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Abstract

In this paper. we present a new approach to analyzing motion
sequences as they are observed from a mobile robot operating
in a dvnamic environment. In particular, we address the
problems of (a) estimating the robot’s egomotion, (b) recon-
structing the 3D scene structure, and (c) evaluating the mo-
tion of individual objects from a sequence of monocular
images. Our approach consists of a two-stage process starting

Sfrom given sets of displacement vectors between distinct

image features in successive frames. First, the robot’s egomo-
tion is computed in terms of rotations and the direction of
translation. To cope with the problems of noise, we have
extended the concept of the Focus of Expansion (FOE) by
computing a Fuzzy FOE., which defines an image region
rather than a single point. In the second stage. a 3D scene
model is constructed by analyzing the movements and posi-
tions of image features relative to each other and relative 1o
the Fuzzy FOE. Using a mainly qualitative strategy of rea-
soning and modeling. multiple scene interpretations are
pursued simultaneously. This second stage allows the deter-
mination of moving objects in the scene. Results of this ap-
proach applied to a real image sequence are presented.

1. Introduction

Visual information plays a key role in mobile robot
operation. Even with the use of sophisticated inertial
navigation systems. the accumulation of position

This research was supported by DARPA under contract DACA76-
86-C0017 and monitored by the U.S. Army Engineer Topographic
Laboratories.
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errors requires periodic corrections. Operation in un-
known environments or mission tasks involving
search, rescue, or manipulation critically depend on
visual feedback. Motion understanding becomes vital
as soon as moving cbjects are encountered in some
form (e.g., while following a convoy, approaching
other vehicles, or detecting moving threats). In the
given case of a moving camera, image motion can also
supply important information about the spatial layout
of the environment and the actual movements of the
autonomous mobile robot.

Previous work in motion understanding has focused
mainly on numeric approaches for the reconstruction
of 3D motion and scene structure from 2D image
sequences [see Nagel (1986) for a review]. In the classic
numeric approach, structure and motion of a rigid
~ object are computed simultaneously from successive
perspective views by solving systems of linear or non-
linear equations (Bruss and Horn 1983; Faugeras et al.
1987; Longuet-Higgins 1981; Mitiche et al. 1985; Tsai
and Huang 1984). This technique is reported to be
noise sensitive even when more than two frames are
used (Bharwani et al. 1986; Ullman 1983). Nonrigid
motion. or the presence of several moving objects in
the field of view. would cause a relatively large residual
error in the solution of the system of equations. More-
over, in some cases of nonrigid motion, an acceptable
numeric solution may exist that corresponds to a rigid
motion interpretation. In such situations. the move-
ments of individual entities in the field of view would
not be detectable by the classic scheme. Adiv (1985)
generalized this approach to handle multiple moving
objects by using a complex grouping process to seg-
ment the optical flow field.

For applications with mainly translational camera
movements, such as robotic land vehicles, alternative
approaches have been developed to make use of this
particular form of self-motion (Jerian and Jain 1984;
Longuet-Higgins and Prazdny 1980; Prazdny 1981).
To reconstruct the 3D scene structure, some re-
searchers have assumed planar motion (Marimont
1986) or even pure camera translation (Bolles and
Baker 1985; Jain 1983: Lawton 1983). Usually, unlike
our scenario. a completely static environment is as-
sumed. An important concept related to this class of
techniques is the Focus of Expansion (FOE) (i.e., the
image location from which all points seem to diverge

radially under pure camera translation in the forward
direction). In practice, locating the FOE accurately is
generally impossible under noisy conditions. We have
therefore extended this concept by computing a patch
of possible FOE locations, called the Fuzzy FOE,
instead of a single point.

The empbhasis of this paper is on the application of
qualitative techniques for motion understanding, with
the Fuzzy FOE and the accompanying reasoning pro-
cess as its main components.

Our approach has two main components. Given a
set of point correspondences (Barnard and Thompson
1980: Moravec 1977) for each pair of frames. we first
compute the Fuzzy FOE and remove the effects of
camera rotation. In the second step, we use the 2D lo-
cations and motion of features relative to each other
and relative to the Fuzzy FOE to reason about the 3D
scene structure as well as 3D motion. These results are
used to incrementally construct a model of the envi-
ronment that includes the information about the static
scene structure and the moving objects therein. This
reasoning process and the scene model are character-
ized by two key features: the emphasis on qualitative
techniques and the ability to pursue multiple interpre-
tations simultaneously.

It is to be noted that difficulties in separating rota-
tion and translation components may arise when the
camera is directed perpendicular (or almost perpendic-
ular) to the direction of vehicle heading. For example,
this is the case for a flat scene observed from a side-
looking camera. In the described important practical
application of robotics for land vehicles, where the
camera looks approximately in the direction of vehicle
motion, there problems will not occur. Our approach
for computing the motion parameters relies on an
error function that is, at least locally, well behaved.
Several error functions were evaluated (Bhanu and
Burger 1988), among them those suggested by other
researchers. It turned out that the widely proposed
technique of extending displacement vectors onto
straight lines and evaluating their intersections leads to
error functions that are not well behaved at all. The
function we employ assumes that the FOE is given
(i.e., hypothesized) and supplies the corresponding op-
timal rotations for that FOE in closed form. Conse-
quently. our algorithm iterates over FOE locations
(not rotations), using a local search strategy.
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Although quantitative techniques have traditionally
been dominant in machine vision, qualitative tech-
niques are now receiving increasing attention in this
field (Burger and Bhanu 1987; 1988: 1989; Thompson
and Kearney 1986: Verri and Poggio 1987). They hold
the potential to replace expensive numeric computa-
tions and models (with often unnecessary precision) by
a simpler process that reasons about the important
properties of the scene. using less precise representa-
tions. This is particularly true for the higher levels of
vision but seems to be a useful path for building ab-
stract descriptions gradually, starting at the lowest
level of vision. Multiple scene interpretations are sup-
ported to reflect the ambiguities inherent to any type
of scene analysis. If only one interpretation was avail-
able at any time, the chance of that interpretation
being incorrect would be significant. Simultaneously
evaluating a ser of scene interpretations allows us to
consider several alternatives and. depending upon the
situation. an appropriate interpretation (e.g.. the most
“plausible™ or the most “threatening” interpretation)
can be selected.

The overall process of constructing the scene inter-
pretations consists of three main steps. First. signifi-
cant features (points, boundaries. corners. etc.) are
extracted from the image sequence. and the 2D dis-
placement vectors are computed for each frame pair.
In the following, we employ only point features and
assume that the problem of selecting and matching
corresponding points is solved (Barnard and Thomp-
son 1980: Kim and Bhanu 1987). In the second step,
we use the original displacement field to compute the
Fuzzy FOE (i.c.. the vehicle’s approximate direction of
heading and the amount of rotation in space). Most of
the necessary quantitative computations are per-
formed in this 2D step. which is described in section
2. The third step (2D Change Analysis) constructs the
3D Qualitative Scene Model by analyzing the move-
ments of individual features with respect to the Fuzzy
FOE location (section 3). Experiments with our ap-
proach on real images taken from the Autonomous
Land Vehicle (ALV) are discussed in section 4. and
section 3 presents the conclusions of the paper.
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Fig. 1. Camera-centered
coordinate system. The ori-
gin of the coordinate system
is located at the lens center
of the camera. The focal

length f is the distance be-
tween the lens center and the
image plane. A 3D point (X
Y Z) is mapped onto the
image location (x y).

(X.Y.2)

IMAGE
PLANE

LENS
CENTER

2. The Fuzzy FOE

When a camera undergoes pure forward translation
along a straight line in space, the images of all station-
ary features seem to diverge out of one particular loca-
tion in the image. commonly called the “focus of ex-
pansion” (FOE). In reality the vehicle not only
translates but also rotates about its three major axes.
For our purpose. the movement M of a land vehicle
can be sufficiently approximated by a translation T
followed by rotations about the vertical axis Ry (pan)
and the horizontal axis Ry, (tilt). ignoring the yaw
component R,. A 3D point X = (X, ), z) in the cam-
era-centered coordinate frame (Fig. 1) is thus trans-
ferred by the camera movement M to a new location
Xr — (x/’ }/' :/

M:X— X' =Ry Ry T (X).

If the observed scene is completely stationary, the
effects on the image caused by the camera movement
M can be described by a 2D transformation d (for
displacement). which takes the original image / to the
subsequent image I’. The 3D rotations R, and R, and
translation T have their equivalents in d as the sepa-
rate 2D transformations r,, re, and t:

d:I1—1 =r,15t (D).
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Fig. 2. Interpretation of the
Focus of Expansion (FOE).
Vehicle motion between its
initial position (where image
I is observed) and its final
position (image I') is mod-
eled as two separate steps.

First the vehicle translates by

a 3D vector T from position
P, to position P, without
changing its orientation

(A). After this step. the inter-
mediate image I* would be
seen. Subsequently (B), the
vehicle rotates by changing
its orientation form &, to
Q,. Now image I is ob-
served. The FOE is found
where the vector T intersects
the image plane I (and also
I*.

Ignoring the effects at the boundary of the image, as
pure camera rotations do not supply new aspects of
the 3D environment, the corresponding 2D transfor-
mations r, and r, are effectively the mappings of the
image onto itself. Conversely, the image effects t of
pure camera translation depend on each 3D point’s
actual location in space. We introduce an (hypotheti-
cal) intermediate image /*, which is the result of a

pure camera translation T:

t.[—I*

Notice that the image /* is never really observed.
except in the special case of pure camera translation
(Fig. 2). However, I* has two important properties.
First, all displacement vectors between corresponding
points in I and I* seem to diverge from a particular
image location (x;, yr) known as the FOE, unless the
camera does not translate at all. We call this property
of the displacement field “radial__mapping (I, I*).”
Second, for given tilt and pan angles ¢ and 6, I* can be
obtained regardless of the 3-D scene structure by ap-
plying the inverse mappings r,~! and ry~' (which
always exist) to the observed image /"

*—p —lp =1
F=ro'r, I

Once suitable mappings ry~! r,~' have been found.

the FOE can be located for the pair of images [ and I*.

However, it is not trivial to determine how close a

Fig. 3. Measuring the devic-
tion from a radial expansion

pattern. For a hypothetical

FOE and a given set of
displacement vectors {x; —

x';), the deviation is defined

as the sum of the perpendic-
ular distances 2d;.
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given displacement field is to a radial mapping without
knowing the location of the FOE. In most of the pro-
posed schemes for testing this property, the displace-
ment vectors are extended as straight lines to measure
the spread of their intersections (Jerian and Jain 1984;
Prazdny 1983). Unfortunately, the resulting error
functions are noise sensitive and not well behaved for
varying values of ¢ and 6 (i.e., they require expensive
global search) (Bhanu and Burger 1988: Burger and
Bhanu 1989).

Alternatively. we can hypothesize a particular FOE
and then measure how the displacement field resem-
bles a radial pattern emanating from this FOE. The
sum of the perpendicular distances between radial rays
and the end points of the displacement vectors is a
simple and useful measure (Fig. 3). The optimal rota-
tion angles for a particular FOE (i.e., those that would
minimize this deviation) and the remaining error can
be found analytically. This remaining error is used as
the criterion to evaluate a hypothetical FOE. When
plotted as a 2D distribution. the resulting error func-
tion is smooth and monotonic within a large area
around the actual FOE. This means that even from a
poor initial guess the global optimum can be found by
local search methods. such as steepest descent. A de-
tailed derivation of this error function and its behavior
under noisy conditions can be found in Bhanu and
Burger (1988) and Burger and Bhanu (1989).

Although this technique is robust even in the pres-
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ence of considerable noise and under small camera
translation. the 2D error function flattens out in these
extreme cases and the location of minimum error may
be considerably off the actual FOE. The local shape of
the error function is therefore an important indicator
for the accuracy of the result. This raises the question
of whether it is reasonable to locate the FOE as one
particular point in the image. After all. even humans
seem to have difficulties in estimating the direction of
heading under similar conditions (Rieger and Lawton
1985).

We have therefore extended the concept of the FOE
to specify not a single image location but a connected
region, termed the Fuzzy FOE. that reflects the shape
of the error distribution. In general. a flat error func-
tion 1s reflected by a large Fuzzy FOE (i.e.. little accu-
racy in the location of the FOE), whereas a small re-
gion indicates a distinct local optimum for the FOE.
The following algorithm computes the Fuzzy FOE by
first looking for the bottom of the error function and
then accumulating surrounding FOE-locations (see
Fig. 3).

Fuzzy-FOE (1, I'):

(Compute the Fuzzy FOE for a given pair of images /
and I").

(1) Guess initial FOE (x,, ),) (e.g.. the FOE obtained
from the previous frame pair) and compute the
corresponding optimal rotations ¢, , 6, and the
deviation from a radial flow field error e,

(2) From (x,, y,) start a local search (e.g., steepest
descent) for an FOE location (x,, 3,) that results in
a mimimun error e,.

(3) Create the set FUZZY-FOE = {(x,, },, €,)}.

(4) Grow the set FUZZY-FOE by including adjacent
FOE-locations (x;, };, €, until the accumulated
error £ = ¢, S, exceeds a predefined limit.

After computing the Fuzzy FOE and the angles of
horizontal and vertical rotation, a good estimate for
the motion parameters of the vehicle is available.
Notice that this is possible without knowing the 3D
structure of the observed scene. Also it is to be noted
that to measure the camera motion with respect to the
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Fig. 4. Fuzzy FOE for a
simulated displacement field.
The vehicle is translating
Sforward and rotating 1o the
right by 2°. The small square
in the center is the location
of the actual FOE. The error
values for surrounding (i.e..

hypothesized) FOE locations
are shown with circles of
proportional size. Notice the
elongated shape of the FOE
region, which is a result of
the particular distribution of
displacement vectors (typical
Jor road scenes).

Image Plane

irotation= 20 00 des !

pnetses - 00 pape umform

stationary world. none of the displacement vectors
used for this computation may belong to another
moving object. This information is supplied by the
internal scene model (as described in the following
section), which. among other things, tells us what
features are currently believed to be stationary.

Fig. 4 shows the results of applying this algorithm to
a simulated sparse displacement field. The shape of
the error function around the actual FOE is plotted
with circles of size proportional to the error. The blank
area in the center of Fig. 4 marks the resulting Fuzzy
FOE. A detailed error analysis for this particular FOE
algorithm can be found in Bhanu and Burger (1988).

Our approach is primarily designed to be used for a
large number of important practical applications re-
quiring a forward-looking camera. Separating the mo-
tion components becomes increasingly difficult when
the FOE moves far off the optical axis. The FOE,
however, is not required to lie within the bounds of
the image.

3. Constructing a Qualitative Scene Mode!

The choice of a suitable scheme for the internal repre-
sentation of the scene is of great importance. It is as-
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sumed that all feature points used for the FOE com-
putation belong to the stationary environment. This
assumption is part of the Qualitative Scene Model
(OSM). The QSM is a 3D camera-centered interpreta-
tion of the scene that is built incrementally from vi-
sual information gathered over time. The nature of this
model, however, is gualitative rather than a precise
geometric description of the scene. The basic building
blocks of the QSM are entities, which are the 3D
counterparts of the 2D features observed in the image.
For example, the point feature A4 located in the image
at x, y at time ¢, denoted by (POINT-FEATURE

At X y), has its 3D counterpart in the model as
(POINT-ENTITY 4).

Because the model is camera centered. the image
locations and 2D movements of features are implicitly
part (i.e.. known facts) of the model. Additional en-
tries are the properties of entities (e.g., “‘stationary” or
“mobile™) and relationships between entities (e.g.,
“closer”), which are not given facts but are the out-
come of some interpretation step (i.e., hypotheses).
The hypotheses are expressed in the model as either

(STATIONARY entity) or (MOBILE entiry).

The assertion (STATIONARY x) is really a hypoth-
esis about entity x in the 3D environment that may be
either true or false. By default, newly observed entities
are classified as stationary. This hypothesis is with-
drawn as soon as there is any indication (from image
observations) that this entity could be actually mobile.

A key feature of the QSM is that it generally con-
tains not only one interpretation of the scene but a
(possibly empty) set of interpretations that are all pur-
sued simultaneously. At any point in time, a hypoth-
esis is said to be “feasible” if it exists in the QSM and
does not conflict with some observation made since it
was established.

Interpretations are structured as an inheritance net-
work of partial hypotheses. Individual scene interpre-
tations are treated as “closed worlds,” i.e., a new con-
clusion only holds within an interpretation where all
the required premises are true. Interpretations are also
checked for internal consistency (e.g., entities cannot
be both stationary and mobile within the same inter-
pretation). The QSM is maintained through a gener-
ate-and-test process as the core of a rule-based black-

Fig. 5. Overall structure of
the interpretation process.
From the original displace-
ment vectors (obtained by
matching corresponding
features), the Fuzzy FOE
and the derotated displace-
ment field are computed.
The Qualitative Scene Model
(OSM) is built in a hypothe-
size-and-test cycle by two
sets of rules. Generation
rules search for significant

image events and place
immediate conclusions (hy-
potheses) in the model. Veri-
fication rules check existing
hypotheses if they are con-
sistent with the changes
occurring in the image. A set
of environmental entities
that are believed to be sta-
tionary is supplied by the
QSM for their use in the
FOE computation.

QUALITATIVE SCENE MODEL

(QSM)
VERIFICATION GENERATION
RULES RULES

—

FUZZY FOE

+
DEROTATED
DISPLACEMENT

VECTORS
STATIONARY
ENTITIES
FOE-
COMPUTATION
! ORIGINAL
- DISPLACEMENT
_ >\ VECTORS

board system. The two major groups of rules are:
Generation Rules and Verification Rules (Fig. 5). In
the following discussion, we use the original notation
of the ART (Clayton 1985) language for defining rules.
Fig. 5 shows the overall structure of the interpretation
process. A large portion of the rules are derived di-
rectly from the laws of perspective imaging. The rules
that reflect some form of heuristics (which hold for a
large class of scenes in practical applications) are
clearly marked.

3.1. Generation Rules

Generation rules examine the (derotated) image se-
quence for significant changes and modify each inter-
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pretation in the QSM if applicable. Some of these
observations have unconditional effects on the model

(e.g., if an image feature is found to be moving roward

the Fuzzy FOE. instead of moving away from it, then
it belongs to a moving entity in 3D space). The actual
rule contains only one premise and asserts (MOBILE
?x) as a globally known fact (i.e., one that is true in
every interpretation):

(defrule DEFINITE-MOTION

(MOVING-TOWARD-FOE ?2x ) < observa-
tion at time
>

—

(assert (MOBILE ?x))). <a global
fact>

Similarly, if two image features .4 and B lie on op-
posite sides of the Fuzzy FOE and they are getting
closer to each other. then they must be in relative mo-
tion in 3-D space:

(defrule RELATIVE-MOTION

(OPPOSITE-FOE 2x 2y ) <image observa-

tion 1 (global)>

(CONVERGING 2x v ) <image observa-

tion 2 (global)>

=

(assert (MOVEMENT-BETWEEN 2x 1)) < a new global

fact>

Other observations depend on the facts that are
currently true within a “‘world” and therefore may
have only local consequences inside particular inter-
pretations. The following rule pair responds to the

new fact created by the above rule by creating two new
hypotheses. If an interpretation exists that considers at

least one of the two entities (x, v) stationary. then the
other entity cannot be stationary (i.e.. it must be mo-
bile):

(defrule RELATIVE-MOTION-X

(MOVEMENT-BETWEEN ?x 7)) <a global fact>

(STATIONARY 7x) <true only inside an
interpretation >
=
(assert (MOBILE 1)) <new fact /ocal to this
interpretation >
80

(defrule RELATIVE-MOTION-Y

(MOVEMENT-BETWEEN 7x 7)) < a global fact>
(STATIONARY 7)) <true only inside an
interpretation >

=

(assert (MOBILE ?x))) <new fact local to this

interpretation >

Although some image observations allow direct
conclusions about motion in the scene, other observa-
tions give clues about the stationary 3D structure. If
the exact location of the FOE is known. then the depth
of each stationary point (i.e.. its 3D distance from the
camera) is proportional to the rate of divergence (from
the FOE) of that point (Prazdny 1983). Applied to the
Fuzzy FOE. where a set of potential FOE locations is
given. the distance Z(A4) of a stationary point 4 is de-
termined as an interval instead of a single number:

Zmin(4) < Z(A) < Z™2%(4).

Therefore point .4 must be closer in 3D than another
point B if the corresponding ranges of depth do not
overlap, i.e.,

Zmax(4) < Zmis(By = (CLOSER A4 B).

Since this conclusion only holds if both entities are
actually stationary. the following rule fires only within
a suitable interpretation (if it exists):

(defrule CLOSER-FROM-DIVERGENCE
(STATIONARY ?x) <interpretation where both x and y are
stationary >

(STATIONARY ?v)

(test (< (Zmax 2x) (Zmin y)))

=1

(assert (CLOSER ?2x 7))).

<no overlap in range >

< a new hypothesis>

To compare the ranges of 3D points, another crite-
rion can be used that does not measure the individual
rate of divergence. According to this criterion, the
change of distances between certain pairs of features is
observed. If two stationary points lie on the same side
of the FOE and the distance between them is becom-
ing smaller. then the inner feature (i.e., the one that is
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nearer to the FOE) is closer in 3D space. This test is
valuable for features that are relatively close to each
other. It can be employed even if the image is not (or
incorrectly) derotated and the location of the FOE is
either only known very roughly or is completely out-
side the field of view (i.e., for a side-looking camera):

(defrule CLOSER-FROM-CHANGING-DISPARITY
(STATIONARY 7x) < interpretation where both x
and ) are stationary >

(STATIONARY 7))

(SAME-SIDE-OF-FOE ?x 7)) < e.g. both are right of the FOE >

(CONVERGING ?x 7y) < dist. between x and )’ is de-
creasing >

(INSIDE ?x %) < x is nearer to the Fuzzy FOE
than y>

=

(assert (CLOSER ?x ?y))). <a new hypothesis>
Although the purpose of the generation rules is to
establish new hypotheses and conclusions. the purpose

of verification rules is to review interpretations after
they have been created (Fig. 5) and, if possible. prove
that they are false. When a hypothesis is found to be
inconsistent with some new observation, that hypoth-
esis is usually removed from the QSM. Simulta-
neously. any interpretation that is based on that hy-
pothesis is removed. Because we are always trying to
come up with a single (and hopefully correct) scene
interpretation, this mechanism is important for prun-
ing the search tree. Notice that all the rules described
so far are based upon the known effects of perspective
imaging (i.e.. they are valid for any type of scene).

3.2. Verification Rules

Verification rules fall into two categories. One group
of rules verifies the internal consistency of the scene
model. For example, a particular entity cannot be
labeled both stationary and mobile in one single inter-
pretation. The following rule detects those cases and
removes (‘“‘poisons”) the affected hypothesis:

(defrule REMOVE-STATIONARY-AND-MOBILE
(STATIONARY ) < this is an inconsistent hypothesis>
(MOBILE ?x)

=

(poison)). <remove this hypothesis>

Similarly, the CLOSER-relation may not be sym-
metric for any pair of stationary entities. For a non-
symmetric situation, we conclude that there is some
3D movement between the two entities:

(defrule CHECK-FOR-CLOSER-SYMMETRY
(CLOSER ?x 73) <this is an inconsistent hypothesis >
(CLOSER ?y ?2x)
=
(at ROOT (assert (MOVEMENT-BETWEEN 2%x %))))).  <a
new global fact>

The second group of verification rules checks
whether existing hypotheses (created in the past) are
compatible with the current activities in the image.
Usually these rules, if used as generators, would pro-
duce a large number of unnecessary conclusions. For
example, the general layout of the scene (observed
from the top of a land vehicle) suggests the rule of
thumb that things that are lower in the image are gen-
erally closer to the camera. Otherwise, some motion
has probably occurred between the two entities in-
volved. The first of the following rules signals that
conflict and the other pair of rules creates two different
hypotheses about the direction of motion:

(defrule LOWER-IS-CLOSER-HEURISTIC

(CLOSER ?x 7y) < existing hypothesis>
(BELOW 73 ?2x 1)  <image observation: actually x should be
below y>

=

(at ROOT (assert (LOW-CLOSE-CONFLICT ?x 2y 21))))

(defrule CONCLUDE-RECEDING-MOTION
(LOW-CLOSE-CONFLICT ?x 7y %)
(STATIONARY 7x)

=

(assert (MOBILE ?y) (MOVES-RECEDING ?y %)))
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(defrule CONCLUDE-APPROACHING-MOTION
(LOW-CLOSE-CONFLICT ?x 7y %)
(STATIONARY 73)

=
(assert (MOBILE ?2x) (MOVES-APPROACHING ?x 1))).

In summary, the construction of the QSM and the
search for the most plausible scene interpretation are
guided by the following mera rules:

® Always tend towards the “most stationary” (i.e.,
most conservative) solution. By default all new
entities (1.e., features entering the field of view) are
considered stationary.

® Assume that an interpretation is feasible unless it
can be proved to be false (the principle of “‘lack of
conflict™).

® If a new conclusion causes a conflict in one but
not in another current interpretation, then re-
move the conflicting interpretation.

® [f a new conclusion cannot be accommodated by
any current interpretation, then create a new,
feasible interpretation and remove the conflicting
ones.

The information contained in the QSM is useful for
a variety of purposes. First it supplies a partial order-
ing in depth for the static entities in the scene, which is
important in scene assessment and navigation. Threat
analysis can be based on the mobile entities in the
QSM. Finally, the FOE computation must be supplied
with a set of features that are currently believed to be
stationary (i.e., those that are not considered mobile in
any existing scene interpretation).

Although perspective imaging has been the motiva-
tion for the rules described here, other important vi-
sual clues are available from occlusion analysis, per-
ceptual grouping, and semantic interpretation.
Occlusion becomes an interesting phenomenon when
features of higher dimensionality than points are em-
ployed, such as lines and regions. Similarities in form
and motion found by perceptual grouping allow us to
assemble simple features into more complex aggre-
gates. Finally, as an outcome of the recognition pro-
cess, semantic information may help to disambiguate
the scene interpretation. If an object has been recog-
nized as a building, for example. it makes every inter-
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pretation obsolete that considers this object mobile.
These are the central topics for future extensions.

4. Experiments

We have implemented a prototype system using the
ART (Clayton 1985) expert system tool on a Sym-
bolics 3670 computer. The FOE component was pro-
grammed with Common LISP functions. Low-level
processing (edge detection) was done on a VAX
11/750. In the following the operation of the QSM
and the associated rule base is demonstrated on an
image sequence shown in Fig. 6. The image sequence
was obtained from the Autonomous Land Vehicle
(ALV) driving on a road at a test site in Colorado. The
images contain two moving objects: a car that has
passed the ALV and barely visible in the distance, and
a second car that is approaching in the opposite direc-
tion and is about to pass. From the original sequence
provided on a video tape with a frame rate of 30/s,
images were taken in 0.5-s intervals (i.e., at a frame
rate of 2/s). The images were digitized to a spatial
resolution of 512 X 512, using only the Y-component
(luminance) of the original color signal.

To obtain the displacement vectors, point features
were selected and tracked manually between successive
frames. Binary edge images were used to imitate the
conditions for automatic point tracking, because some
clues visible in the original grey-scale sequence are lost
during edge detection. Consequently, the end points of
the original displacement vectors are not very accu-
rate. Recent experiments on extended sequences
(Bhanu 1988; Kim and Bhanu 1987) show that similar
results can be achieved with fully automatic feature
tracking.

Figs. 7-9 show the edge images of 16 frames with
the points being tracked labeled with ascending num-
bers. The actual image location of each point is the
lower left corner of the corresponding mark. Points are
given a unique label when they are encountered for
the first time. After the tracking of a point has started,
its label remains unchanged until this point is no
longer tracked. When no correspondence is found in
the subsequent frame for a point being tracked, be-
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Fig. 6. Data used to evaluate
qualitative reasoning and
modeling ( frames 182-197).

Frame 183

Frame 192

Burger and Bhanu

Frame 1
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Fig. 7. Frames 182-187 of
the original image sequence
taken from the moving ALV
after edge detection and
point tracing. The points are
located at the lower left

scene contains two moving  Fig. 8. Frames 188- 93 of
objects, one car moving the original image sequence
away from the ALV (point  afier edge detection and

24) and another car ap- point tracing.

proaching the ALV (point

33).

corners of their marks. The

FRAME 182 FRAME 183 FRAME 188

FRAME 189

FHAMF 183 FRAME 185

FRAME 19¢

FRAME 191

FRAME 186 FRAME 187 FRAME 197

FRAME 193

cause of occlusion, because the feature left the field of
view, or because it could not be identified. tracking of
this point is discontinued. Should the same point ap-
pear again, it is treated as a new item and given a new
label. Approximately 25 points per image have been
selected in the sequence shown in Fig. 6.

Figs. 10-12 show the original set of displacement
vectors (solid lines) between pair of frames, the
“Fuzzy” FOE (shaded area). and the “derotated” dis-
placement vectors (dotted lines). The rotation scale in
the lower left corner indicates rotation angles between
the pair of frames. Only the stationary points are used

to compute the FOE, vehicle rotation, and
velocity.

The QSM processes the images and determines the
motion of moving objects and builds a 3D representa-
tion of the environment as described in the last sec-
tion. Figs. 13 through 18 show the complete scene
interpretations starting at frame 182 up to frame 197.
Interpretations are ranked by their number of station-
ary entities (i.e.. “Interpretation 1” is ranked higher
than “Interpretation 2” if both exist). During this run
the maximum number of concurrent interpretations
was two. Whenever two interpretations exist at the

t
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Fig. 9. Frames 194-197 of
the original image sequence
after edge detection and
point tracing.

Fig. 10. Displacement vec-
tors and estimates of vehicle
motion for the image se-
quence shown in Fig. 7. Solid
and dotted lines show origi-
nal and derotated displace-
ment vectors, respectively.

Shaded area shows the
Fuzzy FOE. The absolute
advancement of the vehicle is
estimated in meters. The
vehicle rotation is plotted in
a coordinate grid over £1°.
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current movement has been determined.

The scene contains two moving objects, a car (24)
that has passed the ALV and is moving away through-
out the sequence and another vehicle (33), approach-
ing the ALV on the same road, that appears in frame
195 (Fig. 16).

Fig. 13 examines the state of the QSM at frames
182-184. The scene contains a number of stationary
points and one moving point (24) that belongs to an-
other vehicle that has passed the ALV and is moving
away from the camera. First, the parameters of the
ALV’s self-motion are computed with respect to a set

of environmental features believed to be stationary
(Fig. 10). This set is defined by the hypotheses cur-
rently contained in the scene model and was described

in section 3.

Fig. 13 visualizes two separate but feasible scene
interpretations for the situation in frame pair 182 -
183. The existence of two interpretations is a result of
the movement of the receding car (point 24). This
movement was detected as 2D motion “across the
FOE” (see rule RELATIVE__MOTION in section 3)
between point 24 on one side of the FOE and points
8,11, 19, 20, 22, 23 on the opposite side. Interpreta-
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Fig. 11. Displacement vec-
tors and estimates of vehicle
motion for the image se-
quence shown in Fig. 8.

Fig. 12. Displacement vec-
tors and estimates of vehicle
motion for the image se-
quence shown in Fig. 9.

tion 1 considers all entities stationary, except point 24,
which is moving upward (in the 3D coordinate frame).
This corresponds to the actual situation. However,
Interpretation 2 is also feasible, taking 24 as stationary
and points 8, 11, ..., 23 as moving downward. No-
tice that CLOSER-relationships are only formed be-
tween stationary entities.

In the subsequent frame pair (183 - 184, Fig. 13),
point 24 is observed to move toward the FOE, which
is a definite indicator for 3D motion relative to the
camera (rule DEFINITE-MOTION in section 3). Any
interpretation considering entity 24 as stationary is
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T || e ¥ e object motion other than the one caused by point 24
t_,._ oo @ i Croemnos A\ | is observed. However, the perceived 3D structure of
— ' = ' ‘| the stationary part of the scene is continuously refined

by adding new CLOSER-relationships between enti-
ties. Point 24 is always considered mobile, although
the direction of the movement cannot be identified
between every pair of frames. After frame 195, two in-
terpretations again become feasible, this time caused
by the movement of the approaching car (point 33).
The (correct) alternative | was ranked higher because
of the larger number of stationary entities.

For frame 196 (pair 195-196), two feasible scene
interpretations are created (Fig. 17), caused by the
behavior of feature 33. This point belongs to another

vehicle that is approaching the ALV on the same road.

The first vehicle (point 24) is declared as mobile in
both interpretations, but the direction of movement is
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Fig. 13. Scene interpreta-
tions for image sequence
shown in Fig. 6. Receding
object (frames 182-184).
Two different scene interpre-
tations are created, caused
by relative image motion
(across the FOE) between
points 24 (the receding car)
on one side and points 8,

11, ..., 23 on the other side.
Scene interpretation 1: entity
24 (arrow) is considered
mobile with upward motion

in the image; all others are
stationary. Scene interpreta-
tion 2: entities 8, 11, . . ., 23
move downward, and 24 is
stationary. In the following
frame pair, point 24 is ob-
served moving toward the
FOE such that it is definitely
in motion. Any interpreta-
tion with (STATIONARY
24) can be eliminated, and
only one interpretation sur-
vives.

Fig. 14. Frames 185-188.
The single interpretation
from frame 184 is pursued
because no object motion
other than the one caused by
point 24 is observed in this

period. The 3D structure of
the stationary part of the
scene is continuously refined
by adding new CLOSER-
relationships between
entities.

B PSR U
t RS e

currently not known (indicated by a simple square).
Some movement between feature 33 and several other
features (15, 39, 50, . . ., 73) has been detected. This
time, however, the direction of motion cannot be
identified. Again two interpretations are created, with
entity 33 labeled as mobile (Interpretation 1) or sta-
tionary (Interpretation 2). Both interpretations are
carried over to frame 197, where two significant events

happen.

In Interpretation 1 (Fig. 17), entity 33 is concluded
to be approaching the camera because of its relative
position to stationary entities and its downward move-

ment. Thus Interpretation 1 says that “if 33 is mobile,
then it is approaching the ALV.” In Interpretation 2,
entity 33 is still explained as stationary, as was the
case in interpretation 2 of the previous frame. If this

FRAMF_188: interpratat

20 49 )
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,,,,@ ] A
o 0
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fact is true, however, then 33 must be quite close to the
vehicle, even closer than entity 76 (at the bottom of
the image)! This situation would be very unlikely
(LOWER-IS-CLOSER heuristic in section 3) and
therefore Interpretation 2 can be ruled out. Only the
correct interpretation (Fig. 18) remains.

The example illustrates the fact that some forms of
object motion are difficult or even impossible to de-
tect from single point features. For example, an entity
approaching the camera along 2 straight line parallel
to the viewing direction cannot be distinguished from
a stationary point when both the camera and the ob-
ject move uniformly. Such a situation occurred in
frames 195 - 197, where another car approached the
ALV. There we used heuristic reasoning about the
general spatial layout of the scene to detect this motion
indirectly. This experiment shows that the qualitative
scene model (QSM) is robustly maintained under
real-world conditions. The number of simultaneous
interpretations is quite small (maximum is two), and
the correct interpretation clearly ranks higher at any
point in time.
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Fig. 15. Frames 189-192.
Point 24 is the only entity
considered mobile in this pe-
riod. Whenever the direction
of motion could not be iden-

marked by a simple square.
Notice the increased number
of CLOSER-relationships
established across the FOE
area by different rates of

Fig. 16. Frames 193-195.
After frame 195, two inter-
pretations again become
Jeasible, this time caused by
the movement of the ap-

proaching car (point 33). The
(correct) alternative I is
ranked higher because of the
larger number of stationary
entities.

expansion away from the
FOE.

tified between a pair of
Sframes, the mobile point was

FRAME 189: interpratation 1 FRAME 190: interpretation 1

FRAME 193: interpretation 1|
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D Y .
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FRAME 194 interpratation 1

FRAME 191: Interpretation '

| PRAML 195; Interpretation 2

5. Conclusions

In this paper we have presented the conceptual outline
of a new approach to scene understanding for mobile
robots operating in dynamic environments. The chal-
lenge of understanding such image sequences is that
stationary objects are generally not still in the image,
and mobile objects do not necessarily appear to be in
motion. Consequently, the detection of 3D motion
sometimes requires reasoning far beyond simple 2D
change analysis.

The approach taken here departs from previous
related work by following a strategy of qualitative
rather than quantitative reasoning and modeling. The
numeric effort is packed into the computation of the
Focus of Expansion (FOE), a low-level process that is
performed entirely in 2D. We have extended the FOE
concept to cope with the problems of noise and errors
in the original displacement vectors. Instead of a sin-
gle FOE. we determine a connected region of possible
FOE locations, called the Fuzzy FOE, whose shape is
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directly related to the “goodness” of the displacement
field.

The availability of reliable displacement vectors is
vital to our approach. Although we used manual point
tracking for the examples shown here, recent experi-
ments indicate that automatic feature selection and
tracking have become practical (Bhanu 1988; Kim and
Bhanu 1987). All the interpretations and Fuzzy FOE
results were generated by machine. Details on the
FOE computation can be found elsewhere (Bhanu and
Burger 1988:; Burger and Bhanu 1989); the empbhasis
of this paper was to demonstrate how even a Fuzzy
FOE can be used to draw powerful conclusions about
motion and the 3D scene structure. A large part of the
given rules follows directly from the laws of perspec-
tive imaging, although no rigorous proofs are given
here. The rules that reflect some form of heuristics
(which hold for a large class of scenes in practical ap-
plications) are clearly marked. From these clues, we
construct and maintain an internal 3D representation,
termed the Qualitative Scene Model, in a generate-
and-test cycle over extended image sequences. To
overcome the ambiguities inherent in dynamic scene
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Fig. 17. Approaching object,
frames 196-197. Two differ-
ent scene interpretations are
pursued simultaneously until
frame 197. Entity 24 is
known to be moving ( from
earlier conclusions) in both
interpretations. but its direc-
tion of motion is currently
undetermined (indicated by
a square). Interpretation 1:
entity 33 (square) is consid-
ered mobile with undeter-
mined motion. Interpretation
2: entities 15, 39, 50, ..., 73
(squares) are mobile, 33 is
stationary. None of these
interpretations can currently
be ruled out and are carried
over to the next frame pair.

The receding car is not ob-
served after frame 196. In
the following frame pair, In-
terpretation 1: entity 33 is
concluded to be moving
towards the camera (indi-
cated by an upright square,.
Interpretation 2 is about to
vanish: if entity 33 was really
Stationary. then it must be
closer to the camera than en-
tity 76 (at the bottom). indi-
cated by the arc from 33 10
76 and the larger circle
around 33. However, this
contradicts the heuristic that
things lower in the image are
generally closer in 3D space,
which makes the entire
interpretation 2 implausible.

FRAME 195: internretation +

FRAME 136 incarpratation ¢

FRAME 197: interpretatian +

analysis, multiple interpretations of the scene are pur-
sued simultaneously. This model could also serve as a
platform for other visual processes such as occlusion
analysis, perceptual grouping, and object recognition.
For our implementation, we have used an off-the-
shelf expert system tool mainly because it facilitates
easy management of explicit knowledge. whereas speed
was only of minor importance. The examples given in
the text show the basic operation of our approach on
real images acquired by the Autonomous Land Vehi-
cle. The examples also demonstrate that some appar-
ently simple situations require complex paths of rea-

Fig. 18. Final scene interpre-
tation for frame 197. Point
33 has been identified cor-
rectly as approaching the
camera. All other entities of
the scene are considered
stationary.

soning. The system described here has been
successfully applied to ALV sequences with over 250
frames in a fully automatic mode (Bhanu 1988).
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