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Abstract: Image segmentation is a crucial part of machine
vision applications. In this paper a system to perform
real-time segmentation of images is presented. It uses a
real-time segmentation VLSI chip that is based on a gra-
dient relaxation algorithm and is designed using the Path
Programmable Logic design methodology developed at
the University of Utah. The system design consider-
ations, system specifications, and an input/output format
for the chip are discussed. The actual design of the chip is
given that uses pipeline methodology to achieve real-time
performance with a compact VLSI layout. The imple-
mentation of the segmentation system is presented and
the segmentation chip and the overall system are evalu-
ated with regard to real-time performance and segmenta-
tion results.
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1 Introduction

The low-level image processing required by image
analysis algorithms is computationally intensive.
Images of size 512 X 512 bytes are commonly used
in general image processing and larger image sizes
are often required by LANDSAT, aerial, and
biomedical imaging applications (Barbe 1981, Kru-
ger and Thompson 1981). Military applications such
as target recognition and tracking (Bhanu 1986) and
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commercial applications involving mobile robots
will not be able to utilize fully image analysis tech-
niques unless the system can provide information at
the rates necessary to allow the image processor to
respond in real time to visual stimuli. The large
amounts of data coupled with the need for rapid
processing make general purpose computers inap-
propriate for most image processing tasks. For a
512 x 512 image data rates of 30 frames per second
(fps) are common. To achieve real-time perfor-
mance with these data rates, the computer would
have to process fully a picture element (pixel) every
100 nanoseconds (ns). Since most image processing
algorithms require multiplication as well as other
simpler operations to be performed on each pixel,
specialized computer architectures are required if
real-time performance is to be realized. Previously
proposed special architectures have included array
processors and multiprocessors. However, array
processors and multiprocessors cannot meet the
needs of many practical image processing systems
due to size, weight, power, and environmental re-
quirements.

The design and implementation of image pro-
cessing algorithms in VLSI (very large scale inte-
gration) is an expanding area of research (Fouse et
al. 1981, Fu 1984, Nudd et al. 1979, Offen 1985).
Special purpose charge-coupled devices (CCDs)
and MOS ICs (metal oxide semiconductor inte-
grated circuits) have been custom designed for low-
level operators on ‘‘smart’’ sensor projects. The
impact and advantages of VLSI on image under-
standing have also been studied (Nudd et al. 1979).
A recent example of a VLSI chip for image process-
ing is the real-time video moment generating chip
developed by Anderson (1985, Weste and Eshra-
ghian 1985). The main obstacle blocking the wide-
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spread use of VLSI in designing real-time image
processors is the complexity of VLSI design. VLSI
design complexities typically increase exponen-
tially with the number of devices on the chip, mak-
ing VLSI very costly to implement (Smith, Carter,
and Hunt 1982). However, computer aided design
(CAD) approaches to VLSI design help to manage
this inherent complexity and can reduce design
times by an order of magnitude when compared to
full-custom design techniques. Since the design
complexities required by real-time image proces-
sors also increase significantly with the number of
functions implemented, CAD-based VLSI design
methodology provides us with an excellent tool for
the design of specialized real-time image proces-
sors. Further, these VLSI CAD tools can be used to
update and make changes in the designs and to im-
plement effective testing procedures.

This paper describes the development of a seg-
mentation processor that uses computer aided
VLSI design tools to produce a CMOS (comple-
mentary MOS) VLSI chip that segments TV Images
in real time. The paper is organized into six sec-
tions: Section 1 is the introduction; Section 2
presents the CAD-based design methodology; Sec-
tion 3 discusses algorithm selection in the context of
VLSI design; Section 4 presents the system-level
design considerations and details of the system,;
Section 5 describes the actual design of the chip;
Section 6 discusses the issues related with system
construction and integration; Section 7 discusses
the evaluation of the real-time image segmentation
chip and the evaluation of the image processing sys-
tem; and finally, Section 8 summarizes the results
and contributions of this paper.

2 CAD-Based VLSI Design Tools

CAD-based approaches to VLSI design help to
manage the circuit complexity by hiding many of
the circuit details from the designer. In a sense,
using these CAD tools is analogous to using high-
level computer languages such as Pascal or ““‘C”’
instead of assembly languages. Generally, these
high-level languages are not so efficient or so fast as
hand-coded assembly language but are much easier
to use and understand when writing complex pro-
grams. Similarly, CAD VLSI tools provide a frame-
work for designing complex circuits that allows the
designer to concentrate on functionality while leav-
ing such details as process design rules and mask
generation to the computer. Circuits designed using
these methods are not so compact as full-custom
designs but are easier to understand and have a bet-
ter chance of working on the first pass because of

the relative complexity reduction. The University
of Utah has developed a CAD-based VLSI design
tool known as Path Programmable Logic (PPL),
which provides these improvements in circuit de-
sign efficiency (Smith 1983, Smith, Carter, and
Hunt 1982, Smith and Israelson 1985). In this sec-
tion the PPL design methodology is presented and
contrasted against other CAD-based VLSI design
tools. '

2.1 The Path Programmable Logic Design
Methodology

PPL is a cell-based design tool. Similar to the stan-
dard cell design method, the designer chooses the
functions necessary to implement the design from a
““cell library’’ of previously designed circuit mod-
ules. Cells are placed in the PPL grid and connected
to other cells by butting cells together or routing
wires directly between cells. One major advantage
provided by PPL over standard cells is its inherent
two-dimensionality. PPL cells can be placed at any
row or column location. The cells are designed to fit
together on all four sides rather than on two sides as
in the standard family design. All four sides of each
PPL cell have interconnecting wires running to the
edges so interconnection between cells can be made
in all four directions simply by placing a cell next to
a neighboring set of cells. PPL cells can occupy a
multiple of row and column locations. For instance,
some cells, called “‘unit’’ cells, will only occupy a
single row and column location, whereas other
cells, called ‘‘multiple’’ cells, may occupy several
locations. A flip-flop cell might occupy two columns
and four rows but an inverter might only occupy a
single column and two rows.

PPL cell layout is best visualized by assuming
that we have horizontal and vertical metal intercon-
necting wires that cover the entire chip. The hori-
zontal and vertical wires are grouped together so
that each row and column may be represented as
having N horizontal wires and M vertical wires.
CMOS cells require two horizontal wires and three
vertical wires in each row/column location. Power
and ground wires run on the bottom level and inter-
connect to all grid locations, but the presence of
these power supply wires are invisible to the user
and are not included in the N by M wires. At each of
the row/column intersections a unit or a multiple
cell may be placed and the horizontal and vertical
wires in that row/column may either connect to the
cell, be broken, or simply pass the wires through the
cell.

The main idea behind the PPL methodology is
that circuits may be constructed by placing cells at

these grid locations. The interconnect between cells
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is formed by simply placing the cells next to each
other and allowing connections to be made. Discon-
nections between cells can be made by forcing
breaks in the existing interconnecting wires. Note
that this technique is different from the standard
cell approach where cells are positioned at prede-
fined one-dimensional locations and interconnect-
ing wires are placed between cells.

At this point the comments on breadboarding are
worth mentioning. Breadboarding refers to the
practice of building an operational prototype of the
VLSI circuits using conventional discrete compo-
nents. This step is used to validate further the de-
sign before committing to VLSI. Breadboarding
hopefully avoids some of the pitfalls and bugs that
may have been missed in the early designs and elim-
inates the time-consuming step of redesign at the
full-custom VLSI level. However, prototypes built
using discrete components cannot exactly duplicate
the operation of VLSI circuitry and require a signifi-
cant amount of time to implement. Further, it con-
tributes little to the actual low-level-design of the
VLSI components. With the simulation tools that
are available with VLSI design systems and the re-
duced manpower required when designing with
PPL, the time-consuming breadboarding step is no
longer necessary. In the time it takes to design and
prototype a breadboard version of the chips the ac-
tual chips can be designed and sent for fabrication.

2.2 PPL Computer Aided Engineering Tools

Layout (design) of an integrated circuit using PPL
methodology is done on a conventional alphanu-
meric terminal. The user places symbols that repre-
sent specific cells in the PPL library onto an array
within a window representing an area on the silicon.
Editing consists primarily of moving the cursor to
certain locations and inserting a PPL cell at this
location by typing a character corresponding to the
cell. All standard editing features are available,
such as being able to read and write to other files,
movement of blocks of PPL programs, and so on.
This editing (design) process represents the logical
description of the circuit, the physical layout, and
the interconnect. The layout editor understands the
cell library being used by the designer and thus pre-
vents him or her from creating illegal circuit config-
urations such as overlapping cells. Placement re-
strictions imposed by the IC technology being used
are also enforced by the layout program. As a
result, electrically and topologically ‘‘correct’ cir-
cuits are produced by the layout editor. This means
that the power and ground busing structure is com-
plete and that all cells properly interface on the PPL
grid as described in the previous section. After this
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Figure 1. A pictorial comparison of PPL and conventional
VLSI design techniques.

first design iteration the only verification task re-
quired for PPL circuits is logic simulation and tim-
ing analysis (Smith 1983). Figure 1 shows a pictorial
comparison between PPL and other more conven-
tional VLSI layout techniques (Mead and Conway
1980, Weste and Eshraghian 1985). As can be seen
from the figure, PPL not only reduces the number of
steps required to design a circuit, but also it tightly
couples the design sequence so that immediate de-
sign feedback is available.

Figure 2 shows an example of the PPL design of
a full adder. The top portion of the figure is the
schematic diagram of a full adder that consists of
two half adders and and ‘‘or’’ gate. The PPL repre-
sentation of the full adder is shown directly below
this schematic diagram. The PPL representation
can be directly mapped to its corresponding parts in
the schematic diagram. For clarity, the PPL repre-
sentation has been blocked out into sections. Each
section is labeled according to the schematic func-
tion implemented by that PPL block. For example,
the ‘““xor’” gate is represented by the box with the
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Figure 2. A full adder and the corresponding PPL represen-
tation.

large ““X.”” Accordingly, other gates are noted and
labeled. The inputs marked ‘A’ and “‘B’’ are car-
ried into the interior of the ‘“‘xor’’ gate (a) and
“and” the gate (b) on the two available column
wires. The bottom ‘‘xor’’ gate is routed similarly
with ““C;,”” coming in on a column wire and the
‘output from the “‘xor’’ gate performing the ‘‘half-
add” of “A”’ and ‘‘B”’ being routed through two
column wires and one row wire. The ““C,,,’* output
(e) is created by ‘‘or’’ing the outputs from the two
“and’’ gates (b, d) through the “‘plus” cells. As
shown from this example, the PPL structure allows
cells to be placed so that the amount of required
interconnect can be minimized, thereby allowing
“macro’’ cells (cell modules created from other
cells) to be designed that can be butted together to
form automatically the interconnect between cells.
By exploiting the two-dimensionality of PPL, the
designer can reduce the length of interconnect wir-
ing that in turn provides the potential for the circuit
to operate at a higher frequency.

The PPL program made with the PPL editor con-
tains all the information about both the logic and the
physical topology of the entire circuit. Thus, it is
possible to do performance analysis of the inte-
grated circuit as the PPL program is defined. This
means that, as opposed to conventional design tech-
niques, PPL can give instant feedback to the logic
designer about the performance of the particular de-
sign. Simulation of a PPL circuit is performed in
two passes. First, the symbolic design done at the
design step is converted to a logical description of
the circuit, and a transistor-level net list is created
that includes all active devices as well as all stray
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capacitance and resistance values. The circuit is
also checked for such things as DC circuit prob-
lems, unknown paths, and syntax errors. Second,
functional simulation is performed by specifying in-
puts to the circuit and computing the resulting out-
puts and internal node changes.

2.3 Mask Generation and Fabrication

Given the PPL design as created by the layout edi-
tor, mask data is generated in the CIF format (Mead
and Conway 1980, Weste and Eshraghian 1985).
These masks can then be converted to any of a
number of other formats such as GDS-II, Computer
Vision’s EXDB, and Hewlett-Packard’s IGS. A file
in one of these formats is then delivered to a vendor
who will make a mask set that is specifically keyed
to the foundry to be used.

The PPL design specifies the use of a library of
primitive cells that appear to be generic in nature to
the design engineer. However, the specific fabrica-
tion technology that is to be used must be specified
so that the resulting design is keyed to a cell library
for that technology. To date, cell libraries have been
created for technologies supported by the Depart-
ment of Defense MOSIS (MOS implementation sys-
tem) facility. MOSIS is a silicon broker that con-
tracts with outside vendors for foundry services. It
was set up to provide an inexpensive prototype ser-
vice using the multiproject chip concept for DOD-
supported research, and it has recently been opened
to commercial contractors.

The CMOS cell set used in this project supports
the MOSIS-scalable CMOS technology that is com-
patible with many existing silicon foundries. This
cell set contains over 50 cells and is the result of the
past three years of research. The library is compati-
ble with P-well, N-well, or twin-tub CMOS pro-
cesses. It was designed using a set of 3 micron de-
sign rules that can be scaled down to 1.2 micron
processing technology. It implements two-level
NAND gate logic and utilizes a single-phase clock
for the storage elements. In addition to the basic
PPL cells, a complete sublibrary of cells has been
developed for the design of static RAM subsystems.

2.4 Benchmark Tests

The design of ICs using the PPL methodology is a
major departure from the more traditional ways of
doing design such as standard family or full custom.
Thus, it was important to make a comparsion be-
tween circuits designed using the PPL. methodology
and more conventional approaches. A benchmark
test (Smith and Israelson 1985) comparing custom
design and PPL design of two circuits using an
NMOS process was done in cooperation with a lo-



.

Bhanu et al.: Real-Time Image Segmentation Processor 25

cal company. The results of the benchmark test
showed that the sizes of PPL-designed circuits com-
pared very favorably with full custom. PPL circuit
sizes ranged from 38 percent larger than full custom
to 5 percent smaller than full custom. More impor-
tantly, PPL design times were an order of magni-
tude less than the time required for full-custom de-
sign. Primarily because of these factors, PPL VLSI
design methodology was used in the design of the
image segmentation chip.

3 Algorithm Selection for Segmentation

The principal goal of the research project described
in this paper is the VLSI design and implementation
of an image segmentation algorithm. Image segmen-
tation is one of the first steps in the image analysis
process and refers to the grouping of parts of an
image that are homogeneous with respect to one or
more image characteristics. The results obtained
from the segmentation step are very important since
they form the beginning for the interpretation of the
image. As such, the segmented image provides the
input for further image analysis algorithms. Also,
the maximum execution speed of the image segmen-
tation algorithm sets the lower bound on execution
time for the overall image analysis process. Any
image analysis system striving toward real-time per-
formance will require a segmentation subsystem
that operates in real time. Due to the large amounts
of data that must be processed in order to segment
an image, segmentation algorithms, in general, re-
quire special purpose hardware for real-time perfor-
mance.

3.1 Relaxation

Relaxation is a general computational technique
that is very_ useful in computer_vision_for applica-
tions such as image segmentation and scene labeling
(Bhanu and Faugeras 1982, Rosenfeld, Hummel,
and Zucher 1976). When used as a method for image
segmentation, the relaxation algorithms assign pix-
els into classes based on their gray values, and the
gray values of the neighboring pixels. Relaxation
algorithms are iterative in nature; each new itera-
tion of the algorithm uses the results from the pre-
vious iteration so that the process is more informed
as it proceeds. Each iteration of the algorithm pro-
ceeds incrementally until the algorithm converges
to the final set of pixel label assignments that assign
the pixels to regions. The iterative nature of relaxa-
tion algorithms gives the segmentation process a
smoothing property that can provide excellent per-
formance when using noisy images. An important
question associated with relaxation algorithms is

the number of iterations needed for the conver-
gence of the process (Rosenfeld, Hummel, and
Zucker 1976). In our gradient relaxation algorithm
(Bhanu and Faugeras 1982) we use a well-defined
mathematical criteria and provide parameters to
control the rate of convergence. In practice, we use
only a small fixed number of iterations based on an
application. In the following we examine the appro-
priateness of relaxation algorithm for real-time im-
age segmentation.

Relaxation algorithms fall into the class of paral-
lel-iterative algorithms. Each iteration of the relaxa-
tion process can be executed in parallel due to the
local execution of the algorithm. Local execution
refers to the fact that the algorithm performs only
local data accesses; the updating of any single value
can be performed with only a small percentage of
the overall data that, for image processing pur-
poses, is usually spatially localized. For relaxation
algorithms that perform image segmentation updat-
ing a single pixel value normally requires only the
values of the eight neighbors immediately surround-
ing the pixel. Therefore, if a fully parallel implemen-
tation of the algorithm were available, all image pix-
els could be updated simultaneously. In many
machine vision applications image acquisition de-
vices such as TV cameras and scanners only allow
access to an image in serial fashion (one line at a
time) due to the rastering process that is used to
create the image. Thus, practical systems that pro-
cess image data in real time will gain little or no
advantage from a fully parallel approach due to the
serial nature of the imaging device. However, such
systems can still exploit the localized execution of
relaxation algorithms to great advantage. Since the
pixel update depends only on its eight neighbors, it
is not necessary to wait for the first iteration to
finish before starting the next iteration. The next
iteration can begin as soon as enough pixels have
been processed to support a full neighborhood for
the next iteration. The computations for each itera-
tion can then overlap to a great degree, providing a
significant speedup of algorithm execution. In con-
trast to a single relaxation iteration of the entire
image being processed in parallel, the best approach

for systems that use serial imaging devices is to

process multiple iterations of a small portion of the
image data in parallel.

The segmentation technique chosen for this pro-
ject is the gradient relaxation algorithm developed
by Bhanu and Faugeras (1982). This algorithm will
be presented here so that it can be compared to
other segmentation techniques based on its effec-
tiveness as a segmentation algorithm and its suit-
ability for VLSI implementation. Earlier Willet
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(1978) has reported the use of bit-slice microproces-
sors to implement a nonlinear relaxation algorithm
by Rosenfeld, Hummel, and Zucker (1976).

3.2 Gradient Relaxation Algorithm

Various approaches based on thresholding have
been used by many researchers for the segmenta-
tion of both monochrome and color images. Nor-
mally, in the application of these techniques the his-
togram shows two or more peaks in at least one of
the spectral features corresponding to various ho-
mogeneous regions of an image. Very often prepro-
cessing is done to improve the histogram, and local
properties are used to compute the local, global, or
dynamic thresholds. However, if the intensity (or
color) histogram of the image is unimodal, then the
application of such methods gives a poor segmenta-
tion. Further, there are no criteria for automatic
threshold selection. Unimodal histograms are typi-
cally obtained when the image consists mostly of a
large background area with other small, but signifi-
cant regions. This is true for most aerial, biomedi-
cal, and industrial images. Bhanu and Faugeras
(1982) have presented a basic two-class gradient re-
laxation technique and have used its variations suc-
cessfully for the segmentation of outdoor scenes,
images of biological cells, and military targets
(Bhanu 1986, Bhanu and Holben 1990, Bhanu and
Parvin 1987). It controls the relaxation process and
provides automatic selection of the threshold. A
brief description of the basic two-class technique
follows:

Suppose a set of N pixelsi=1,2,. .., Nfall
into two classes A; and A, corresponding to the
white (gray value = 225) and black (gray value = 0)
classes. Reduced inconsistency and ambiguity of
pixels with respect to their neighbors are achieved
by maximizing the global criterion (Bhanu and
Faugeras 1982, 1984):

N
C(pl"'PN)=ZIPi'q1' 1

subject to the constraint that p;’s are probability
vectors. p; is the probability that the ith pixel be-
longs to class A\; and \,. The compatibility vector,
q;, is a function of the p;’s and is defined as

1 2

q\p) = v > > cliy My s ApDpi(Ay)
i jev; i=1
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1 ifk=Lk=1,2;j€ V;;foralli
3
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and V; is the size of the set of (eight) nearest neigh-
bors. q;(\;) is the average of p;(Ay) of the eight
nearest neighbors. Compatibility ¢ measures the
likeness of a pixel with its neighbors and allows the
reinforcement of pixel labels of similar classes.

The maximization of the global criterion (1)
means that we are seeking a local maximun close to
the initial labeling (see equation (4)) subject to the
constraints that the p;’s are the probability vectors.
The maximization of criterion (1) results in reduced
inconsistency and ambiguity. Inconsistency is de-
fined as the error between p; and q;. Intuitively, this
means the discrepancy between what every pixel
‘“‘thinks’’ about its own labeling (p;) and what its
neighbors ‘‘think’’ about it (q;). Ambiguity is mea-
sured by the quadratic entropy and results from the
fact that initial labeling p” is ambiguous (p{ are not
unit vectors). We are therefore trying to align the
vectors p; and q; while turning them into unit vec-
tors. It can be easily seen that each term p; - q; is
maximum for p; = ¢; (maximum consistency) and
P; = q; = unit vector (maximum unambiguity).

Initially, at every pixel, the assignment of proba-
bilities is done by

— IBAR +

piv) = Facr L1 0.5 )

where, I(i) is the gray value at the ith pixel and
IBAR is related to the mean and variance of the
image (Bhanu and Faugeras 1982, Bhanu and Parvin
1987). FACT is a function of intensity that is taken
to be equal to 1 if I() > IBAR, otherwise its value is
between 0.5 and 1. FACT is related to the expected
number of white and black pixels in the image. It
does not affect the rate of convergence very much,
but it affects the segmentation results.

A projection gradient technique is used to solve
the problem as stated in equation (1). The gradients
of the criterion C in (1) with respect to A; and \, are
2q;(\)) and 2g;(\,), respectively. By computing the
projection of this gradient and simplifying the equa-
tions for quick convergence, the approximate itera-
tive equations for the relaxation process are ob-
tained (Bhanu and Faugeras 1982). These are

P = PP — ] + ar; qi(A) > 0.5;

0<a;<1.0 ®)
PrI) = prOWDIL — ey); gi(Ap) < 0.5;
0<a,<1.0 (6)
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The magnitudes of «; and «, control the degree of
smoothing at each iteration and their ratio controls
the bias toward a class. The magnitude of FACT
controls the initial assignment of probabilities.
Since we use the projection gradient method to ob-
tain iterative equations, we named this method the
‘‘gradient relaxation method’’ to distinguish it from
the nonlinear relaxation method of Rosenfeld,
Hummel, and Zucker (1976).

A few iterations of equations (5) and (6) result in
the segmentation of an image by allowing the auto-
matic selection of thresholds. The technique has
been evaluated with respect to signal-to-noise ratio,
region size, and contrast of the objects present in
the image (Bhanu and Parvin 1987). It has been
found to be very effective for the segmentation of
low contrast images and the segmentation of natural
scenes. Experiments with the parameter values and
the quality of the segmentation have shown that the
a’s and FACT should be kept constant for each par-
ticular set of images belonging to a specific applica-
tion. In section 7.2 we present some examples of
segmentation to show the effects of parameter val-
ues.

3.3 Comparison of Segmentation Approaches
The gradient relaxation algorithm (Bhanu and
Faugeras 1982) used in this research has been com-
pared to another relaxation algorithm—the Rosen-
feld, Hummel, and Zucker (1976) algorithm. The
comparison assumed the same compatibility func-

. tion and initial probability assignment as the gradi-
ent relaxation algorithm. While both algorithms
provide a two-class image segmentation approach,
the gradient relaxation algorithm has the added ben-
efit of control over the segmentation process. The
parameters FACT, «;, and a, provide control over
the segmentation process by allowing the user to
adjust the convergence rate, class bias, and the dis-
tribution of the initial probability assignment. This
advantage gives the algorithm the additional flexi-
bility necessary for use in a wide range of applica-
tions.

There are two possible ways to extend the algo-
rithm described in Section 3.2 to perform multiclass
segmentation of natural scenes. In the first case we
simply extend the technique to a known number of
classes. However, such extension is not desirable
since in practice we may not know the number of
classes and also because of the complexity associ-
ated with the algorithm. In the second case we ap-
ply the two-class gradient algorithm recursively to
segment the image into multiple classes. We have
extended the gradient relaxation algorithm to per-
form multiclass segmentation of natural scenes

(Bhanu and Parvin 1987). The extended algorithm
proceeds by applying the two-class segmentation
algorithm to the entire image, thus splitting the im-
age into two classes based on both local and global
characteristics. The connected components of the
segmented image are isolated and each connected
component is used as a binary mask on the original
image for further partitioning. This process con-
tinues recursively until a region can no longer be
partitioned or is of such a small size that it is no
longer of interest. This extension provides signifi-
catn benefits for hardware implementation. Thus,
the gradient relaxation algorithm can be used in its
two-class form when applicable, and can be ex-
tended to multiclass when needed.

The multiclass algorithm has also been compared
to two other well-known segmentation tech-
niques—the Ohlander, Price, and Reddy (1978) al-
gorithm and the Nagin, Hanson, and Riseman
(1982) algorithm. In both comparisons it produced
segmentations on natural scenes that are as good as
these other techniques. Furthermore, because of its
simplicity, it produced these segmentations at a
much lower computational cost. It avoids the arbi-
trary division of a picture into quadrants or subim-
ages that leads to unwanted boundary effects (Na-
gin, Hanson, and Riseman 1982, Ohlander, Price,
and Reddy 1978). We have also extended the two-
class gradient relaxation algorithm to include edge
information for more robust segmentation of mili-
tary targets (Bhanu and Holben 1990). Since the
two-class gradient algorithm has been found useful
for a variety of images, we selected it for implemen-
tation when intensity information is used to seg-
ment an image.

3.4 Relaxation and Pipeline Design Methodology
The relaxation algorithm supports overlapped exe-
cution of the computation of each iteration. This
ability allows the algorithm to be implemented quite
effectively using pipeline design methodology.
Each algorithm iteration can be treated as a pipeline
segment; the individual iterations are connected to-
gether with the output of each iteration immediately
providing the input for the next iteration. The seg-
mentation processor constructed in this project pro-
cesses the image pixels in a line-oriented (raster)
fashion and the succeeding iteration can begin pro-
cessing as soon as the preceding iteration has fin-
ished processing the first three lines of the image.
Since the iterations are all computed in overlap
fashion, a real-time implementation of the algorithm
with any number of iterations is feasible. In fact, the
number of algorithm iterations does not affect the
real-time performance of the system. The system
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will always be capable of processing information at
the same rate as it is presented. However, the
amount of time required initially to fill and traverse
the pipeline increases with the number of iterations,
thereby increasing the system latency.

A pipelined implementation of the algorithm also
provides benefits for the VLSI implementation of
the algorithm. Each iteration of the algorithm will
require its own identical processing hardware so
that the computations for each iteration can be fully
overlapped. A system that fully overlaps the execu-
tion of five algorithm iterations will require five
identical processors, one for each iteration. VLSI
design methodology is best used where the initial
design and implementation results can be used mul-
tiple times within any system. The initial engineer-
ing costs of a VLSI implementation are quite high
and the fabrication of the actual chips is most eco-
nomical if done in large quantities. Thus, the imple-
mentation of the gradient relaxation algorithm
matches well with the requirements for an effective
VLSI implementation. For this project a single chip
was implemented that performs the iterative portion
of the relaxation algorithm. These chips were then
cascaded to execute as many algorithm iterations as
desired. An additional advantage of this approach is
that the same chip can be used without modification
in a multiclass segmentation system (Bhanu and
Parvin 1987).

4 Design Considerations and Image
Segmentation System

The design and implementation of a real-time image
segmentation system requires making trade-offs
among the various design considerations. In the fol-
lowing discussion, we examine these considerations
at the system and chip level and provide system-
level details to specify portions of the algorithm that
are chosen for implementation in VLSI and those
that are implemented with discrete components.
The input and output formats for the chip are also
presented. '

4.1 Design Considerations

4.1.1 Silicon utilization. One of the first de-
sign considerations in a VLSI design is the amount
of chip area available for actual implementation
purposes. This consideration becomes even more
important when a CAD-based VLSI tool is being
used for the design. As previously discussed, PPL
CAD-based VLSI deisgn tools are aimed at manag-
ing the complexity issues of a VLSI design so that
the design can be achieved in one-tenth of the time
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required for a full-custom design. This complexity
management is achieved at the cost of some effi-
ciency in the utilization of the silicon. This situation
introduces somewhat of a dilemma since faster al-
gorithm execution speed is usually achieved at the
cost of silicon area. The actual design of this chip
involved making an informed and careful trade-off
between chip area and the execution speed of the
algorithm. This trade-off was arrived at by carefully
analyzing possible implementations of the algorithm
to see if they can meet both the real-time perfor-
mance requirements and the silicon chip area re-
quirement. The amount of area available for this
project in PPL terms was 250 rows by 95 columns.

4.1.2 Real-time operation. Another principal
design constraint was the real-time operation re-
quirement. Since the real-time operation of the seg-
mentation algorithm was central to this project, it
is helpful to define precisely what is meant by “‘real
time.”’ In general, a process is said to be operating
in real time if it processes data at the same rate as it
is presented. For example, if a process was process-
ing an image in real time and the data were pre-
sented at 30 frames per second (fps), the process
would fully process one frame each 1/30 of a sec-
ond. Specifically, the goal of this project was to
segment images acquired from a video digitizer that
is connected to a TV camera at real-time rates. The
image size is 512 (horizontal) x 240 (vertical) bytes
and the frame rate for the RS-170 standard is 30 fps.
A 512 x 240 image will require that each pixel of the
image be processed in 100 ns in order to meet the
frame rate requirement. This sets the global clock
rate for the system at approximately 10.0 MHz.

4.1.3 Algorithm speedup methodology. Pipe-
lining and parallelism are two alternate methodolo-
gies for VLSI implementation of the gradient relax-
ation algorithm. A fully parallel implementation of
the algorithm is realizable and could provide the
performance necessary for real-time execution;
however, this would require a separate processing
element for each pixel. For a 512 X 240 image this
would require 122,880 processors and would be
very expensive. Also, since this project depended
on MOSIS for the fabrication of the CMOS devices,
only a limited number of chips was available for the
final implementation of the system.

Pipelining methodology provides a definite com-
plexity advantage over fully parallel systems for the
gradient relaxation algorithm. A real-time imple-
mentation of the algorithm could be constructed
with five to ten VLSI chips and a moderate amount
of discrete logic. In the pipelined approach a single
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chip would be responsible for the computation of
the compatibility measure (equation (2)) and the
pixel probability update [equations (5) and (6)]. The
system would then be constructed in pipeline fash-
ion with each chip acting as a single pipeline seg-
ment and connected to other chips so that the out-
put from a preceding iteration provided the input for
the next succeeding iteration. The number of chips
would be equal to the number of iterations desired
and any number of iterations could be handled in
real time. Each iteration would add to the overall
system latency but would still provide real-time per-
formance due to the ability to overlap iteration exe-
cution. Due to the serial processing of each pixel in
the pipeline, two horizontal video scan lines must
be fully processed before the succeeding iteration
can begin processing. This requirement is due to the
3 X 3 neighborhood that is used in the compatibility
measure shown in equation (2). Thus, the minimal
latency that will be incurred at each iteration is two
horizontal scan line times, each of which is approxi-
mately 65.3 usec or about 650 clock cycles for a
total of about 1300 clock cycles (assuming a 10 MHz
system clock).

4.14 Chip latency. Up to this point latency
has been discussed with regard to the overall pipe-
lined architecture of the algorithm. The system la-
tency of 1300 clock cycles per iteration will be mini-
mally required for pipelined algorithm execution
regardless of the final VLSI chip implementation.
However, pipelining is also effective at the chip
level to provide the throughput necessary for real-
time performance with a minimal amount of hard-
ware. If pipelining is used at the chip level, then
some additional latency will be introduced at each
iteration. The total amount of latency per iteration
would then be the minimal two horizontal lines plus
the number of clock cycles required for each chip to
process fully a single pixel.

The amount of latency that the chip requires to
process a single pixel should be minimized. Designs
with high amounts of latency generally occupy cor-
respondingly high amounts of silicon area. This de-
pendence occurs because each clock cycle of la-
tency will require some number of registers to store
the intermediate result. Rule-of-thumb estimates for
this design place the amount of chip area per cycle_
of latency at about 2 percent. These estimates are
arrived at by considering past experience with PPL,
the size of the register used to store the result, and
routing concerns. A practical upper limit on the
chip latency is approximately 10 clock cycles. That
way, no more than 20 percent of the overall chip
area could be consumed by the registers used in the

pipelining process. The amount of latency contrib-
uted by the chip to the overall image frame latency
per iteration is not significant, being less than 1 per-
cent of the 1300 clock cycles required for each itera-
tion of the algorithm.

4.1.5 Discrete logic. Systems using VLSI
chip as a principal component require some amount
of discrete logic. This discrete logic performs neces-
sary interfacing functions and is used where VLSI
implementation would be difficult or ineffective.
Discrete components for this project include ICs
from the TTL family and random access memory
(RAM). During the design of the VLSI component
it is important to select those functions whose VLSI
implementation will have the greatest impact on al-
gorithm performance. Discrete components are
used to fill the logic gaps that are not implemented
in VLSI due to lack of available silicon space or
other factors. VLSI designs are difficult to modify;
those functions that are required to be flexible or
application dependent should be implemented using
discrete logic rather than VLSI. Part of the design
process, therefore, includes the selection of those
functions that are most important to the perfor-
mance of the algorithm. The remaining functions
are then implemented using discrete logic to com-
plete the system construction.

4.1.6 Pin out requirements. Any VLSI design
has only a limited number of pins available for elec-
trical connections. The packages used to provide
connections to the actual VLSI silicon chip come
with 24, 40, 64, and 84 pins. Therefore, the chip
design can have no more than 84 pins. This is an
important consideration of the design since it places
a limit on the amount of data that can be supplied
during a single clock cycle.

4.1.7 Limitations of PPL design tools. The
COMOS PPL tool set is relatively new and does not
have the large number of cells that are available in
other NMOS cell sets. In fact, this project is one of
the first major designs completed using the CMOS
cell set. As such, the functionality of the cells in the
cell set is somewhat limited. This is not a terrible
hardship since more complex functions can be com-
posed using the available basic cells. However, the
composite functions built using PPL cells will oc-
cupy more silicon than if the function had already
been implemented directly as a separate cell using a
full-custom design for that function. The implica-
tion of this is that the choice of the algorithm imple-
mentation is very critical due to the general lack of
silicon area and the size of the implementation.
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Hence, it will be difficult or impossible to use some
innovative techniques that will require more silicon
area than other simpler, straightforward approaches
when using the CMOS cell set as supplied.

4.1.8 Input data format. Digital images are
represented as a serial stream of 8-bit unsigned
numbers. This digital format is formed by passing
the signals received from a TV camera through a
video digitizer. The RS-170 video format is the most
commonly used video format and was used in this
project so that all components could be easily inte-
grated. The visible portion of each horizontal line in
a 512 x 240 image is about 51 usec making the
sample rate required to produce the image approxi-
mately 10 MHz. The segmentation system is also
provided with synchronization signals from the digi-
tizer so that the system can determine the position
of each pixel within the single horizontal line and
the position of the horizontal line within the image
frame. The final representation of the image that is
passed to the segmentation system is a serial stream
of 8-bit pixels and synchronization signals at a data
rate of 10.08 MHz.

The number representation for this project is an
8-bit fixed radix-two number with the radix point
placed to the left of the most significant bit. Since
the gradient relaxation algorithm uses only proba-
bility values between zero and one, this number
system is sufficient to represent all numbers that
will be used by the algorithm. The smallest number
that can be represented with this scheme is 0 and
the largest number represented is 1 — 278, Although
the value 1 cannot be represented exactly, the gra-
dient relaxation algorithm quickly converges into
two classes with a large gap between the two sets of
numbers representing the classes, thus allowing the
differentiation between the two classes. The image
pixels as provided by the video digitizer are trans-
formed from 8-bit pixel intensities that range in
value from 0 to 255 into initial probabilities that
range from 0 to 1 by the initial probability assign-
ment circuitry.

4.2 Real-Time Image Segmentation System
Specification

The segmentation system consists of six major com-
ponents: the TV camera, computer terminal, dis-
play monitor, CPU board, digitizer board, and seg-
mentation board. Each of the circuit boards uses the
VME bus format and these boards are mounted in a
VME card cage that provides cooling, power, inter-
board communications, and structural integrity.
Each of the system components is explained subse-
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Figure 3. Segmentation system interconnection diagram.

quently with the interconnection of these system
components shown in Figure 3.

4.2.1 TV camera. The video camera was se-
lected on it capability to transmit images using a
noninterlaced format. The relaxation algorithm per-
forms 3 X 3 neighborhood operations, and therefore
requires that three adjacent horizontal lines be
available before processing can continue. Due to
the alternating order of the horizontal lines with the
interlace format, the entire odd frame would have to
be transmitted and stored in a buffer so that the odd
lines could be lined up with the even lines when
they arrive in order to form the 3 X 3 neighborhood.
This would greatly increase the latency incurred per
image frame and would degrade the overall system
performance. Therefore, the interlaced format was
abandoned and a camera that uses a noninterlaced
format was acquired for this project. The nonin-
terlaced camera does not divide the image into its
odd and even components. Rather, the horizontal
lines are transmitted such that successive adjacent
lines are in order allowing the system to proceed
immediately upon the receipt of the first three lines.
The resulting improvement in system latency as
well as the reduction in system hardware (no need

—~—
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for the odd field buffer) makes the noninterlaced
camera the best choice for this system. The nonin-
terlaced camera supplies 240 horizontal lines in-
stead of the 480 normally transmitted via the RS-170
format. This lowered number of horizontal lines is
required so that the camera is compatible with RS-
170 control signals. However, the system sampling
frequency remains the same since the horizontal
resolution is unchanged.

4.2.2 Computer terminal. The computer ter-
minal allows the user to communicate with the seg-
mentation system through the CPU board.

4.2.3 Display monitor. The display monitor is
connected to the digitizer board and displays the
data provided by the user in real time. It displays
the image data using the same noninterlaced format
as the TV camera. The segmented image results can
also be viewed on this display monitor.

4.2.4 CPU board. The CPU board, purchased
from Plessey Corporation, consists of a VME com-
ponent that implements a single board computer.
The single board computer provides the entire envi-
ronment for program execution that includes 512
kilobytes of RAM, 128 kilobytes of ROM, 68000
microprocessor, and an RS-232 serial interface. The
CPU board serves as the supervisor to the segmen-
tation system, providing the user with control over
the system by interpreting commands typed at the
computer terminal that are transmitted via the RS-
232 port to the CPU board and subsequently exe-
cuted on the segmentation board. The CPU board
provides a simple command interpreter allowing the
user to set all segmentation parameters as well as
provide testing procedures for the VLSI chips
themselves. The CPU board does not enter the ac-
tual segmentation process itself. Rather, it initial-
izes various control hardware on the segmentation
board to start the segmentation process. Once the
segmentation process is started, it runs continu-
ously on the segmentation board until interrupted
by the CPU board. The software for the CPU board
was written in both ‘““‘C’’ and 68000 assembly lan-
guages. Low-level input/output routines were
coded in assembly for efficiency and the remainder
of the system was programmed in ‘‘C’’ for simplic-
ity. The entire software for this project resides in
two EPROMS placed on the CPU board.

4.2.5 Video digitizer board. The video digi-
tizer board is also a VME component and was pur-
chased from Recognition Technologies Incorpo-
rated. It provides real-time digitization at a rate of

10.08 MHz, which allows a maximum image resolu-
tion of 512 X 512 bytes. This board sends the digi-
tized image data out as a byte-serial stream at the
sample rate of 10.08 MHz. The digitizer also con-
tains additional circuitry to allow the user to display
digital images on a conventional display monitor.
This display function operates as the inverse of the
digitization function and the user only needs to pro-
vide the image data to be displayed in the same
format as the digitizer uses along with the proper
synchronization signals. The user-provided image
data is displayed on the display monitor connected
to the digitizer board.

4.2.6 Segmentation board. The segmentation
board consists of two major partitions, the CMOS
VLSI chips and the discrete circuitry necessary to
perform those functions not implemented in the
VLSI circuitry.

1. Discrete Circuitry: The segmentation board
uses discrete logic to implement those functions
that were not implemented in VLSI. These func-
tions included test circuitry, initial probability as-
signment (equation (4)), calculation of the global im-
age mean, various control and interfacing circuitry,
and digital delay elements to align three adjacent
horizontal scan lines for the 3 X 3 neighborhood
processing.

There are two principal reasons for not imple-
menting some system functions directly on the
VLSI chips. First, only those functions that will
contribute directly to the operation of the segmenta-
tion algorithm in a general purpose environment
should be implemented on-chip. The general pur-
pose parts of the segmentation algorithm include all
the equations used to perform the relaxation algo-
rithm. Conversely, the control and interfacing cir-
cuitry are parts of the system that are specific to this
particular implementation. This includes the inter-
facing circuitry that provides communications be-
tween the video digitizer, CPU board, and other
parts of the segmentation system and the control
circuitry that handle memory control and supervi-
sion of the segmentation system. Second, due to
restrictions on the available VLSI chip space for
implementation, not all functions of the segmenta-
tion system could be implemented on-chip. The ini-
tial probability assignment and calculation of global
image properties are both required for operation of
the gradient relaxation algorithm but have lower
computational requirements than the iterative parts
of the gradient relaxation algorithm. Thus, these
functions were implemented with discrete logic.
This was also true for the digital delays required to
align the three horizontal lines for neighborhood op-
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Figure 4. Block diagram of the input/output format of the
real-time segmentation chip. Mean of the neighborhood is
the value of g;(A;) given by equation (2).

erations. Therefore, the discrete circuitry serves to
fill in the gaps that result from the lack of available
silicon space for a full algorithm implementation
and provides interfacing and control functions that
are specific to a given application. Further details of
the discrete circuitry used on the segmentation
board will be referred to in Section 6.

2. VLSI segmentation chip: The equations cho-
sen for VLSI implementation are equations (2), (5),
and (6). These equations represent the bulk of the
processing performed during the relaxation process
due to their iterative nature. Each chip performs a
single iteration. Five iterations of the algorithm
were implemented that required five real-time seg-
mentation chips. These are located on the segmen-
tation board. The other operations, like global mean
[equation (4)], required by the algorithm are per-
formed once per image frame and represent a much
lower computational burden. It was originally esti-
mated that equations (2), (5), and (6) and the neigh-
borhood alignment circuitry could be implemented
as a single VLSI component. However, the imple-
mentations of equations (2), (5), and (6) required all
the available silicon; therefore, the digital delays
that performed the neighborhood alignment had to
be placed off-chip.

The input and output format of the real-time seg-
mentation chip is shown in Figure 4. Since the lack
of available silicon space required the neighborhood
alignment circuitry be external to the chip, each
clock cycle must provide three pixels of data at a
time to the VLSI chip. The three pixels that are
input on each clock cycle represent the three hori-
zontal lines after they have been aligned. Since each
of these pixel values is represented by an 8-bit bi-
nary number, 24 pins are required to input the three
pixels simultaneously during each clock cycle. The
segmentation parameters «; and a are also repre-
sented by 8-bit values and require a total of 16 pins
for input. The actual inputs to the chip are 1 — a;
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and 1 — a, instead of & and a, since doing so saves
some circuitry internally and 1 — ¢ is easily con-
verted to a; when necessary. The output of this chip

‘is a single 8-bit value that represents the updated

pixel probability value and requires 8 pins. These
input and output requirements will require a total
of 48 pins not including power and ground pins.
The addition of these 2 pins and a pin reserved by
MOSIS raises the total to 51 pins. The 64-pin pack-
age was chosen since it meets the needs of the 51
pins for input and output while leaving the remain-
ing 13 pins for testing purposes. The detailed design
of the real-time segmentation chip will be discussed
in the next section.

5 Real-Time Image Segmentation Chip
Design

The design of the segmentation chip was accom-
plished by dividing up the segmentation algorithm
into logical sections as shown in Figure 5. Each
logical partition is a representation of an algorithm
block that was implemented physically with VLSI
circuitry (referred to as a circuit module) and as
such, met two important VLSI design criteria.
First, communications between logical sections are

restricted so that the physical implementations of
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these sections require 8 bits or less of interconnect.
By minimizing interconnection, more effective use
of chip area is achieved and the parasitic capaci-
tance associated with interconnection is reduced
(Kung and Foster 1980). Second, partition of the
segmentation algorithm allows a regular layout of
VLSI circuitry that makes effective use of chip
area. Structuring the design process so that each
circuit module could be considered separately sim-
plified the overall design of the segmentation chip.

Circuit module synthesis began by defining the
basic functions that were repeated throughout the
module. Identifying these basic functions served
two important purposes: 1) more time could be
spent designing these functions to be efficient since
they would be used many times throughout the
module and 2) it allowed more accurate simulations
[i.e., the use of SPICE (Weste and Eshraghian
1978)] due to the lower relative circuit complexity.
Circuit simulators trade computer time for model
complexity and accuracy. Therefore, simulators
used for large networks of devices (1000 transistors
or more) are not so accurate as those used for
smaller networks. By simulating small portions of
the circuit module (the intrinsic functions), much
more accurate timing information was obtained.
These simulations were extremely important as
they formed the basis for establishing the real-time
capability of the circuit.

The simulations of the designed circuit modules
were performed with SPICE using data that was
extracted by hand from the simulation files gener-
ated by the PPL tools. Due to the newness of the
PPL tool suite, there was no automatic way of gen-
erating this data. All timing information was multi-
plied by a factor of 4 to allow for inaccuracy of the
simulation and process variability. This factor of 4
allowed the design to have an extra margin of safety
in order to guarantee meeting the timing parameters
for real-time performance. This figure may seem ex-
treme or overly pessimistic, but the CMOS PPL cell
set was completely uncharacterized and no timing
or other information was available. By choosing a
safety factor of 4, it was hoped that a necessary
safety margin could be maintained throughout the
design process. .

Since the system clock frequency was known,
the number of basic functions that could be com-
puted during a clock cycle were known. If there was
not enough time in a single cycle, multiple cycles
could be combined using pipeline methodology.
Thus, the simulation results provided the informa-
tion necessary to divide circuit modules into one or
more pipelined stages. Pipelining is a particularly
effective method for achieving speedup with low-
level vision algorithms due to the regularity and re-

peated execution of these algorithms. The synthesis
and low-level design of each circuit module will
now be presented.

5.1 Mean Calculation Circuit Module

The mean of the neighborhood intensities is calcu-
lated by adding the intensities of the eight nearest
pixel neighbors and dividing by 8. Since 8 is an inte-
ger power of 2, division can be performed by a shift
of the operand. Consequently, the most significant
bit (MSB) becomes the module output, indicating
whether the mean is above or below 0.5. The inputs
to this circuit module are the three lines represent-
ing the intensities of the pixels and their respective
neighborhoods. The basic operation used in this
module is addition. A 2-bit adder circuit was de-
signed for use in the mean calculation module, sim-
ulated using a switch-level simulator to prove cor-
rect functionality, and processed by SPICE to
extract timing information. The critical path of the
adder, the carry out signal, has about 1.5 ns of prop-
agation delay. This was multiplied by a factor of 4 to
provide a safe margin in case of the CMOS process
variation or some error in the simulation values.
The PPL representation of the adder has been
shown in Figure 2.

Maximum speedup of the module is obtained by
eliminating redundant addition operations. Ignoring
the constant factor of 8, equation (2) can be written
in the following explicit form:
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If equation (7) is compared with
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It can be seen that there are two identical partial
sum terms in both the previous and current mean
calculation. Therefore, only one partial sum needs
to be calculated for each neighborhood mean opera-
tion if the previous results are stored. This module
makes use of this fact by using the explicit form in
equation (9) for an execution model. The final con-
figuration of the mean calculation module, shown in
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Figure 6. Neighborhood mean calculation module.

Figure 6, uses a set of carry-save adders to sum up
the three pixel values that are presented at the input
to the chip (Figure 7). The carry-save adder was
implemented using a set of full adders without
chaining the carry-out carry-in signals together.
Note that the carry chain (or critical path) of the
carry-save adder and full adder is shorter than if the
three pixel values were added using two full adders.
If two full adders are used, the carry chain propa-
gates through nine adders. For the carry-save im-
plementation the carry chain propagates through
eight adders. The adder used to sum up the three
values contained in the pipeline registers is the
same carry-save adder presented earlier. There are
three operands to be summed and the output is
again converted using a full adder. A full adder is
then used to subtract the central pixel value from
the total using 2’s complement arithmetic. Full ad-
ders were used for the conversion and the subse-
quent subtraction for the same resons of register
count as previously explained. The final module de-
sign required a maximum of 11 carry propagation
delays for a total execution time requirement of 66
ns, which falls well within the 100 ns maximum al-
lowed by the 10 MHz operation parameter.

5.2 Tree Multiplier Circuit Module

The second operation required by the segmentation
algorithm is an 8 X 8 multiplication. The inputs to
the multiplier are the central pixel intensity and the

operand produced by the mean calculation module
(see Figure 5). Again, the basic function to be per-
formed is addition, and therefore a 1-bit full adder
was designed and simulated using both a switch
level and linear simulator. A full adder was chosen
because of its relatively compact layout when com-
pared with carry-lookahead. Carry-save adders
were not used since the intermediate partial sums
will be placed in pipeline registers and a carry-save
adder would require twice as many registers. Simu-
lations of the adder circuit showed that approxi-
mately 1.5 ns must be allowed for each carry out
propagation. This propagation time is the same as
the adder used in the mean calculation module and
is in fact quite similar to it except for the way some
of the signals were routed. The propagation time
was multiplied by a factor of 4 to provide a safety
margin and the actual figure used was 6 ns. The
number of carry propagations required to complete
an asynchronous 8 X 8 multiplication exceeded the
time allowed by the design specification (100 ns).
Therefore, a pipelined multiplier was chosen to
meet the real-time performance requirement. A tree
multiplier was selected since it exhibits low latency
and exploits much of the parallelism inherent in
multiplication. Figure 8 describes the multiplier in
detail.

Binary multiplication consists of a bytewise
““anding’’ of the proper bit of the multiplicand term
with the multiplier term. The results of these ‘‘and”’
operations are shifted according to the bit with
which they were ‘‘anded’’ and then added together.
The dotted lines shown in Figure 8 show the rela-
tionships among different parts of the circuit mod-
ule. The eight operands involved in the multiplica-
tion are divided into four groups as shown. Each of
these four groups is added together in parallel and
placed into a 10-bit register. These four partial sums

Carry-Save Adder
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A
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Figure 7. Addition of three pixel values using carry-save
adders and a full adder.
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are added together after being aligned properly to
form two sum partials that are clocked into a 12-bit
register. These, in turn, are aligned and added to
form the final result. This circuit has 12 carry propa-
gations (72 ns) and meets the design specification
for operating speed (10 MHz). The tree-shaped mul-
tiplier as shown in Figure 9 is too wide to fit within
the PPL array without modification. Therefore, the
multiplier was folded as shown in Figure 10 to fit
within the chip. This folding increases the amount
of wire used for interconnect of the multiplier and
will have some detrimental effects on the overall
speed of the circuit due to parasitic capacitance.
Since the calculated critical path propagation delay

o7 B7 o5 BS o3 B3 ol Bl

6 B6 Inner Pixel a4 B4 2 B2 inner Pixel a0 o
; A \ 4 ; ; v A 4

Mult Element Mult Element Mult_Element] Mult_Element

Figure 9. Functional and topological view of the multiplier.

is less than 75 percent of the allotted time (100 ns)
and the capacitance of the metal layer is low when
compared with the poly and diffusion layers, the
multiplier should still meet the real-time specifica-
tions.

5.3 Final Adder Circuit Module

The final adder module consists of a full adder and a
multiplexer. The multiplexer selects a; or zero,
based on the output from the mean calculation mod-
ule. The adder then adds the selected constant to
the result from the multiplier. This becomes the fi-
nal output of the chip. The full adder used here is
the same as that used in the multiplier module, and
since it has only seven carry propagations (42 ns), it
also meets the minimum operating frequency re-
quirement of 10 MHz.

5.4 Test Circuitry Design
A crucial part of any VLSI design is the need to
incorporate testing procedures early in the design

" process. If testing strategies are left until the chip is

manufactured, the designer will have few choices
for verifying the functionality of the part. Exhaus-
tive testing is impractical for VLSI; the number of
inputs combined with the total number of possible
states make it impossible to exercise properly the
chip in a reasonable amount of time. For the image
processor built here testing capability was provided
in an ad hoc fashion by using a multiplexer to select
different internal portions of the circuit for determi-
nation of their status. Through the multiplexer, indi-
vidual inputs and outputs for each module were ob-
served and checked for correctness. The internal
chip signals available through the test multiplexer
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Figure 10. Folded multiplier for implementation.
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Figure 11. PPL representation of real-time segmentation
chip.

include all the inputs to the chip as well as the out-
puts from the center pipeline and the input and out-
put to the multiplier. An additional 1-bit output, the
output of the calculate mean module, was made
available directly to an output pad.

5.5 Fabrication

The final PPL design of the real-time segmentation
chip is shown in Figure 11. The final design con-
tained 9440 transistors and required 217 rows and 95
columns with 63 pads. Approximately 50 percent of
the total chip area was occupied by active circuitry.
The real-time segmentation chip requires eight cy-
cles of latency to process fully a single pixel. The
pin out of the VLSI chip is shown in Figure 12. The
functionality of each pin of the chip is described in
Table 1. The total fabrication time for the chip was
about 14 to 16 weeks. A microphotograph of the
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Table 1. Table of segmentation chip pin functions

Pin symbol Type Pin function
A0-A7 Input Outer neighborhood row
B0-B7 Input Outer neighborhood row
C0-C7 Input Center neighborhood row
Tstsel0-Tstsel2 Input Test mux select control
TstMux0-TstMux7 Output Test mux output
Al0-Al7 Input o
Be0-Be7 Input o
Out0-Out7 Output Final chip output
Mean Output Neighborhood mean
Clock Input Global input clock

fabricated chip is shown in Figure 13. Regularity
and density of the chip design is clear from this
figure.

6 System Construction and Integration

A photograph of the completed system is shown in
Figure 14. A photograph of the constructed segmen-
tation board is given in Figure 15. The segmentation
board was constructed in modular fashion. Each
module was independently wired and tested and
then connected to any previously constructed mod-
ules that it needed to communicate with and then
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Figure 12. Chip pin connections.



Bhanu et al.: Real-Time Image Segmentation Processor 37

the system was tested to that point. All module and
system testing was performed using an oscilloscope
and a logic analyzer. In the following section the
function of each module on the segmentation board
is presented.

6.1 Segmentation Board Circuitry

6.1.1 Memory control circuitry. The control
circuitry serves as the local supervisor on the seg-
mentation board. It was responsible for all memory
timing and addressing. The control circuitry con-
sisted of an asynchronous state machine that pro-
vided the read and write signals to the RAM used in
the digital delays that aligned the three horizontal
lines so that neighborhood processing could be per-

Figure 14. Photograph of real-time image segmentation sys-
tem.

Figure 13. Photomicrograph
of the fabricated segmentation
chip.

formed. It also supplied signals to a set of counters
used to address the RAM in the digital delays.

6.1.2 Interfacing circuitry. The interfacing
circuitry provides communications between the
video digitizer and the CPU board. Communica-
tions between the CPU and the segmentation board
were memory mapped directly into the address
space of the VME bus. Thus, all commands con-
sisted of writing a specific memory location, and the
results of a command or operation, if any, were
received by reading a specific memory location.
The interface circuitry monitors the bus until a valid
request is pending for the segmentation board.

Figure 15. Photograph of the segmentation board.
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Once a valid request is detected, the interfacing cir-
cuitry acknowledges the request and performs the
required action. Parts of the memory used for test
purposes on the segmentation board were also
memory mapped in the VME bus and when ac-
cesses were performed to these locations, it com-
municated with the memory control circuitry.

6.1.3 Global image mean calculation cir-
cuitry. The global mean of the image was required
as an input to the probability initialization process.
The most straightforward way to compute the mean
of the image is to add up all the pixels and divide by
the number of pixels. However, due to the large
number of pixels involved in a 512 X 240 image, the
adder required to perform the addition would be too
wide for real-time performance. Another way to
compute the mean is to add up all the pixels on a
horizontal line and to take the average of the line by
dividing by the number of pixels in a horizontal line
(512). Since 512 is an integer power of 2, the divi-
sion can be accomplished by shifting the operand
left by nine. Shifting can be hardwired so that it
takes zero computation time and is therefore very
efficient. All the line averages are added together
and the total is divided by the number of horizontal
lines (240). Unfortunately, 240 is not quite an inte-
ger power of 2; however, shifting the total by eight
still provides a good estimate of the global image
mean. By breaking up the addition between two ad-
ders, the carry propagation chain is much shorter,
making it much easier to design the adder to run in
real-time.

6.1.4 Initial probability assignment circuitry.
The initial probability assignment (equation (4)) re-
quires three operations: a subtraction, an addition,
and a multiplication. This was implemented in a
straightforward way with discrete multipliers and
adders.

6.1.5 Neighborhood alignment circuitry. The
neighborhood alignment circuitry aligns three adja-
cent horizontal lines so that neighborhood opera-
tions can be performed. This requires that the first
of the three lines must be delayed two full horizon-
tal line times and the second must be delayed one
full horizontal line time. The delays are simply long
shift registers that serve as digital delays and are
implemented with high-speed RAM, registers, and
address counters. The registers serve as a holding
place for data, one register being used as an input
and one register used as an output. During each
operation the digital delay operates by reading the
value of the current RAM location into the output
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register, writing the current input value from the
input register into the current RAM address and
incrementing the address counter. The address
counter can be set to operate in modulo »n fashion,
where n is a parameter set by the user. In this way,
the depth of the shift register could be easily ad-

. justed to any value. The actual latency of the

pseudo shift register is equal to n + 2 due to the
input and output registers that are in the serial path
of the shift register. The amount of delay needed
depends on the size of the image and by making it
adjustable; the system can be used with images of
various resolution. This parameter can be pro-
grammed by the user through the command inter-
preter.

6.1.6 Chip testing circuitry. The chip-testing
circuitry provided input stimulus and output data
capture for the VLSI chips in real time. The input
stimulus was provided in real time by connecting
three high-speed RAM chips to the three pixel in-
tensity inputs of the VLSI chips. The output data
was captured in real time by connecting the output
of the chip to a single high-speed RAM chip. During
the test procedure the three input and single output
RAM chips are sequenced in real time, providing
and capturing the data. The output data can then be
compared against some known good standard after
the chip has finished processing. Rather than adding
redundant circuitry, the memory control circuitry
and address counter used for the neighborhood
alignment circuitry were extended to provide the
control necessary for the testing process. The test-
ing circuitry has been verified to operate at up to
16 MHz.

6.2 System Software

The main purpose of the system software is to pro-
vide the user with a cohesive interface to basic sys-
tem functions. This interface hides much of the un-
derlying system detail from the user while providing
a mechanism for controlling segmentation system
operation. The system software consisted of two
principal components—the command interpreter
and the segmentation chip simulator. The command
interpreter provided an interface so that the user
could easily experiment with the segmentation sys-
tem. The chip simulator was provided for testing
purposes.

The test software provides the interface to the
chip-testing circuitry on the segmentation board,
whereas the image segmentation software sets up
the segmentation and digitizer boards for image ac-
quisition and segmentation. The digitizer board is
set up for image acquisition by programming the
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digitizer gain, setting noninterlace function bits,
programming the lookup tables, and setting image
resolution to 512 bytes per horizontal scan line. The
segmentation board is set up by disabling the test
logic and setting the segmentation bit. At this point
the digitizer is acquiring images, sending these im-
ages to the segmentation board via the image bus,

receiving segmented images on the same bus, and -

displaying these images.

The system software executes on the 68000 Sin-
gle Board Computer (SBC). The system software
was written in ‘“‘C’’ and 68000 assembly language.
Only the low-level routines that directly access the
hardware were written in assembly for efficiency
purposes. More than 95 percent of the system soft-
ware was written in *‘C.”” This code was ‘‘burned”’
into an EPROM and resides on the SBC board.

6.2.1 Command interpreter. The command
interpreter was designed to simplify user interface
for the segmentation system. As explained earlier,
the actual low-level command format to the seg-
mentation board consisted of reads and write to
memory locations contained on the segmentation
board. If this were the only interface to the segmen-
tation board, it would be error-prone and difficult to
use. Therefore, the actual series of low-level reads
and writes to the segmentation board were pro-
grammed as separate commands. To request any of
the programmed operations of the segmentation
system, the user need only type in the command to
the interpreter. Currently, there are several com-
mands available in the interpreter. Most of these
commands deal with low-level operations used to
debug the system. Two of the commands in the in-
terpreter are used when experimenting with the seg-
mentation system. The first is called ‘‘adjust’ and
initializes the real-time segmentation process. It is
called adjust because it allows the user to adjust any
of the segmentation parameters (FACT, «; and ay)
while viewing the screen to see the effect of the
adjustment. The adjustment of the segmentation pa-

rameters is quite simple. Each of the parameters

resides in a separate field on the computer terminal
screen. To change the value of one of these parame-
ters, the cursor is moved to the desired field by
using one of the arrow keys located on the terminal
keyboard. Once the cursor is in the proper location,
the value can be incremented by pushing the up
arrow and decremented by pushing the down ar-
row. This interface is extremely easy to use and
allows the user to adjust and view the unsegmented
image or the effects of any of the segmentation pa-
rameters on the image display monitor. There is one
additional parameter that can be adjusted from the

computer terminal, the gain of the video amplifier.
This video amplifier is located on the video digitizer
board and allows the user to have control over the
intensity of the image through software.

6.2.2 Chip simulator. The second useful com-
mand in the interpreter is for the purpose of chip
testing. It controls the chip-test circuitry and auto-
mates the chip-testing process. On the segmenta-
tion board a specific socket has been dedicated for
testing the real-time segmentation chips. Testing of
the VLSI chips requires only that the user place the
chip to be tested in the dedicated socket and type
‘“‘chip-test’’ to the command interpreter. The test
software automatically generates test vectors, feeds
them to the chip-testing logic, and captures the
results. In parallel with this process, those test vec-
tors fed to the segmentation system are also input to
a chip simulator that is logically identical to chip
function. The testing process automatically pro-
ceeds and reports statistics about the chip being
tested.

The actual chip-testing process consists of two
steps—test input data generation and output data
verification. The software on the CPU board gener-
ates a pseudo-random test sequence that is written
to the test input RAM located on the segmentation
board. It then starts the chips operation in real time
while capturing the output of the chip in the RAM
connected to the output of the VLSI chip. The out-
put data is then compared to the output from a soft-
ware simulator. The software simulator is function-
ally identical to the real-time segmentation chip,
and if the output values match those from the simu-
lator and the segmentation chip, the chip passes the
test. The results from the chip simulator are com-
pared with those captured via the chip-testing logic
located on the segmentation board. Any discrepan-
cies between the simulated and actual results are
reported to the user on the terminal monitor. The
real-time test sequence is limited to 2048 bytes of
data. However, this is extended by looping through
the test sequence each time with different generated
input data for a total of 255 times. A second version
of the test that loops a total of 65,000 times called
‘“‘comp-test’’ has also been implemented and takes
approximately 24 hours per chip to complete.

7 Evaluation

7.1 Real-Time Image Segmentation

Chip Evaluation
The chips were tested in two different ways before
installing them in the segmentation system. A pre-
liminary test that used a logic analyzer, oscillo-
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scope, and high-speed pattern generator (con-
structed out of discrete components) was
performed while the segmentation system was un-
der construction. This test was somewhat crude; all
patterns had to be checked by hand, thereby limit-
ing the number of tests that could be performed.
However, this did give some indication as to the
correct function of the chips and was useful to ver-
ify some of the early bugs that existed in the CMOS
PPL cell set. The preliminary test using the logic
analyzer and oscilloscope tested the chips at fre-
quencies up to 40 MHz. The second test consisted
of the comprehensive test performed on the seg-
mentation system and was capable of testing chips
at frequencies up to 16 MHz.

Three lots of chips were received from MOSIS at
various times throughout this project. The first and
second lots were received within one week of one
another. Of these, one lot was totally nonfunctional
due to a bug in the COMS PPL cell set and was not
included in the test or yield figures. Ignoring this
bad lot of chips, a total of 44 chips was received
from MOSIS. These 44 were tested and 33 chips
were fully functional up to 16 MHz. This gives an
overall yield of 75 percent. During the preliminary
tests one of the chips functioned at 20 MHz, which
would allow real-time segmentation of 1024 X 1024
images. This chip also passed the comprehensive
test at 16 MHz. Five of these operational chips
were placed on a circuit board with the required
support circuitry and the entire system was eval-
ulated with regard to real-time segmentation perfor-
mance.

Each chip occupied an area of 7928 microns X
9225 microns. About 50 percent of this chip area
was active area. The technology used was 3 micron
CMOS, double-layer metal and the estimated
steady-state power consumption per chip was less
than 50 milliwatts.

7.2 Overall Segmentation System
Performance Evaluation

The overall system evaluation was based on two
criteria. The first criterion was with regard to the
real-time operation of the segmentation system.
Once the chips had been shown to be fully opera-
tional at the required system clock rate, the system
was thoroughly tested to ensure that all discrete
circuitry functioned properly at the speeds neces-
sary to segment the 512 X 240 image (10 MHz). This
testing was performed using a logic analyzer and
other standard laboratory instruments.

The second criterion was with regard to the seg-
mentation process (Bhanu 1986) itself and is more
difficult to evaluate than the real-time performance
of the system. While test instruments can indicate,
in quantitative fashion, whether or not the system
functions in real time, the only way used here to
judge the segmentation results was through obser-
vation. This part of the qualitative evaluation was
done by presenting scenes to the camera and se-
quentially observing both the segmented and unseg-
mented images on the display monitor. This allowed
a qualitative judgment to be made as to the effec-
tiveness of the gradient relaxation technique for
real-time segmentation.

Two classes of images were used for evaluation
of the segmentation system. They consist of com-
plex outdoor scenes and photomicrographs of pre-
cancerous human cells. The outdoor scenes were
obtained by using the TV camera to image buildings
near our research facility. The photomicrographs of
human cells were obtained from 35 mm color slides.
In all cases the images were noninterlaced and of
resolution 512 (horizontal) X 240 (vertical). The pic-
tures in this paper were obtained by directly photo-
graphing the display monitor. All segmentation was
performed in real time and no frame buffering of the
results was performed.

Figure 16. (A) An outdoor image; (B) segmented outdoor image, FACT = 0.7, a; = 0.63, &y = 0.52.
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Figure 17. (A) A cancer cell image; (B) segmented cancer
cell image, FACT = 1.0, oy = o, = 0.4.

Figure 16A shows an example of a building with a
lamp post in the foreground. There are mountains
as well as trees in the background and the lighting is
of high contrast resulting in strong shadows that
obscure the front middle section of the building.
Figure 16B shows the segmented image. In particu-
lar, note that the lamp post has been segmented
from the background. Also, note the large rectangu-
lar fagade (located at the viewer’s top left-hand
side) of the building that is partially segmented into
a border and center portion. This corresponds well
with the unprocessed image. The background has
been almost totally eliminated except for a few
small regions.

Figure 17A shows the unsegmented view of a
biomedical image containing a portion of a malig-
nant cervical squamous epithelial cell. The seg-
mented image given in Figure 17B shows various
features of the cell such as the clumped-up nucleus
and the vacuole-like structure (the object with a cir-
cular hole in the middle) that are irregular cell fea-
tures of interest to a lab technician performing some
analysis on the cell. The vacuole-like structure seg-
ments quite well in spite of its intensity being very
close to the background of the cell image. All detail
in the nucleus is lost; however, the segmentation

process could guide further analysis of the cell by
providing a mask for the region of interest of the cell
image.

The segmentation process is controlled by the
input parameters «; and «,. As illustrated in Figure
18, the magnitude of these paramters controls the
speed at which the relaxation proceeds at each iter-
ation. Figure 18A shows the segmented image for
relatively low values of a’s. Figures 18B to 18D
show the results when a’s are increased, until Fig-
ure 18D when full segmentation is obtained. Full
segmentation is obtained when only two differing
intensity values are displayed on the monitor. Ac-
tual values for «’s are given in the figure captions.
Note that only five iterations are used for the results
shown in this paper. More results on covergence
rate and quality of results for varying values of o
and «, are given in the paper by Bhanu and
Faugeras (1982).

The segmentation system tolerates variability in
scene lighting; variations in ambient light levels
have little effect on the image segmentation. Fig-
ures 19 to 21 show this aspect of the segmentation
system. Each pair of images shows the actual image
as well as the segmented image. The first image
(Figure 19A) was recorded under optimal lighting
conditions (maximum contrast). The next image
(Figure 20A) was recorded with the lens on the TV
camera stepped down by one stop (which reduces
the available light by one-half). As seen, the seg-
mentation (Figure 20B) varies little from the seg-
mentation (Figure 19B) of the original image re-
corded using twice as much light. The following
image (Figure 21A) is obtained by stepping down
once again resulting in a recorded image with only
one-fourth the light of that in Figure 19A. Again, the
final segmentation (Figure 21B) differs little from
the image recorded with four times as much light.
As can be seen, the segmentation of each of these
three images (Figures 19A, 20A, and 21A) varies
little from one to the other even though these im-
ages vary greatly in both contrast and brightness.

Note that we use a noninterlaced camera (image
size 512 X 240) and as such do not need a frame
buffer. If higher image resolution (512 X 512) is de-
sired, then no modifications are needed in the chip.

Further, it is not possible to acquire 512 x 512
images from TV camera using the RS-170 standard.
Since RS-170 transmits images in interleaved fash-
ion, the actual image dimensions are 512 X 480
pixels and a frame buffer would be required to as-
semble fully an image before passing it to the seg-
mentation system for processing. However, if 512
X 512 images were available (or even 512 X 256),
system accuracy would increase since the com-
puted mean value would be more accurate. This
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Figure 18. (A) Segmented cancer cell image, FACT = 1.0, oy
a; = ay = 0.04; (C) segmented cancer cell image, FACT
FACT = 1.0, a; = a; = 0.25.

improvement occurs since only simple shifting was
used to approximate division by 256. If there were
256 lines, the division would be exact since 256 is
28, With 512 x 512 images the segmentation board
requires no modifications. The current digitizer
board could be used if a frame buffer were avail-
able. System software need not be changed other
than to support the digitizer board and frame buffer.
The system was built with the intention of segment-
ing 512 X 512 images and as such, the probability

a; = 0.02; (B) segmented cancer cell image, FACT = 1.0,
1.0, &; = a, = 0.10; (D) segmented cancer cell image,

assignment logic and delays can be programmed to
handle 256 X 256, 256 X 512, and 512 X 512 images.
The programming is performed by setting the cor-
rect bits in the system command register. The only
image-resolution dependent sections of the segmen-
tation board are the probability assignment logic
and the shift-register delays used to line up the
three-line neighborhood. The delays are also pro-
grammable and will support images with 2048 pixels
per horizontal scan line.

Figure 19. (A) A cancer cell image, camera F-stop = 2.8; (B) segmented cancer cell image, FACT = 1.0, a; = a; = 0.50.
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Figure 20. (A) A cancer cell image, camera F-stop = 4.0; (B) segmented cancer cell image, FACT = 1.0, &; = a, = 0.50.

8 Conclusions

This research illustrates the advantages of using a
high-level CAD design tood such as PPL for the
design of real-time images processors. These high-
level tools provide design times that are an order of
magnitude less than full-custom techniques. Due to
the reduction in design time provided by PPL, ex-
perimental circuitry can be quickly prototyped di-
rectly into VLSI, thus avoiding the breadboard
step. The design time of the real-time segmentation
chips was about three months. Fabrication time was
also about three to four months. A total design and
fabrication time of about six to seven months was
all that was required to implement fully a single
chip. PPL puts the advantages of VLSI design
within the reach of small research groups.

Not only does this research prove the feasibility
of using PPL to design real-time image processors,
it shows that the fabricated chips can meet the
needs of practical systems. The segmentation board
occupies just one slot in a VME card cage. When

integrated with a data terminal, TV camera, digi-
tizer, and CPU card, the entire system needs only a
modest amount of space and power. This reduction
in space requirements, system complexity, and
power consumption is a direct benefit of VLSI tech-
nology.

This research also shows the effectiveness of us-
ing a pipelined approach to implement the relaxa-
tion algorithm. The pipelined approach and the
computational requirements of the relaxation algo-
rithm allow each of the iterations of the algorithm to
be almost totally overlapped. In the final design a
total of 8 clock cycles of latency was incurred di-.
rectly in the real-time segmentation chip itself.
Thus, the latency per iteration is the sum of the two
horizontal line delays (1300 clock cycles) plus the 8
clock cycles of latency, for a total latency of 1308
clock cycles per iteration. The total latency for the
segmentation system is equal to the number of itera-
tions (five) times 1308. This amounts to 6540 clock
cycles, which at 10 MHz corresponds to a delay of

Figure 21 (A) A cancer cell image, camera F-stop = 5.6; (B) segmented cancer cell image, FACT = 1.0, a; = & = 0.50.
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0.654 ms or less than six horizontal scan times. This
delay was imperceptible during the experiment.
This research forms the basis for further work in
VLSI and image processing. Possible extensions to
this research include adding various enhancements
to the segmentation system such as the capability to
segment images into multiple classes and the incor-
poration of edge information (Bhanu and Holben
1990, Bhanu and Parvin 1987).
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