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Vision systems for mobile robots are required to handle complex
dynamic scenes. Vehicle motion and individually moving objects
in the field of view contribute to a continually changing camera
image. The goal of “dynamic scene understanding” is to find
consistent explanations for all changes in the image in terms of
three-dimensional camera motion, individual object-motion, and
static scene structure. We describe a new approach to this problem
which departs from previous work by emphasizing a qualitative
line of reasoning and modeling. We have extended the original
Focus-of-Expansion concept to the so-called Fuzzy FOE, where
we do not compute a singular point in the image, but a connected
image region that marks the approximate direction of heading. A
rule-based reasoning engine analyzes the resulting “derotated”
displacement field for certain events and incrementally builds a
three-dimensional Qualitative Scene Model. This model comprises
a collection of scene hypotheses, each representing a feasible and
distinct interpretation of the current scene. This paper focuses on
this qualitative approach for dynamic scene understanding. Ex-
amples are given for synthetic as well as for real outdoor image
Sequences.  © 1991 Academic Press, Inc.

1. INTRODUCTION

Vision is an indispensable source of information for the
operation of mobile robots or autonomous vehicles. Even
when robots are equipped with accurate inertial naviga-
tion systems, the accumulation of position errors re-
quires periodic corrections. The execution of mission
tasks involving search, exploration, or manipulation in
particular appear almost impossible without visual sup-
port. While the robot is moving, the resulting images ac-
quired by its camera are changing continually, even if the
observed environment is completely static. In this case,
image motion can be used to obtain useful information
about the robot’s self-motion and about the three-dimen-
sional layout of the scene, commonly referred to as ‘‘mo-
tion stereo.”
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In dynamic environments, the potential appearance of
individually moving objects in the scene adds another
level of complexity. Object motion and camera motion
interfere and moving objects may not even cause any
image motion at all. The environment cannot be treated
as a single rigid object but possibly as several of them,
one of which must serve as a global reference. Any
change observed in the 2-D image is always the result of a
change in 3-D space, caused either by self-motion or by
individual object motion. Finding consistent interpreta-
tions for every change in the image in terms of self-
motion, 3-D scene structure, and object motion is the
objective of ‘‘dynamic scene understanding.”

Previous work in motion understanding has concen-
trated on numerical approaches for the reconstruction of
3-D motion and scene structure from 2-D image se-
quences. In the traditional approach, structure and mo-
tion of a rigid object are computed simultaneously from
successive perspective views by solving systems of linear
or nonlinear equations [1-5]. This technique is reportedly
noise sensitive even when more than two frames are used
[6, 7). Nonrigid motion, or the presence of several mov-
ing objects in the field of view, may produce a relatively
large error for the final solution to the system of equa-
tions. However, due to the inherent ambiguities in mo-
tion analysis, an acceptable ‘‘rigid”’ solution may be
found even when parts of the scene are actually moving
in 3-D. Thus there are cases where the movements of
individual entities in the field of view cannot be detected
by the classic scheme. Adiv [8] generalized this approach
to handle scenes with multiple moving objects, using an
iterative grouping process to segment the optical flow
field.

For applications with mainly translational camera
movements, such as land vehicles, alternative ap-
proaches have been developed to make use of this partic-
ular form of self-motion [9-11]. An important concept
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FIG. 1. A typical displacement field obtained from a moving camera

undergoing translation and rotation. (a) The search area for the Focus of
Expansion is marked by a square in the original (simulated) displace-
ment field. (b) The derorated displacement field with the approximate
location of the FOE marked by a circle.

related to this class of techniques is the Focus of Expan-
sion (FOE), i.e., the image location from which all points
seem to diverge radially under pure (forward) camera
translation. Figure 1 shows a typical set of displacement
vectors obtained from a moving camera which undergoes
translation and rotation. The FOE points in the direction
of vehicle translation between two consecutive images.

Given the FOE for a pair of images, the 3-D distance of
any (static) environmental point can be found easily from
its velocity of radial divergence. In practice, locating the
FOE accurately is difficult or even impossible under arbi-
trary camera motion or noisy conditions. Consequently,
planar motion or even pure camera translation has been
assumed by other researchers in this field [12-15].

To employ the FOE technique for our task, we have
extended the original concept to compute only an ap-
proximation of the FOE for almost arbitrary camera mo-
tion. This so-called Fuzzy FOE is not specified by a single
point (pixel) in the image, but by a connected image re-
gion that marks the approximate direction of heading
[16]. Besides the computational problems involved in
computing the FOE precisely, there appears to be also a
psychological motivation for the Fuzzy FOE. Under
comparable conditions (i.e., observer rotation), even hu-
man subjects reportedly have difficulties in estimating the
exact direction of heading [17].

While it has been common to take the scene structure
as a by-product of the rigid motion computation, we ar-
gue that the existence of an internal 3-D model of the
scene is a necessary prerequisite for motion detection
and analysis. Given the location of the FOE and a purely
translational displacement field, some forms of 3-D mo-
tion are easy to detect, whereas others require more so-
phisticated reasoning steps. For example, an image fea-
ture moving toward the FOE is a striking evidence for
3-D motion in the scene; in particular, something must be
moving into the camera’s current trajectory.

A more subtle case is given in Fig. 2, which shows two
successive frames as the camera approaches an intersec-
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tion. The shaded area in the center represents the ap-
proximate location of the FOE (i.e., the Fuzzy FOE).
Two points of interest are tracked, one located on the
truck (A) and the other on the building (B). The point on
the building (B) diverges away from the FOE at some rate
and can thus be interpreted as static in 3-D at some finite
distance. However, the point on the truck (A) stays at a
constant image location and could therefore also be
static, though at infinite distance. The actual motion of
the truck, which could potentially collide with the cam-
era, would remain undetected. Although in reality the
truck will probably cause some image motion, noise will
still make it difficult to assess. Additional information
about the spatial layout of the scene is necessary to re-
solve these ambiguities. Assuming that we had occlusion
as another source of information, the reasoning process
could be like this:

“Point B is diverging from the FOE and thus lies at finite distance
and is static. Point A, if static, would be an infinite distance.
Since the object of point A is occluding the object associated with
point B, A must be closer than B. From this contradiction we
conclude that A must be moving. . . ."

Instead of occlusion analysis, we have actually employed
simple heuristics about the scene structure for additional
3-D clues.

The main elements of our approach are illustrated in
Fig. 3 which shows different levels of data and the pro-
cesses which operate on them. Images are treated pair
after pair and we assume that displacement vectors be-
tween corresponding points in successive images have
been obtained by the correspondence process. Image fea-
tures are given unique labels and tracked from frame to
frame. Using the displacement vectors we compute the
Fuzzy FOE and remove the effects of possible camera
rotations. Consequently, the resuiting ‘‘derotated’ dis-
placement field reflects the pure translation component of
the camera motion. Note that up to this level, the flow of
data is purely bottom-up. There is, however, control in-
formation supplied by the higher levels, such as the set of
reference points which is believed to be stationary and

P

M

ty

FIG. 2. Moving truck example. The camera is approaching an inter-
section. Two point features are tracked in the image: point A on the
(moving) truck, and point B on the static building. The shaded area in
the center represents the Fuzzy FOE. The static part of the image
seems to expand from the FOE, while the truck, being on a collision
path, stays at a constant image location.
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FIG. 3. Overall structure of the interpretation process and flow of
data for the construction of the Qualitative Scene Model (QSM). From
the original displacement vectors {obtained by matching corresponding
features), the Fuzzy FOE and the “*derotated’’ displacement field are
computed. Observation rules analyze the derotated displacement field
for configurations and significant changes in the image in the context of
motion understanding. QSM is built in a hypothesize-and-test cycle.
Generation rules search for significant image events and place immedi-
ate conclusions (hypotheses) in the model. Verification rules check
existing hypotheses for consistency with the changes occurring in the
image. Interpretation rules assemble complete interpretations from par-
tial interpretations. A set of environmental entities that are believed to
be stationary is supplied by the QSM for use in the FOE-computation.

may be used to compute the FOE. Next, we use the 2-D
locations and motion of points relative to each other and
with respect to the Fuzzy FOE in the derotated displace-
ment field to reason about the 3-D scene structure and
independent object motion. Given only an approximate
location of the FOE, gqualitative properties of the dis-
placement field are the main source of reasoning.

This process incrementally builds a model of the envi-
ronment, in which the scene is again described in qualita-
tive terms, such as the relative distances of features or
how they move in 3-D space. The model comprises a
collection of scene hypotheses, each representing a feasi-
ble and distinct interpretation of that scene. In particular,
the model labels those features that are believed to be
part of the static environment and are used as references
for computing the FOE.

The observation process analyzes the derotated dis-
placement field for configurations and changes in the im-
age which are deemed significant in the context of motion
understanding. A group of forward-chained rules extract
and formulate those changes in the image in the form of
trigger events, which are then checked for their conse-
quences upon the current state of the model. On the other
hand, information about the image is delivered ‘‘on de-
mand,” i.e., when it is needed to complete a reasoning
step at a higher level of the reasoning process. This
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mechanism is implemented with goal-driven, backward-
chaining rules.

The Scene Interpretations, which are the actual core of
the Qualitative Scene Model (QSM), are hypotheses
about the relationships between the facts found in the
image and their meaning in 3-D space. The reasoning
process which forms the scene interpretations has access
to 2-D information in the form of (already abstracted)
image observations. Two forms of processes (rules) con-
tribute to the core model in a generate-and-test strategy.
Generation Rules take newly created image observations
(by forward chaining) and determine their consequences
with respect to the current state of the model. Verifica-
tion Rules attempt to check existing hypotheses in the
model for their validity with respect to specific changes in
the image. Naturally, verification relies heavily on a
backward-chained part of the observation rules. QSM
may contain multiple scene interpretations at the same
time. Individual interpretations, however, are not kept as
separate constructs inside this model, but they generally
share their components (partial interpretations) among
each other. It is the task of the Interpretation Process to
assemble complete interpretations from partial interpre-
tations, to rank them, and make results available to other
reasoning processes.

In the following we concentrate on the qualitative rea-
soning and modeling aspects of our approach. Details on
computing the Fuzzy FOE can be found elsewhere [16].
Section 2 describes the structure of the Qualitative Scene
Model and how it is updated. Examples of the rules used
in the reasoning engine are given in Section 3. This is
followed by experiments on synthetic and real images in
Section 4. Finally, Section 5 presents the conclusions of
the paper.

2. A QUALITATIVE SCENE MODEL (QSM)

2.1

The Qualitative Scene Model (QSM) is a 3-D camera-
centered interpretation of the scene that is built incre-
mentally from the visual information gathered over time.
The model is declarative and describes the status and
behavior of its elements and the relationships between
them in coarse, qualitative terms. No attempt is made to
derive a precise geometric description of the scene in
terms of 3-D structure and object motion.

The basic elements of the QSM are called entities,
which are the 3-D counterparts of the 2-D features ob-
served in the image. For example, the point feature
A located in the image at x, y at time ¢, denoted by
(FEATURE A 1 x y), has its 3-D counterpart in the model
as (MEMBER A). Properties of entities and relationships
between entities are expressed by assertions. For exam-
ple, (STATIONARY /) means that entity / is considered
stationary (i.e., not moving) in the corresponding scene

Entities and Relations
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FIG. 4. Partial ordering in depth. (a) Initially, the relative depth is
unknown for the entities a, b, ¢, d. They are only known to be in front of
the image plane O. (b) (CLOSER a b) has been determined and is added
to the list of facts. (¢) (CLOSER 5 ¢) has been determined, which
implies (CLOSER « ¢) by transitivity. (d) (CLOSER d ¢) has been
determined; note that at this point nothing can be said about the relative
depth between (a, d) and (b, d).

interpretation. In any scene interpretation, the current
set of entities is divided into stationary (i.e., static) enti-
ties and mobile (i.e., possbily moving) entities.

2.2. Modeling Static Scene Structure

The static scene structure is modeled in the QSM in a
fashion very similar to a camera-centered depth map. At
time ¢, the 3-D location of any entity k with respect to the
camera is completely specified by its image coordinates
x(k, 1), y(k, 1) and its distance from the focal plane z(k, 7).
However, in contrast to a regular depth map, the distance
z(k, 1) is not represented by some numeric value, but by a
qualitative spatial relationship between entities. In par-
ticular, the relation (CLOSER A B) means that entity A is
believed to be closer to the camera than entity B in 3-D
space. This relationship can be determined efficiently and
reliably from the divergence of displacement vectors.
While a regular depth map must be updated after every
frame, this semitopological map requires no repetitive
modifications as the camera moves forward through its
environment. During this time, however, the model is
continually refined as more closer relationships become
evident (see Fig. 4).

2.3. Modeling Object Motion

Object motion is described at progressive levels of de-
tail. The least that can be said about a moving entity C is
(MOBILE C), which simply means that this entity is not
part of the static environment. Once an entity has been
identified as being in motion, it is considered mobile in all
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subsequent frames, even when its 3-D motion can no
longer be verified.

Relative motion between two entities in 3-D may be
detectable before the individual motion of a single entity
becomes apparent. The fact MOVEMENT-BETWEEN
C D 1) states that relative motion between C and D at time
t has been concluded, but it tells nothing about which of
the two entities are actually moving. This would be ex-
pressed by the more specific fact (MOVES C 1) or
(MOVES D 1).

Details about how an entity moves within the camera-
centered coordinate frame are expressed by additional
facts, e.g., MOVES-LEFT C 1), MOVES-DOWN C 1),
(APPROACHING C 1), or (RECEDING C #).

2.4. Interpretation Graph (IG)

The QSM is structured as a directed graph whose
nodes contain “‘partial scene interpretations.”’ Each par-
tial interpretation stands for a hypothesis represented by
a collection of consistent assertions. Every node of this
interpretation graph (1G), except the single root node,
inherits the facts valid in its parent node(s). The root
node itself holds all the facts that are globally true and is
thus valid in any existing interpretation. Figure 5 shows a
simple 1G for a scene with 4 entities that are all believed
to be stationary (the default assumption). Notice that at
this point there exists no complete interpretation, i.e., a
single node that contains (or inherits) a classification for
every entity in the scene. Later, we shall show how com-
plete interpretations are created by merging partial inter-
pretations.

Fortunately, updating the QSM can be accomplished
locally on partial interpretations and does not require
complete interpretations. Assume, for example, that
some rule has determined from the displacement field
that two entities (/, 2) must be moving relative to each
other in 3-D, but could not determine which one was
moving. This observation would lead to the new fact
(MOVEMENT-BETWEEN [ 2) which is globally true
and therefore asserted at the root node of the 1G (Fig. 5).
The model must now be updated to eliminate any inter-
pretation that considers both entities / and 2 stationary,
as accomplished by the following pair of rules:!

(defrule RELATIVE-MOTION-X
(MOVEMENT-BETWEEN 7x ?y)
(STATIONARY 7x)

=>

! Here we use the actual syntax of ART [18] for defining rules:

(defrule RULE-NAME (premise-1) (premise-2)
=> (action-1) (action 2y . . .}

Variables of the form ? A in premises and actions indicate local bindings
within rules.



188

BHANU AND BURGER

Viewpoint Lattice from -1

-
-4 [MEMEER 4]
i-4 [MEMBER 1]
1-3 [MEMBER 2]
-2 [MEMBER 1]
1

=1 [[InitialF act

FIG. 5.

wi (-7 [STATIONARY t]in {I-2}

Simple interpretation graph. The model contains four entities (1, 2, 3, 4), which are initially assumed to be stationary (by default). They

are listed as members of the current model in the root node (left). For each entity, a partial interpretation has been created (represented by a child

node) in which (STATIONARY n) is true.

(assert (MOBILE ?y)))
(defrule RELATIVE-MOTION-Y
(MOVEMENT-BETWEEN ?7x ?y)
(STATIONARY ?y)
=

(assert (MOBILE ?x)))

A verbal interpretation of the first rule should help to
clarify the syntax of these definitions: ““ff a 3-D move-
ment has been observed between entities X and Y then,
assuming that X is stationary, entity Y must be mobile.”

Trying to fire these rules, the system searches for the
least specific partial interpretation (i.e., the node closest

to the root) where all the premises are satisfied. By defini-
tion, the rule will then put the new assertions into this
particular node. In Fig. 6 rule RELATIVE-MOTION-X
fires in node I-2, asserting the new fact (MOBILE 2) at
this node. Note that the fact  MOVEMENT-BETWEEN
! 2) is inherited from the root node. Similarly RELA-
TIVE-MOTION-Y fires in node I-3, asserting MOBILE
1) there.

2.5. Merging Interpretations

Partial interpretations may be merged automatically by
the inference engine whenever a rule requires a conjunc-
tion of assertions located in separate nodes. However,

Viewpoint Lattice from -1

-BETWEEN | 2]
-5 [MEMBER 4] k
f-4 [MEMBER 1]
f-3 [MEMBER 2]
2 [MEMEER 1]
1 [[InstealF act]]

_V[/
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/ {-12 [MOBILE 13';;\‘[_1_—;3_)_

|

£-7 [STATIONARY 1) in {I-2)

] £-13 [MOBILE 2] in {I-2)

|

(-8 [STATIONARY 2] in [1-3)

|

£-9 (STATIONARY 3} in (1-9)

{-10 [STATIONARY 4] in [1-5)

FIG. 6. Local updating of partial hypotheses. Some rule has concluded that if (STATIONARY 1) then (MOBILE 2) must be true and vice
versa. Nodes I-2 and I-3 contain these conclusions. Inside the nodes, original hypotheses are shown above a dashed line and the consequences are

shown below that line.
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merging arbitrary nodes may result in partial interpreta-
tions that are inconsistent, e.g., if an entity is labeled as
both stationary and mobile. Merging nodes 1-2 and 1-3 in
Fig. 6 would create such an inconsistency. The problem
is handled by a set of local conflict resolution rules,
which detect inconsistent nodes and remove (‘‘poison’’)
them permanently; e.g.,

(defrule REMOVE-STATIONARY-AND-MOBILE
(STATIONARY 7X)
(MOBILE ?Xx)

=>
(poison)). <remove this node
permanently>

Note that whenever a node is poisoned, all inferior nodes
are permanently removed as well. More complex deci-
sions are necessary for conflicts that cannot be resolved
locally [19], as we discuss later.

Complete interpretations are assembled on demand by
merging all possible combinations of partial interpreta-
tions. The following simple rule initiates the necessary
merges and marks the resulting complete interpretations
with the fact (COMPLETE):
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(defrule FIND-COMPLETE-INTERPRETATIONS
(forall (MEMBER ?x)
(STATIONARY | MOBILE ?X))
=>

(assert (COMPLETE))).

Figure 7 shows the result of applying this rule to the
interpretation graph of Fig. 5. Nodes I-8 and 1-10 have
been marked as complete interpretations; I-7 and I-9 are
intermediate nodes created by the automatic merging
process. Inconsistent intermediate nodes that may have
been created by this process were removed by local con-
flict resolution rules.

2.6 Conflict Resolution

Local Conflict Resolution. 1n the previous subsection
using a simple example we showed how conflicting par-
tial interpretations are removed from the model by exe-
cuting a constraint rule, which simply poisons this partic-
ular interpretation. This has been referred to as local
conflict resolution, because the action is executed inside
a particular interpretation regardless of the global state of
the model. The content of an interpretation can be seen
as a set of premises and a (possibly empty) set of conclu-
sions that follow from the premises:

Viewpoint Lattice from I-1
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\ /
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Finding complete interpretations. Two complete interpretations (nodes 1-8 and I-10) have been created by merging partial interpreta-
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----------------------- {-10 [STATIONARY 4] 1n [I-5)
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///

tions. Note that I-2 and I-3 cannot be merged, since these nodes contain mutually conflicting interpretations.
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{premise-1, premise-2, . . .}

— {conclusion-1, conclusion-2, . . 3

For instance
{(STATIONARY 1)} — {(MOBILE 2)}

in the previous example. A conflict occurs in an interpre-
tation, when the conjunction of premises and conse-
quences can be proven to be false, i.e.,

~{premise-1, premise-2, . . . ,

conclusion-1, conclusion-2, . . . .}

as in the case of merging interpretations 1-2 and I-3 in
Fig. 6:

—{(STATIONARY 1), (STATIONARY 2),
(MOBILE 1), (MOBILE 2)}.

Assuming that the reasoning step from premises to con-
clusions is correct, a conflict indicates that the premises
(i.e., hypotheses) of this particular interpretation cannot
be true. Therefore, it is a legitimate move to eliminate
this interpretation from the model by poisoning it. In case
of a stationary/mobile conflict no other action is re-
quired, since the integrity of the whole model is not af-
fected.

Global Conflict Resolution. In some cases the detec-
tion of false premises may lead to consequences beyond
the interpretation in which the conflict originally oc-
curred. In particular, when premises inherited from pre-
vious interpretations are proven false, actions must take
place where the false facts were asserted first. This might

©® o
(stationary ¢) (mobile ¢) (closer a c)
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change the entire structure of the interpretation graph
1G).

The following example demonstrates the problem of
global conflict resolution on a scene model containing
three features a, b, c. Initially (at f = ty) nothing is known
about spatial relationships between these points and
whether they are stationary or not. By default they are
assumed to be stationary. The initial interpretation of the
scene thus contains only

Interpretation A(ty):
(STATIONARY a)
(STATIONARY b)
(STATIONARY o).

The states of the model as they develop over time are
shown symbolically in Fig. 8. Entities considered station-
ary are drawn with regular circles while mobile entities
are drawn with heavy circles.

Suppose that between 7, and ¢, all three points show
some amount of expansion away from the FOE, giving
rise to the conclusion that « is closer (to the vehicle) than
b, a is closer than ¢, and c is closer than b. From the
information gathered up to this point, the complete inter-
pretation of the scene at time 7, looks like this:

Interpretation A(t)):

(STATIONARY a)}(STATIONARY #)(STATIONARY ¢)
(CLOSER a b)

(CLOSER a ¢)

(CLOSER ¢ b)

At time ¢, one of the rules claims that c is closer than a
and tries to assert this fact into the current interpretation.
Clearly, the new interpretation would contain the con-
flicting facts (CLOSER a ¢) and (CLOSER ¢ a), which
would not be a feasible interpretation. The conflict is re-

a e @ T "’%//é
B © ‘.
.
.. —_—
c (©)

FIG. 8. Development of the Qualitative Scene Model (QSM) over time. At time 1, three features a, b, c are given, which are initially assumed to
be stationary. At time 7, three CLOSER-relationships have been established between «a, b, and c¢. At time 1, a conflict occurs in interpretation A by
the contradictory facts (CLOSER a ¢) and (CLOSER ¢ a). Two new interpretations (B and C) are created, each containing one feature considered
mobile (a, ¢ respectively). At time ¢; a new conflict occurs in interpretation B from the additional fact (CLOSER b ¢). Since another interpretation
(C) exists at the same time which could absorb this fact (¢ is mobile in C). B is not branched out but discontinued. C remains the only active

interpretation in the model.
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solved by creating two disjunct hypotheses B and C, with
either ¢ or ¢ as mobile:

Interpretation B(z»):
(MOBILE a)
(STATIONARY b)
(STATIONARY o)
(CLOSER ¢ b).

Interpretation C(#»):
(MOBILE ¢)
(STATIONARY a)
(STATIONARY b)
(CLOSER a b).

Since the CLOSER relationship is only meaningful be-
tween stationary entities, hypothesizing an entity as be-
ing mobile causes the removal of all CLOSER-relation-
ships that exist in the interpretation with respect to this
entity.

At this point in time (#3), two feasible interpretations of
the scene are active simultaneously. All active interpreta-
tions are pursued until they enter a conflicting state, in
which case they are either branched into new interpreta-
tions or removed from the QSM.

In this example, it is assumed that both interpretation
B and C are still alive at some time ¢,. At time ¢;, a rule
claims that if both » and ¢ are stationary, then » must
be closer than ¢. This would not create a conflict in in-
terpretation C, because there ¢ is considered as being
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MOBILE, making (CLOSER b ¢) meaningless in this
context.

Interpretation B, however, cannot ignore this new
finding (CLLOSER b c¢) because it considers both B and
C as being stationary and contains the contradictory
fact (CLOSER ¢ b)! Again, interpretation B could
be branched into two new interpretations, with either
(MOBILE b) or (MOBILE c). This time, however, there
is another active interpretation (C), which could absorb
(CLOSER b ¢) without causing an internal conflict. Thus
interpretation B is not branched out, but removed alto-
gether from the model.

The decision not to create the additional interpreta-
tions D and E of course does not imply that the surviving
interpretation C is actually correct. As a matter of fact,
any of those three interpretations may be the correct one
and in general there would be a large number of addi-
tional candidates. Any feasible interpretation, i.e., one
that cannot be proven false, may also be correct. Since
the number of interpretations grows exponentially with
the number of entities in the scene, the search for plausi-
ble interpretations is subject to the guidelines (meta-
rules) described in Section 2.7.

In the following it is shown how the conflicts in this
example would have been actually resolved in terms of
partial interpretations. The structure of the interpretation
at time ¢; is shown in Fig. 9.

The first conflict occurs at time 75, when (CLOSER c¢
a) is asserted. Since the premises for this new fact are

Viewpoint Lattice from i-1

-5 [STATIONARY A]1n [1-2)
D B X

1-4 [MEMEER C]
{-3 [MEMEER B]

U — /

#-§ 1-6 [STATIONARY B]1n [I-3)

f-12 {CLOSER € B in [1-6)

FIG. 9. Structure for the situation at time 7,. CLOSER-relationships are established between three pairs of entities (I-5, -6, and I-7). Entities «,
b, and ¢ are shown as A, B, and C, respectively, in the implemented structure displayed in Figs. 9—12.
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(STATIONARY a) and (STATIONARY «¢), it is asserted
into existing interpretation 1-5 which contains exactly
those hypotheses. This situation is shown in Fig. 10(a).
The conflict suggests that the premise which is the basis
of interpretation I-5, namely (STATIONARY a) and
(STATIONARY o), is false. Since a and b may not be
considered both stationary, at least one of them must be
moving relative to the other. However, simply removing
the conflicting interpretation would not automatically
create this conclusion. The problem is solved indirectly
by the following rule, which detects the local conflict and
spreads the conclusion over the entire model by asserting
it in the root node:

(defrule CONCLUDE -MOTION~-FROM~CLOSER-CON-
FLICT
(CLOSER ?X ?Y)
(CLOSER 7Y ?7X)
{(at ROOT (assert
?X 7Y))))

(MOVEMENT -BETWEEN

Two new facts are asserted in the root node because
of the symmetry in the rule’s left-hand side (Fig. 10(b)).
In reaction to the new facts in the root, the rules
RELATIVE-MOTION-X and RELATIVE-MOTION-Y
conclude (MOBILE ¢) in 1-2 and (MOBILE «) in I-4 (Fig.
10(c)). This leads to the poisoning of interpretation I-5 in
response to its internal stationary/mobile conflict (Fig.
10(d)). Now the original conflict at time 7, is eventually
resolved. The interpretation 1-6 and 1-7 contain the two
separate scene interpretations B and C respectively.

The second conflict in this example (at time ¢;) is
caused by the assertion of (CLOSER b ¢) in interpreta-
tion I-6 (Fig. 11(a)). As in the previous case, (WO new
facts (MOVEMENT-BETWEEN b ¢) and (MOVE-
MENT-BETWEEN ¢ b) are asserted in the root node,
which eventually poisons interpretation 1-6 (Fig. 11(b)).
Since 1-4 labels every member entity of the model and is
free of conflicts, it represents a feasible scene interpreta-
tion, as does interpretation I-7. In I-7 more entities (2) are
stationary than in 1-4 (1), such that I-4 might be dropped
in favor of I-7 (Fig. 12). The actual implementation, how-
ever, would not discard 1-4 at this point in time, consider-
ing the small evidence in favor of I-7.

In order to allow any intelligent decisions, the informa-
tion kept in the QSM must be made explicit on demand.
In the simplest case, only one scene interpretation exists.
When several scene interpretations are feasible at the
same time, they must be evaluated according to specific
criteria, depending upon the kind of decision that must be
made. Often, this does not even require the formation of
complete interpretations at all.

For example, the FOE computation depends upon a
set of image features that are likely to belong to the static
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environment. Consequently, we can use those features
that are not considered mobile in any existing interpreta-
tion. This set can be found by looking at the partial inter-
pretations only, without building complete interpreta-
tions. Similarly, in an alert situation, we may want to
know all potentially moving entities in the scene, regard-
less of whether they are all mobile in any complete inter-
pretation. Alternatively, we may rank each complete hy-
pothesis by some ‘‘plausibility’’ measure, e.g., the
number of current stationary entities.

2.7. Meta Rules

The process of building the QSM involves four differ-
ent forms of activities: (a) deriving 3-D facts from the 2-D
image sequence, (b) creating hypotheses about the scene,
(c) detecting conflicting hypotheses, and (d) resolving
those conflicts. In order to avoid a combinatorial explo-
sion of possible scene interpretations, the search for the
most plausible scene interpretation is guided by the fol-
lowing meta rules:

« Always tend towards the “‘most stationary” (.e.,
most conservative) solution. By default, all new entities
(i.e., features entering the field of view) are considered
stationary.

« Assume that an interpretation is feasible unless it
can be proved to be false (the principle of ‘‘lack of con-
flict””)

« If a new conclusion causes a conflict in one but not
in another current interpretation, then remove the con-
flicting interpretation.

+ If a new conclusion cannot be accommodated by
any current interpretation, then create a new, feasible
interpretation and remove the conflicting ones.

In this section we described the basic elements, struc-
ture, and update mechanisms of the Qualitative Scene
Model. In the following section, the knowledge sources
are described, which actually create the information
stored in the QSM.

3. KNOWLEDGE SOURCES

The QSM serves as the blackboard in a rule-based n-
ference system and is maintained by a generate-and-test
process. The two major knowledge sources forming the
reasoning engine are the Generation Rules, which create
partial hypotheses from observations made in the image,
and the Verification Rules, which try to confirm (or dis-
prove) existing hypotheses (see Fig. 3). In practice, both
rule sets are active concurrently and every rule may fire
at any time. However, the two categories of rules are
distinguished by the way they are formulated.
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Viewpoint Lattice from |-1
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FIG. 10a.
conclusion (CLOSER « ¢).

Generation Rules are forward chained and try to detect
significant events in the input data (Fuzzy FOE and dis-
placement vectors) in a bottom-up fashion. In contrast,
the Verification Rules are generally backward chained
and attempt to collect visual evidence that supports or
contradicts an existing hypothesis. Bottom-up rules
serve as filters to reduce the search space for possible

Conflict 1. The first conflict occurs at time #, when the (CLOSER ¢ «) is asserted in I-5 (arrow). which contradicts the existing

interpretations, but may produce a large number of irrele-
vant facts. While a careful balance between bottom-up
and top-down execution is a critical design problem, we
do not make this classification for the rules discussed
below. Instead, we distinguish between rules for making
image observations, rules for static scene interpretation,
and rules for motion detection and analysis.

Viewpoint Lattice from I-1

1-2

=15 [CLOSER C A} n [1-5
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-
-1
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(-3 [MEMEER A] \

‘l -7 (STATIONARY CJin [1-4)

£~13 [CLOSER A B]an [1-7) I

FIG. 10b. Conflict 1. The conflict in I-5 has been detected by the rule CONCLUDE-MOTION-FROM-CLOSER-CONFLICT, which asserted
its conclusions as two new facts at the root node I-1 (arrow). The original conflict is not removed yet.



194

BHANU AND BURGER

Viewpoint Lattice from I-1
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FIG. 10c. Conflict I. As a consequence of the facts (MOVEMENT-BETWEEN. . .) in the root node, entities « and ¢ are concluded to be

MOBILE in 1-4 and 1-2 (arrow).

3.1. Image Observations

The purpose of the Image Observation Rules is to de-
scribe in abstract terms certain static and dynamic 2-D
relationships between the features tracked through the
image sequence. Static observations are simply derived
from the numerical positions of image features, such as

between pairs of features. The most important static rela-
tions are the following:

Features with respect to each other—

(LEFT-OF a b 1), (RIGHT-OF a b 1) feature a is left
(right) of b at time ¢,

Viewpoint Lattice from i-1

=17 [MOVEMENT-BETWEEN C A
=16 [MOVEMENT-BETWEEN A C

1-4 [MEMBER C]

fr—

-3 [MEMBER B]

f-13 (CLOSER A BJin (1-7;]

£-19 [MOBILE A) tn [I1-4)

FIG. 10d. Conflict 1. Now the Conflict is finally removed by poisoning I-5. The remaining structures 1-6 and I-7 represent the two new scene

interpretations B and C.
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Viewpoint Lattice from I-1
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FIG. 11a.

(ABOVE a b 1), (BELOW a b 1) feature « is above
(below) b at time 1,

Features with respect to the Fuzzy FOE—

(LEFT-OF-FOE a 1), (RIGHT-OF-FOE a 1) feature a
is left (right) of the FOE at time 1,

(ABOVE-FOE « 1), (BELOW-FOE « 1) feature q is
above (below) the FOE at time .

Conflict 2. The conflict arises from the conclusion (CLOSER & ¢) in I-6.

Since in general a single FOE-location is not given, the
above relationships must be interpreted with respect to a
set of possible FOE-locations. For example, (LEFT-OF-
FOE a 1) is true when a is left of every possible FOE-
location x; at time #:

(LEFT-OF-FOE a 1): x, < x, for all Xy = (xyyr) €
FOE(y).

Viewpoint Lattice from -1

TIONARY AJin [I-2)

b g f-18 {MOBILE CJin [I-2)

X

-25 {(MOBILE B]1n (I-4)
£-19 {MOBILE A] in [1-4)

FIG. 11b. Conflict 2. In response to the conflict in 1-6, two new facts (MOVEMENT-BETWEEN b ¢) and (MOVEMENT-BETWEEN ¢ b)
have been asserted at the root node. This, in return, leads to the removal of I-6 and the conclusion of (MOBILE ¢) in I-3 and (MOBILE b) in [-4. 1-4
and I-7 represent two complete scene interpretations, each providing a label for every entity in the model.
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Viewpoint Lattice from I-1
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FIG. 12. Interpretation I-4 has been dropped because the interpretation available in I-7 considers more entities (2) as being stationary.

Two other static relationships derived from the ones
above are

(OPPOSITE-TO-FOE a b 1)—features a and b lie on
opposite sides of the FOE, equivalent to (LEFT-OF-
FOE a 1) and (RIGHT-OF-FOE b ¢) or to (ABOVE-FOE
a t) and (BELOW-FOE b 1) (this relation is symmetric,
i.e., (OPPOSITE a b 1) = (OPPOSITE b a 1)),

and

(INSIDE-TO-FOE « b 1) features a and b lie on the
same side of the FOE but a is closer to the Fuzzy FOE
than b.

Again, this is measured relative to the set of possible
FOE-locations:

(INSIDE-TO-FOE a b 1):

d(x/, x,) < d(x;, x;) for all x; € FOE()) < d(x™, a)
<dxP™, by and dxF™", a) < dxP™, D),

where xf’mi“ is the FOE-location closest to x;, (d is the
Euclidean distance in 2-D).

This relationship is particularly easy to determine
when the two features are located in a small neighbor-
hood (Fig. 13). For two features lying in different parts of
the image, the INSIDE-relationships can only be estab-
lished when one feature is clearly closer to any possible
FOE-location than the other feature. The above formula-
tion takes this into account without explicitly distinguish-
ing the two cases.

Dynamic observations express significant changes that
occur in the image between successive frames or over
multiple frames. The most important members of this
category are the following:

(MOVING-TOWARDS-FOE a t)—feature a moves
towards the Fuzzy FOE at time 7. This is a strong indica-
tor that the corresponding entity is actually moving in
3-D.

(DIVERGING-NONRADIAL a t)—feature @ shows a
strong deviation from radial motion, incompatible with a
stationary interpretation.

(CONVERGING a b r)—the distance between the two
features « and b is getting smaller. This does not imply
that either of the two features is actually moving in 3-D.
The conclusions drawn from this fact depend upon the
context (i.e., particular location of the two features rela-
tive to the FOE). This relation is symmetric, i.e.,

(CONVERGING a b 1) = (CONVERGING b a 1).
(DIVERGING-FASTER «a b t)—feature a appears to

be moving away from the FUZZY-FOE at a higher rate
than feature b. For an exact FOE, we define the diver-

FIG. 13.
a, b. ¢ with respect to a given area of possible FOE-locations. x
the FOE which is closest to . Here (INSIDE-TO-FOE a b 1) is true, but
neither (INSIDE-TO-FOE a ¢ 1) nor (INSIDE-TO-FOE b ¢ 1).

Establishing the INSIDE-relationship. For image features
b,min iS
f
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gence div(a, 1) of a feature g at time 7 as

ra, t) — rla, t — 1)
rla, t = 1)

3

div(a, 1) =

where r(a, ) and r(a, t — 1) are the 2-D distances be-
tween a and the FOE at time 7 and ¢ — 1 respectively.
With the Fuzzy FOE, the divergence of a feature is ex-
pressed as an interval instead of a single value: diva(a, 1)
= div(a, 1) = divmala, 0. If for two features a, b the
corresponding intervals do not overlap, then one of them
certainly diverges faster than the other, i.e.,

diVmin(aa t) > divmax(ba l)
= (DIVERGING-FASTER a b 1).

(PASSING a b t)—feature a is closer to the FOE than
b and the two features are getting closer to each other.
This is an interesting observation because it supplies
strong evidence about the static scene structure. For ex-
ample, for a person driving a car, close objects (like traf-
fic signs) appear to move toward the periphery of the
retina much faster than the background, thus ‘‘passing”’
features at far distance. Fig. 14 shows a typical situation
where one feature is passing another in the image.

The following rule for determining the PASSING rela-
tionship should demonstrate how some of these different
relationships interact:

(defrule DETERMINE-PASSES
(INSIDE-TO-FOE ?A 7B 7t)
(not (OPPOSITE-TO-FOE ?A ?B ?t))
(CONVERGING ?A 7B ?t)

=

(assert (PASSING ?7A ?B ?t))).

Computing any relation involving the FOE must take into

account that the Fuzzy FOE stands for a region of possi-

FIG. 14. Passing. A typical situation where one feature, A, seems to
be passing another, B, in the image.
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ble FOE locations, not for a single point. Since these
observations must hold for any possible FOE, they may
be undetermined for certain features. Consequently, for a
small Fuzzy FOE more of these relationships can be de-
duced than for a large FOE.

3.2.  Static Scene Interpretation

As mentioned in the previous section, the static part of
the QSM is built as a partial ordering of entities by their
range, based upon the CLOSER relation. The CLOSER
relation is transitive, i.e.,

(CLOSER a b) and (CLOSER b ¢) = (CLOSER « ¢).

If the exact location of the FOE is known, the depth (i.e.,
its 3-D distance from the camera) of a stationary feature a
is proportional to the rate of divergence div (a, 1) (see
above) of its image [20]. This is the well known basis for
motion stereo. Obviously, if we know that one feature
diverges faster than another, we can conclude that it is
also closer to the camera in 3-D, as long as both entities
are stationary:

{(defrule CLOSER-FROM-DIVERGENCE
(DIVERGING-FASTER ?A ?B ?t) {an image
observation}
(STATIONARY 7A)
(STATIONARY ?B) {interpretation with x and
y stationary}
==
(assert (CLOSER ?A ?B))) {a new hypoth-
esis}.

While this particular rule is designed to generate hypoth-
eses, a similar rule could be used to verify existing
CLOSER hypotheses by checking

(CLOSER «a b) > (DIVERGING-FASTER 5 a).

Alternatively, CLOSER can be concluded from features
“passing’’ another, which is a special (but obvious) case
for different rates of divergence. ‘‘Passes’’ can be de-
tected reliably when features are close to each other in
the image, even when the Fuzzy FOE is very large:

(defrule CLOSER-FROM-PASSING
(PASSING 7A ?’B ?t)
(STATIONARY 7A)
(STATIONARY ?B)

=>
(assert (CLOSER ?A ?B))).

Again, this rule can be used to verify existing CLOSER

hypotheses.
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FIG. 15. The convex nature of the viewing profile. It allows the
heuristic that features lower in the image are generally closer to the
vehicle.

Supplementary information about the 3-D scene struc-
ture can be implanted in a similar fashion, such as hints
from occlusion analysis. The following rules make use of
the simple heuristic that, with an upright camera in a
natural landscape, features lower in the image are usually
closer in 3-D (see Fig. 15). This may, of course, not be
valid in other environments, such as indoor scenes:

(defrule LOWER-IS-CLOSER
(BELOW-FOE ?A ?1)
(BELOW-FOE 7B ?1)
(BELOW-FOE 7A ?B 7t)

=2
(assert (CLOSER ?A 7B))).

In the actual implementation, this heuristic rule is used

only for the purpose of verifying existing hypotheses. As

it turns out in the experiments presented in Section 4, this
rule is valuable for detecting implausible static interpreta-
tions.

3.3.

Some forms of 3-D object motion are immediately
manifested in the derotated image, whereas other forms
of motion require additional reasoning. For example, if
an image feature is found to be moving toward the Fuzzy
FOE (instead of diverging away from it), then it must
belong to a moving entity, regardless of its position in
3-D. The corresponding rule contains only one premise
and asserts (MOBILE ?x) as a globally known fact (i.e.,
one that is true in every interpretation):

Motion Detection and Analysis

(defrule DIRECT-SINGLE-MOTION-1
(MOVING-TOWARDS-FOE ?A ?t) {observation
at time ¢}
=>
(assert (MOVES ?A ?t))) {a global fact}.

Once an entity has been found moving, another rule
makes sure that it is remembered as being mobile forever:

(defrule LABEL-AS-MOBILE
(MOVES ?7A ?7t)
=>
(assert (MOBILE ?A))) {a global fact}.

BHANU AND BURGER

Since (MOBILE ?A) is asserted globally (i.e., at the root
node of the interpretation graph), it is automatically true
in every subsequent interpretation. As mentioned in Sec-
tion 2.5, any partial interpretation containing the conflict-
ing fact (STATIONARY ?A) will automatically be re-
moved by local conflict resolution.

A weaker condition for direct motion detection is given
by strongly nonradial image motion of a feature:

(defrule DIRECT-SINGLE-MOTION-2
(DIVERGING-NONRADIAL 7A ?71t)
=>
(assert (MOVES 7A ?t))).
When the Fuzzy FOE is not well defined, the movements
of image features relative to the FOE may not be appar-
ent. The rationale for the following rule is that if two
entities are static, their images should diverge from the
FOE at a rate greater than zero. Consequently, if the
FOE is known to lie between two features, the features
must diverge from each other to permit a static interpre-
tation:

(defrule DIRECT-PAIR-MOTION
(OPPOSITE-TO-FOE ?A ?B 71t)

(CONVERGING ?A ?B ?t) {if static, they
should diverge}
=
(assert (MOVEMENT-BETWEEN ?A ’B))) .

The assertion (MOVEMENT-BETWEEN. . .) would in
turn fire the rules RELATIVE-MOTION-X and RELA-
TIVE-MOTION-Y to designate one of the features as
mobile within the appropriate partial interpretations, as
described in Section 2.4.

Indirectly, motion can be detected from inconsistent
static interpretations. In particular, when there is evi-
dence that one entity (assumed to be static) is CLOSER
than another, but there is also evidence for the opposite,
a static (i.e., rigid) interpretation is not feasible any
longer:

(defrule MOTION-FROM-CLOSER-CONFLICT
(CLOSER ?A ?B) {an inconsistent partial in-

terpretation}
(CLOSER 7B 7A)
=
(at ROOT (assert (MOVEMENT-BETWEEN 7A

’B)))).

The directive ‘‘at ROOT” in the above rule causes the
subsequent assertion to be placed at the root node of the
interpretation graph instead at the node where all the
premises are satisfied. Consequently, this form of conflict
resolution is non-local.
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4. EXPERIMENTS

We have implemented a prototype system that runs on
a Symbolics 3670 computer. The FOE component was
programmed using regular CommonLISP functions. For
the rule-based reasoning system, we have used the ART
development tool [18]. In the following, we demonstrate
our approach on two experiments, one with a synthetic
image sequence and the other one with real images.

4.1. Synthetic Example

The purpose of the first example is to discuss a variety
of different situations on a single (synthetic) image se-
quence, particularly to show how the QSM develops over
time. It does not include the results of the FOE computa-
tion. The generated image sequence shows a road scene
that contains a set of stationary and moving objects (Fig.
16). The camera is moving at 15 km/h towards an inter-
section, which is initially 80 m away. Frames are taken at
0.5 s intervals, resulting in a forward motion of about 2 m
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per frame. The camera also performs horizontal and ver-
tical rotations in the range of +5°.

The scene contains two moving objects. A van (labeled
F) is approaching the camera on the same road at a veloc-
ity of roughly 22 km/h. Another car (labeled P) is cross-
ing the path of the camera from right to left at 36 km/h.
The initial distance to the static pole M is 17 m; the hills
in the background are about 600 m away.

The development of the QSM for this image sequence
is shown graphically in Fig. 17. For four points in time
(0.5, 1.0, 2.0, and 4.5 s), the state of the QSM as actually
produced by the reasoning engine is displayed as the set
of complete interpretations that existed at these mo-
ments. Concurrent interpretations are stacked vertically
in this figure, but they have not been ranked. Stationary
entities are labeled with a circle; all other entities are
considered mobile. Established CLOSER relationships
between stationary entities are indicated by a connecting
line between the two image features, where the closer
entity carries a larger circle. In this example, only the
observed ‘‘passes’ between features were used to con-

t = 1.0 sec

t = 2.5 sec

\NK—F’-W/HATH_
PR 4 N, J—

t = 5.0 sec Point Traces

i N X %
I e | | PR P
/Z/ /"\/l \

N

FIG. 16. Synthetic image sequence. The camera is moving towards an intersection. The scene contains two moving objects: a van (marked F)
which is approaching the camera on the same road, and another car (P) which is crossing the path of the camera from right to left. The traces of the
point features over the entire sequence are shown in the lower righthand corner.
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t=0.5 sec: interpretation 1 t=1.0 sec: interpretation 1

t=2.0 sec: interpretation 1 t=4.5 sec: interpretation 1

° & ©
®» % p® ® ® @8@);@@
. )

. @ o ©
i

t=1.0 sec: interpretation 2

e (n.
® P §"T '
D

Symbols Used:
a,b stationary, with a CLOSER than b
¢ is moving to the left
d is moving to the right

e is receding [rom the ALV

f is approaching the ALV

FIG. 17. Interpretation of synthetic image sequence. The complete interpretations contained in the QSM are shown at four points in time (0.5,
1.0, 2.0, 4.5 seconds). Stationary entities are marked with circles. Established closer-relationships are indicated by connecting lines between
stationary entities, with the closer entity denoted by the larger circle. Concurrent interpretations are stacked vertically without ranking.

clude CLOSER relationships, not the relative rate of di-
vergence from the FOE. As a result, no CLOSER rela-
tionships are found across the image center.

Attime ¢ = 0.5 s (after the first frame pair), the scene is
considered completely static with two CLOSER relation-
ships established.

At time ¢ = 1.0 s, the moving car (P) enters the field of
view. Relative movement between P and other features
across the FOE leads to the creation of two scene inter-
pretations:

Interpretation 1 considers P as mobile and moving to
the left.

Interpretation 2 *‘thinks” P is stationary and the other
entities (A, B, C, . . .) on the opposite side of the FOE
are mobile and moving to the right. The stationary entity
P has been linked to other entitics by CLOSER relation-
ships.

The second interpretation is eliminated after the subse-
quent frame, when one of the features on the left (B) is

found to be definitely moving away from the FOE. This
movement contradicts the hypothesis that B is moving to
the right. The approaching van (F) has not been detected
up to this point. Since it is moving toward the camera
approximately on a straight path with constant velocity,
its motion is not immediately found.

At time r = 2.0 s the motion of the van causes feature F
(the van) to ‘‘pass” feature J, which temporarily creates
three interpretations:

Interpretation 2 simply says that both F and J are sta-
tionary and that entity F is closer than J, due to the
observed ‘‘pass.”” This interpretation is geometrically
feasible.

However, point J is lower in the image than F, and should
therefore be closer than F (according to the heuristic
LOWER-IS-CLOSER rule). Consequently, motion be-
tween the entities F and J is hypothesized:

Interpretation 1 sees F approaching and J stationary
(the correct solution), while
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Part of the interpretation graph for the synthetic example (r = 0.5 sec). I-1 (on the left) is the root node and I-2 to I-15 are the initial

default hypotheses for individual entities in the scene. Arrows indicate inheritance between nodes. Not all existing links are shown in this diagram.
1-107 (on the right) represents one complete interpretation formed by merging partial interpretations.

Interpretation 3 sees F stationary and J receding from
the camera.

The last interpretation is refuted subsequently, when J is
found to be diverging downwards from the FOE, which
contradicts its receding motion. Eventually, at 1 = 4.5 s,
only one interpretation has survived, showing F and P as
mobile and all other entities as stationary. Fig. 18 shows
the interpretation graph for this example at time 1 = 0.5 s
after creating the only existing complete interpretation.
Inner nodes of the graph correspond to partial interpreta-
tions which are combined to form complete interpreta-
tion (I-107).

4.2. Real Example

For the second example (Fig. 19), we have used an
image sequence taken from the Autonomous Land Vehi-
cle (ALYV) driving on a road through a test site (Fig. 19a).
To obtain the original displacement vectors, point fea-
tures were selected and tracked manually between suc-
cessive frames. This was done on binary edge images
(Fig. 19b) to imitate the conditions for automatic point

tracking, because some clues obvious (to humans) in the
original grey-scale sequence are lost during edge detec-
tion. Consequently, the end points of the original dis-
placement vectors are not very accurate. Recent experi-
ments on extended sequences [21, 22] show that similar
displacement vectors can be achieved with fully auto-
matic feature tracking.

Fig. 19c shows the results of the FOE computation.
The shaded area near the image center represents the
Fuzzy FOE, with the small circle in the middle that
marks the location of minimum error FOE point. The
feature points used to compute the FOE are those that
are not considered mobile by any interpretation in the
current scene model. The computed rotations for this
frame pair (about 0.2° horizontally and 0.1° vertically) are
shown in a coordinate square in the lower left-hand cor-
ner. The distance traveled over the (assumed planar)
road surface between frames has been estimated as
2.1 m.

The scene contains two moving objects. Point 24 be-
longs to a car which had passed the ALV earlier in this
sequence. It is clearly identified as being mobile and is
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Displacement vectors and resulting Fuzzy FOE (shaded area), camera rotations (about two axes) and estimated advancement. The

circle inside the shaded area is the estimated FOE location with the lowest error value. Rotation about the third axis is small enough to be

neglected.

about to disappear in the current frame. Point 33 is lo-
cated on a car approaching the ALV, but its motion has
not been detected up to the current frame.

At frame 196, some movement between feature 33 and
several other features (15, 39, 50, . . . , 73) has been
detected but the direction of motion can not be resolved.
Two different interpretations are created (Fig. 19d), one
with entity 33 as mobile (Interpretation 1) and the other
with entity 33 as stationary (Interpretation 2). Both inter-
pretations are carried over to frame 197 (Fig. 19d), where
two significant things happen.

In Interpretation 1 for frame 197 (Fig. 19d), entity 33 is
concluded to be approaching the camera, because of its
relative position to stationary entities and its downward
movement. Thus, Interpretation 1 says that ‘“if 33 is mo-
bile, then it is approaching our vehicle.”

In Interpretation 2 for frame 197 (Fig. 19d), entity 33 is
still regarded as stationary. If this were true, however,
then 33 must be quite close to the vehicle, even closer
than entity 76 (at the bottom of the image)! This situation
would be very unlikely (LOWER-IS-CLOSER heuristic)
and therefore, Interpretation 2 is ruled out. Only the cor-
rect interpretation 1 for frame 197 (Fig. 19d) remains.

5. CONCLUSIONS

The difficulty of understanding dynamic scenes from a
moving camera is that szationary objects are generally
not still in the image while mobile objects do not neces-

sarily appear to be in motion. Consequently, the detec-
tion of 3-D object motion sometimes requires reasoning
far beyond simple 2-D change analysis. In this paper, we
presented the conceptual outline of a new approach to
scene understanding in dynamic environments.

Our approach departs from related work by following a
strategy of qualitative rather than quantitative reasoning
and modeling. While quantitative techniques have tradi-
tionally been dominant in computer vision, qualitative
techniques are now receiving growing attention in this
field [23, 24]. They hold the potential to replace expen-
sive numerical computations and models by simpler rea-
soning about the important properties of the scene, repre-
sentations. This is particularly true for the higher levels
of vision and it seems to be a useful methodology for
building abstract descriptions gradually, starting at the
lowest level.

The numerical effort in our qualitative approach is
packed into the computation of the Fuzzy Focus of Ex-
pansion (FOE) a low-level process, which is performed
entirely in 2-D. We have extended the FOE concept by
computing a connected region of possible FOE-locations
(called the Fuzzy FOE), instead of a single point FOE
image location. The subsequent reasoning process evalu-
ates the ‘‘derotated”” displacement field with respect to
the Fuzzy FOE and creates a qualitative description of
the scene. Multiple scene interpretations are pursued
concurrently to reflect the ambiguities inherent in any
type of scene analysis. If only one interpretation was
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FRAME 196: interpretation 1

BHANU AND BURGER

FBAME 196: Interpretation 2

FIG. 19d. Interpretation of real example. Two different scene interpretations for FRAME 196 are created. Entity 24 is known to be moving
(from earlier conclusions) in both interpretations, but its direction of motion is currently undetermined (indicated by a square). Interpretation 1 for
FRAME 196: entity 33 (square) is considered mobile with undetermined motion. Interpretation 2 for FRAME 196: entities 15, 39,50, . . . , 73
(squares) are mobile, 33 is stationary. Neither of these interpretations can currently be ruled out and both are carried over to the next frame pair.
Interpretation 1 for FRAME 197: entity 33 is concluded to be moving towards the camera (indicated by an upright square). Interpretation 2 for
FRAME 197: It is about to vanish. If entity 33 was really stationary, then it must be closer to the camera than entity 76 (at the bottom), indicated by
the arc from 33 to 76 and the larger circle around 33. However, this contradicts the heuristic that entities lower in the image are generally closer in

3-D space, which makes the entire interpretation implausible.

available at any time, the chance of that interpretation
being incorrect would be significant. Simultaneously
evaluating a set of scene interpretations allows us to con-
sider several alternatives and, depending upon the situa-
tion, select the appropriate one (e.g., the most “‘plausi-
ble”’ or the most ‘‘threatening’’ interpretation).

For our implementation, we have used off-the-shelf ex-
pert system tools mainly because they allow easy manip-
ulation of declarative knowledge. Execution speed was
only of minor importance. The examples presented here

show the basic operation of this system and demonstrate
that some apparently simple situations may actually re-
quire complex paths of reasoning.

The availability of reliable displacement vectors is im-
portant to our approach. While we used manual point
tracking for the examples shown here, recent experi-
ments indicate that automatic feature selection and
tracking have become practical. The system described
here has been successfully applied to ALV image se-
quences with over 250 frames in a fully automatic mode
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1]. Extending this approach to more complex image

features, such as line segments and region boundaries, is

a

future objective. However, the current focus of our

work aims at the integration of multiple sources of infor-
mation into a reliable and robust framework for dynamic

SC

2.

ene analysis [21].
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