
46 

36 
36 
36 

21 
21 
21 
21 

61.2 
59.6 

63.9 
61.7 

38.4 
38.5 

37.9 
39.8 

39.8 
t 

20.0 
20.8 
20.5 
** 
** 
*t 

*t 

60 
60 

60 
60 

40 
40 

40 
40 

30 
30 
30 

20 
20 
20 
t. 

* *  
t t  

** 

Line 3 

Line 2 

I 
Figure 10. Defining virtual lines with pairs o 
line segments. 

the velocity component in the direction of 
gaze is T, = T.z =TcosO, where O is the 
angle between the direction of gaze and the 
focus of expansion. After some time t ,  the 
projected length is Z 1  =Lf(z - T,t). Solving 
for z ,  we get z = (T,t) / (1 - ZdZl), where Io  
and I ,  are the lengths of the projection of 
some environmental structure. In effect, 
the rate at which the structure grows over 
the image sequence provides the depth of 
the 3D structure, and therefore is termed 
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Figure 11. The line segments used to define 
virtual lines for depth-from-looming 
experiments. 

“depth from looming.” Thus, environmen- 
tal depth can be determined without recov- 
ering motion parameters. 

Figure 9 shows the first frame of a mo- 
tion sequence in which a robot is moving 
down a hallway. First, line segments are 
extracted and matched. The lengths of the 
line segments are not reliable, but their 
orientation and lateral placement are accu- 
rate. This fact is exploited to define a vir- 
tual line whose length can be measured 

seguere taken by a mobile robot moving 
down a hallway. 

accurately over the course of the motion 
sequence. The endpoints of the virtual lines 
are defined by the intersections of two pairs 
of line segments (see Figure IO), and we can 
use the same technique to obtain virtual 
regions. Based on its knowledge of the 
correspondence of the line segments defin- 
ing the virtual line over time, the system 
has information about the changing param- 
eters of the virtual line itself. For the re- 
sults presented here, we manually selected 
the virtual lines to be tracked in the first 
image. Organization principles of spacing, 
parallelness, orthogonality, and symmetry 
can be used to automatically extract the 
straight-line configurations used in these 
experiments. The virtual lines appear with 
labels in Figure 1 1.  Tables 3 and4 show the 
depth-from-looming values we obtained 
for computed and ground-truth depths to 
scene entities, the percent errors, and the 
number of frames contributing to the depth 
estimates. We used virtual lines to obtain 
the results in Table 3. The technique was 
even more accurate when we used virtual 
regions, as shown in Table 4. This method 
does not need the precise position of the 
focus of expansion (defined in the com- 
panion article). 

Region correspondences over multi- 
ple frames. Much of the early work on 
estimating 3D motion from a sequence of 
matching points suffered from several prob- 
lems, including 

motion relative to a fixed coordinate 
system, 
using only small motions and thus high 
sampling rates, 
restrictive assumptions on motions or 
feature points, 
noise sensitivity, 
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Toble 3. Computed and ground-truth depth values to scene entities, 
using depth from looming via virtual lines. 

Table 4. Computed and ground-truth depth values to scene entities, 
using depth from looming via virtual regions. 

VIRTUAL COMPUTED GROUND-TRUTH PERCENT No. OF FRAMES 
LINE OEPTH DEPTH ERROR USED TO 

(IN FEET) (IN FEET) ESTIMATE DEPTH 

VIRTUAL COMPUTED GROUND-TRUTH PERCENT No. OF FRAMES 
REGION DEPTH DEPTH ERROR USED TO 

(IN FEET) (IN FEET) ESTIMATE DEPTH 

Cone 1 
Cone 2 
Cone 3 
Cone 4 
Can 1 
Wall 1 
Wall 2 
Doorway 

19.1 20.0 
23.6 25.0 
28.3 35.0 
42.1 40.0 
29.0 30.0 
27.7 27.1 
48.8 48.7 
88.8 87.1 

4.5 
5.6 

19.1 
5.3 
3.3 
2.2 
0.2 
2.0 

high complexity, and 
using only two frames, an inefficient use 
of available information. 

Researchers at the University of South- 
ern California have developed a system to 
address these problems.'",' Using three or 
more frames, the system estimates a mov- 
ing object's motion parameters in terms of 
a natural center of motion. The motion 
parameters (expressed as rotation about 
the axis and translation of that center of 
rotation) are assumed to be constant over 
the relevant image sequence. The advan- 
tage of using more frames lies in the infor- 
mation content over time. The fact that the 
third frame is captured 6r after the second 
frame and 26r after the first frame gives 
more constraints than when the frames are 
considered only two at a time, or at varying 
times. The system uses these constraints to 
derive equations that compute motion pa- 
rameters when a few points are matched in 
several frames ofthe sequence (three points 
in three frames, two points in four frames, 
and one point in five frames). The algo- 
rithm leads to a set of difference equations 
across a sequence of images, relating a 
feature's position in the image plane to the 
projected point's motion parameters. The 
solution obtainedforonepoint in five frames 
consists of a set of fifth-order nonlinear 
polynomial equations in the unknown mo- 
tion parameters, whose solution requires a 
Gauss-Newton nonlinear least-squares 
method, from numerical analysis, withcare- 
fully defined initial-guess schemes. 

Figure 12 illustrates the structure of the 
motion estimation system. Four modules 
perform the primary computation: the gen- 
eral-motion estimator, the pure-motion 
estimator, the pure-translation estimator, 
and the initial-guess generator. The system 
treats motion that is composed only of 
rotation and translation as a special case of 
the general-motion system. 

Cone 1 20.1 20.0 0.5 1 
Cone 2 25.8 25.0 3.2 3 
Cone3 35.5 35.0 1.4 1 
Cone4 40.0 40.0 0.0 7 

s feature correspondence extractor ' - Early warning Collision detector _ _ _ _ _  

Motion classifier 

estimator 

S 
Translation 1 compensator I 

compensator estimator 

Initial-guess generator 

General-morion esiimatsr 

Error and confidence evaluator -e1 
Translation Rctor focus of expansion time of mllision pant of collision ax s of 'cattcn 
angle of rotation center of rotation radius of rotation error measures for all parameters 

confidence measures for all parameters relative-depth map 
I -- 
Figure 12. Control flow for the region-based motion estimation approach. 
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Figure 13. Four frames of the turning car: first and second frames on the left; fifth and sixth 
~ frames on the right. 

V A  
12.8 

6 . 4  

0.0  

-6.4 

_.D c 

19.0 9.5 0.8 -9.5 -19.0 
X 

igure 14. Comparing input data (open circles) to calculated motion (solid curve) for a turning car. 

The feature-correspondence module 
treats regions as the basic feature. Using a 
recursive region-splitting technique,” the 
module finds compact regions that are rel- 
atively uniform in such properties as inten- 
sity, color, or texture. The module then 
uses the properties of these regions and 
the relations between them to find corre- 
sponding regions in successive frames.13 
This technique produces good data for 

the motion estimation program, where 
segmentation variations cause most prob- 
lems. The system runs the segmentation 
program separately on each frame without 
any guidance from previous frames, and 
performs a series of pairwise matches 
using motion estimates to predict image 
positions. 

The motion classification module deter- 
mines which motion estimation technique 

(general, translation, or rotation) to apply. 
It uses the magnitude of the translation 
vector, the average length of the disparity 
vector, and the closeness of fit between the 
input data and a pure translation estimate. 
For the simple cases of pure rotation or 
translation, the system estimates the mo- 
tion parameters with fewer data points. 
The system can compensate for dominant 
translation or rotation before computing 
the other motion parameters. The iterative 
Gauss-Newton-based solution of the mo- 
tion parameters requires good starting points 
from the initial-guess generator, which 
automatically generates sets of possible 
initial solutions for the parameters. The 
general-motion estimator module starts with 
initial guesses to iteratively solve the gen- 
eral-motion equations.14 This module de- 
rives error measures and confidence mea- 
sures (how confident the program is in the 
error measure) for each parameter. The 
system produces the final parameter value 
by averaging the multiple calculations that 
are possible for each motion parameter, and 
calculates the final error measure. Larger 
values of error and confidence measures 
indicate the unreliability of the calculated 
parameter. 

This motion computation was imple- 
mented on a Symbolics 3645. Figure 13 
shows four frames from a six-frame se- 
quence of a turning car. This sequence was 
taken by a motor-driven SO-millimeter cam- 
era at about three frames per second while 
the car was driven at a constant speed in a 
circle. The calculated motions are scaled to 
the camera’s focal plane and are thus given 
in millimeters. The dimension of the image 
is 36x24 millimeters. The object’s exact 
motion is unknown, so we can only quali- 
tatively determine if the answers are cor- 
rect. We can compare the results of locat- 
ing points on the object to determine if they 
are consistent. The example shows that 
this approach can cope with noisy data and 
generate motion estimates that explain the 
actual image-plane motions. The segmen- 
tation produces many regions, but most 
represent stationary background objects. 
The motion classifier determines that most 
of the sequences of five or six matching 
regions (a region tracked through five or 
six frames) were pure or dominant rota- 
tions. The results for two sets of points are 
presented in Figure 14, which shows the 
fifth frame of the sequence. Sequence 1 
corresponds to the right-hand rear window 
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frame matched in frames 2 through 6, with 
the last point (at the pointer) being its 
location in the final, sixth frame. Sequence 
2 is the left-hand tail light for frames 1 
through 5. The results are summarized in 
Table 5 .  The points used are the centers of 
the regions in each image, and are plotted 
as open circles on the resultant image. The 
times in Table 5 include some overhead 
operations, but not the graphic display of 
results. 

The first feature almost fits the transla- 
tion model (the points appear almost along 
a straight line); the small radius of rotation 
agrees with this (see Table 5 ) .  The second 
feature is very close to a pure rotation, but 
the general-motion computation yields a 
better fit to the data than the pure rotational 
fit. The difference in motion of the two re- 
gions is partially explained by the changes 
in the region segmented from the second to 
the sixth frame. The initial region is just the 
narrow strip between the rear window and 
the side window, but the final region in- 
cludes the entire window frame. Choosing 
different points in the region, such as the 
boundary, could result in a more accurate 
feature location and should result in a bet- 
ter estimation of the motion. The highest 
error measures and the lowest confidence 
measures in Table 5 are for the computa- 
tion of the axis of rotation. We should 
expect this since the axis of rotation is 
calculated from the cross-product of two 
vectors and hence is sensitive to the noise 
in each vector. 

Contour correspondences over multi- 
ple frames. Earlier, we described the use 
of regions as features to match for motion 
computation. Regions are rather global fea- 
tures and likely to change over large dis- 
placements. An alternative is to use fea- 
tures based on the contours, or boundaries, 
of objects. Contours are more local; their 
shape is more likely to be preserved, at 
least in part, over large displacements. 
Several low-level features related to con- 
tours such as edges, linear line segments, 
and corners have been commonly used in 
previous work. These features are easier to 
match than the contours themselves; how- 
ever, they ignore important information 
inherent in contours. Edge and corner match- 
ing do not use continuity information, and 
straight-line matching ignores curvature 
information. Further, detecting corners on 
smooth curves (for instance, by linear- 

Table 5. Results for general motion in a turning-car sequence. 

FEATURE 1 FEATURE 2 

Translation vector (-0.23, -0.60, -10.73) (-0.33, -0.31,4.71) 
Axis of rotation (-0.42, -0.86, 0.30) (0.03, -0.96, 0.28) 
Amount of rotation around 69.05" 23.12" 

the axis of rotation 
Center of rotation (-5.66, 3.46, 50.01) (-0.60, 0.46, 49.98) 

Error measure/confidence < ,007-13/70-100 11 -23/56-100 
Radius of rotation 0.34 7.08 

measure 
Time (sec.) 82 5,307 

Glossary 

Canny operator: An optimal filter to 
detect intensity edges in images. 

Finite-element method: A computation- 
a1 method to solve differential equa- 
tions by making discrete approxi- 
mations to them, for example, by 
replacing every derivative with a 
difference quotient. 

Flow vectors: The vectors representing 
the apparent motion of the bright- 
ness pattern at image pixels. 

Generalized Hough transform: A 
transform for detecting entities in 
images that have no simple analyti- 
cal form. The basic strategy is to 
trade off work in parameter space 
for work in image space. 

Gradient-based techniques: Computa- 
tional methods involving evaluation 
of derivatives of parameters. Typi- 
cally, they use spatial and temporal 
gray-level variations to estimate the 
instantaneous velocity at each pixel. 

Ground truth: True values of measur- 
able physical quantities. 

Matching technique: Algorithm to find 
correspondences between entities. 

Optical flow field: The apparent motion 
of the brightness pattern in an im- 
age due to the realistic motion be- 
tween a camera and the scene. 

segment approximation) is often arbitrary, 
and the resulting corners do not necessarily 
correspond in the sequences. 

Researchers at the University of South- 
ern California have developed a technique 
to match contours directly rather than 

Orthographic projection: The special 
case of perspective transformation 
where there is no distortion for the 
spatial coordinates (x  and y). and 
the viewpoint is at infinity in the z 
direction. For this projection, light 
rays travel parallel to the imaging 
system's optic axis to impinge on 
the image plane. 

Perspective projection: A first-order 
approximation to the process of tak- 
ing a picture. In this approximation, 
a light ray originating at a point in 
the scene travels through a single 
point of an imaging system (pinhole 
lens) to reach the image plane locat- 
ed at the camera's focal length. 

Smoothness assumption: Spatial varia- 
tions in measurements are not 
abrupt but smooth. For example, 
this assumption implies that the dis- 
placement field varies smoothly 
over the image area covered by a 
single surface. 

SSD surface: The surface defined over 
the space of displacements. Its 
height is the SSD value correspond- 
ing to each displacement. 

Sum of squared differences (SSD): A 
function whose value at a point is 
the sum of the squared differences 
of image intensities within a win- 
dow (whose center is represented by 
the point) placed on two images. 

matching their derived  feature^.'^ Match- 
ing contours presents several problems. 
Contours in an image sequence can merge 
or split due to occlusion, noise, errors of 
the edge linker, or other reasons. Thus, 
only parts of the detected contours might 
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figure 15. Two images (size 250x5 12 ixels) of a sequence containing a toy ieep and train 
(from left to right and top to bottom): rrame 1; frame 2; detected contours in frame 1 at scale 
parameter 8; detected contours in frame 2 at scale parameter 8; detected contours in frame 1 
at scale parameter 4; detected contours in frame 2 at scale parameter 4. 

I I 

Figure 16. The results for contour correspondence using three frames (from left to right and top 
to bottoml: matches at scale oarameter 8: oredictions ot scale parameter 4; matches at scale 
paramete; 4; multiple matchds at scale parbme 

match. The technique overcomes this diffi- 
culty by dividing each contour into several 
“sections” of equal length (chosen as a 
function of the contour’s total length), each 
of which is matched independently by slid- 
ing it along the contour to be matched and 
maximizing the similarity. Each match is 
then extended by adding points until the 

r 4. 

similarity starts to decrease. This approach 
has the advantage that a section is less 
likely to share more than one object and 
hence its match is more likely to be found. 
However, this step leaves possible multi- 
ple matches for parts of contours. 

The system resolves multiple matches 
through a simple relaxation process. It eval- 

uates each match based on contour similar- 
ity and also receives support from other 
matches if they indicate similar transla- 
tional motion. Matches not receiving ade- 
quate support are eliminated. The system 
merges overlapping matches, using the 
section with the highest evaluation first. 
This process is applied across several frames 
to give multiple section matches over mul- 
tiple frames. 

The entire matching process is also per- 
formed across different scales. The system 
computes the edges forming contours by 
first using an adaptive smoothing technique 
to smooth the image.16 Different-sized 
masks give different features; however, 
the adaptive smoothing technique has the 
property that feature position does not move 
by more than a pixel. Thus, the system can 
use features matched at a coarser scale 
(through larger masks) to predict feature 
matches at finer scales. This reduces the 
computational complexity of the matching 
process and prevents spurious matches. 

Figure 15 shows results using this tech- 
nique. Figures 15a and 15b are the first two 
frames of a sequence taken by a stationary 
camera and consisting primarily of two 
moving toy vehicles. This is a difficult 
scene to analyze since the motion is both 
very large (disparity of at least 70 pixels) 
and is a general 3D motion. We can easily 
see that the train is moving rapidly toward 
the jeep. We detect contours from these 
images by adaptively smoothing the images, 
detecting edges using a Canny operator,17 
and finally linking the edges. Figures 15c 
and 15d show the detected contours in the 
two frames using adaptive smoothing and 
a mask size of 8 pixels. Figures 15e and 15f 
show the contours detected using a mask 
size of 4 pixels. Figure 16 shows the results 
of matching the contours in Figure 15, with 
additional lines drawn between the points 
on the sections that match. Only those 
points are included for which a match was 
found, and an arrow is drawn to the closest 
point in the other section (after translating 
to start at the same location). For the sake 
of clarity, arrows are drawn only for every 
fifth point in a matching section. Figure 
16a shows the contour matches detected at 
an 8-pixel scale, Figure 16b shows the 
predictions for expected matches at a 4- 
pixel scale, and Figure 16c the computed 
matches ata4-pixel scale. Figure 16d shows 
matches obtained across three frames. These 
results show good performance over large 
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displacements. This technique has also been 
tested on natural, outdoor scenes and works 
well if the shape of objects in the scene 
does not change significantly. 

be needed to develop working motion-un- 
derstanding systems that perform robustly 
in view of the multitude of problems that 
occur in real-world situations. There are 
several technical issues and areas where 
advances must be made so that robust dy- 
namic-scene and motion analysis can be 
achieved. 

Data availability. It has been difficult to 
evaluate algorithm performance quantita- 
tively because of the unavailability of out- 
door data with ground-truth information 
that includes robot motion, depth to scene 
entities, and the motion of independently 
moving objects. Recently, attempts have 
been made to collect such which 
will significantly help researchers develop 
robust algorithms. An effort by the com- 
munity of motion researchers is now un- 
derway. 

Robust algorithms. We need to develop 
robust and noise-insensitive techniques for 
real-time practical applications. To recov- 
er depth in practical situations, dense dis- 
placement fields must be able to separate 
rotation from translation with a rotational 
error of less than half a degree.I9 We need 
robust techniques for feature correspon- 
dences, computation of flow fields, com- 
putation of the focus of expansion, decom- 
position of sensor rotation and translation, 
detection of moving objects in high-clutter 
and low-contrast situations, generation of 
precise 3D descriptions of moving objects 
(rigid and nonrigid), and techniques for 
accurate passive ranging. 

Computational throughput. Dynamic- 
scene and motion analysis is computation- 
ally intensive. Ultimately, the system re- 
quirements dictate the desired throughput. 
To avoid obstacles, for example, helicop- 
ters should accomplish all necessary pro- 
cessing (including display and presenta- 
tion of obstacle information to the pilot) 
within one second.20 We need not only 
efficient algorithms but also much more 
powerful hardware for real-time motion 
analysis. 

Integration of motion and binocular ste- 
reo. To obtain accurate depth measure- 
ments for the sensor’s entire field of view 
and to detect depth and motion boundaries, 
we need to do more research on integrating 
motion analysis with binocular stereo.21.22 

Occlusion. We’d like to be able to ro- 
bustly detect occlusion and motion bound- 
aries. Otherwise, significant errors in flow 
field interpretation will probably r e s ~ l t . ~ . ~  

CONSZDERABLE EFFORT WLL 
BE NEEDED TO DEVELOP 
MOTION- UNDERSTANDING 
SYSTEMS THAT PERFORM 
ROBUSTLY IN VZEW OF THE 
PROBLEMS THAT OCCUR IN 
REAL- WORLD SITUATIONS. 

Independently moving objects. We 
probably cannot get accurate motion pa- 
rameters for moving objects at the typical 
camera resolution (512x512 pixels per 
image) and distance from other moving 
objects. We need to see whether these 
motion parameters can be bounded to get 
approximate or qualitative results. 

Surface reconstruction from motion. We 
need algorithms to reliably interpolate 
sparse range maps so as to provide a rendi- 
tion of 3D surfaces. 

Integration of motion with other cues. 
We would like to be able to plan camera 
motion to build symbolic maps of the envi- 
ronment. We’d also like to be able to use 
observer motion for improved recognition, 
which can be used to further improve esti- 
mation for motion parameters. Using an 
inertial-navigation system and digital map 
information would also allow for addition- 
al constraints in motion analysis, which 
would facilitate accurate passive ranging1* 
and tracking.23 

Environment. For technology transfer, it 
would be valuable to develop an environment 

and a system that lets us simulate different 
algorithms end to end for dynamic-scene 
and motion analysis. 

Systems. We need to develop systems 
that integrate motion analysis, binocular 
stereo analysis, landmark acquisition and 
recognition, and clutter rejection algorithms. 
In such systems, a mobile robot could nav- 
igate in practical scenarios using auxiliary 
information such as digital maps, land- 
mark recognition and acquisition, predic- 
tion of object motion, and the tracking of 
partially occluded objects. 

Visualization of results. It is difficult to 
present the results of dynamic-scene and 
motion analysis for human perception. We 
need to develop new visualization tech- 
niques for presenting analysis results and 
displaying computed range values and 3D 
environmental depth maps. This requires 
the development of specialized software 
and hardware so that we can simulate the 
algorithms in the laboratory and fully un- 
derstand their strengths and weaknesses. 
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