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Estimating 3-D Egomotion from 
Perspective Image Sequences 

Wilhelm Burger and Bir Bhanu, Senior Member, ZEEE 

Abstract- This paper deals with the computation of sensor motion 
from sets of displacement vectors obtained from consecutive pairs of 
images. The problem is investigated with emphasis on its application to 
autonomous robots and land vehicles. First, the effects of 3-D camera 
rotation and translation upon the observed image are discussed and 
in particular the concept of the focus of expansion (FOE). It is shown 
that locating the FOE precisely is difficult when displacement vectors 
are corrupted by noise and errors. A more robust performance can be 
achieved by computing a 2-D region of possible FOE-locations (termed 
the fuzzy FOE) instead of looking for a single-point FOE. The shape of 
this FOE-region is an explicit indicator for the accuracy of the result. 
It has been shown elsewhere that given the fuzzy FOE, a number of 
powerful inferences about the 3-D scene structure and motion become 
possible. This paper concentrates on the aspects of computing the fuzzy 
FOE and shows the performance of a particular algorithm on real motion 
sequences taken from a moving autonomous land vehicle. 

Zndex Tenns-Autonomous mobile robot, dynamic scene analysis, fuzzy 
focus of expansion, motion analysis, passive navigation, sensor motion 
estimation. 

I. INTRODUCTION 
HE problem of determining the motion parameters of a T moving camera relative to its environment from a sequence 

of images is important for the application of computer vision in 
mobile robots. Short-term control, such as steering and braking, 
path stabilization, navigation, and obstacle avoidance are all tasks 
that can effectively utilize this information [ l l ] ,  [12]. Several 
researchers have addressed this problem directly [3], [lo], [17], 
[19] or indirectly by determining the motion parameters of 
a single rigid object with respect to a stationary camera [9], 
[14], [21], [28], [30]. Since the (stationary) environment can be 
considered as one large rigid object, these two approaches are 
equivalent. A prerequisite for any existing method is to estimate 
the 2-D motion that occurs in the image between consecutive 
frames. Two basic methods have been proposed for this purpose, 
which are quite distinct. 

The gradient method [20], [29] uses spatial and temporal gray- 
level variations to estimate the instantaneous velocity or optical 
flow at each location in the image. It relies on sufficient object 
texture, continuous motion, and small displacements between 
subsequent frames. Since the magnitude of flow can only be 
determined in the direction of 2-D gradient, i.e., perpendicular to 
the tangent of a boundary, the flow vectors cannot be computed 
locally. This is commonly referred to as the aperture problem 
[31]. Global smoothing of the flow field has been proposed, 
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which gives rise to problems at flow discontinuities, such as 
object boundaries. This seems to be almost a paradox, since 
intuitively motion estimates should be obtained most easily at 
exactly those locations. 

The displacement method [2], [4] uses the parts of the image 
where discontinuities in brightness or motion occur (which are a 
source of problems in the gradient method). Significant features 
such as line segments, distinct dark or bright spots, or comers 
in two consecutive frames are selected and matched, rendering 
a field of displacement vectors for those features. This results 
in a formulation of 2-D motion as discrete displacements as 
compared to the velocity-based formulation which characterizes 
the gradient method. Ideally, the selected features should not only 
be matched between subsequent frames, but tracked over multiple 
frame sequences. Two problems arise during this process. The 
first problem is the selection and reliable location of significant 
features in consecutive frames, especially when the images are 
noisy. Individual features are commonly extracted by applying 
local window operations, like Moravec’s “interest operator” [23] 
as a classic example. The application of this approach on a mobile 
land-based robot faces additional difficulties. In this particular 
scenario, a forward-looking camera moves approximately parallel 
and at relatively small distance to the ground. Therefore, visual 
objects in the environment “approach” the camera from almost 
infinite distance to as close as a few meters, before they leave the 
field of view. A point which was clearly distinguishable when 
observed from some distance, may lose its sharp outlines when 
the camera gets closer to it. This suggests some form of range- 
dependent feature-extraction from the image [ 181. The second 
problem is finding reliable matches between the set of interesting 
points extracted from one frame and the set of interesting points 
extracted from the subsequent frame. This has been termed the 
correspondence problem [4] which is, although a nontrivial task 
in itself, assumed to be solved in the context of this work. 

In spite of the persisting difficulties, the displacement method 
appears to be more promising than the gradient method. Not only 
is the information contained in discrete displacements fields of 
more practical use, but the problem of reliably computing optical 
flow is as hard as extracting and matching distinct features and 
has theoretical limitations [32]. In this work, we use a discrete 
feature matching approach, a local technique, where significant 
(i.e., “interesting” [23]) image events are localized in both images 
and subsequently matched upon similarity [4], [18]. This results 
in a field of displacement vectors between corresponding feature 
points. 

From a given set of image displacement vectors, the 3-D 
structure of the scene and its relative motion towards the camera 
can be obtained simultaneously by solving a system of linear or 
nonlinear equations [ 141, [21], [28], [30]. While this technique is 
known to be numerically unstable under noisy conditions, recent 
work [15], [33] demonstrates that improvements are possible or 
that error estimates can be obtained. 
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When the camera is looking forward and the platform motion 
is characterized by a significant translation component (which is 
typical for most vehicles), another technique becomes attractive. 
It relies upon the fact that, under pure camera translation, all 
image features seem to diverge from a particular image location, 
called the focus of expansion (FOE), which marks the direction 
of vehicle heading [8], [20], [22], [24], [26]. This is of course 
only true for the stationary part of the scene but moving objects 
may be handled individually [l]. The advantage of this method is 
that the FOE, and consequently all parameters of the egomotion, 
can be computed entirely in terms of 2-D image coordinates 
regardless of the spatial structure of the scene. 

We have adopted the FOE method as the basis of our approach. 
Unfortunately, computation of a single location for the FOE 
turns out to be a hard problem, mainly due to digitization errors, 
unreliable displacement vectors, and image noise. There seems to 
be psychological evidence 1271 that humans also have difficulties 
in estimating the precise direction of heading in comparable 
situations. Our solution to the problem is not to search for 
a single FOE-location, but to obtain a two-dimensional FOE- 
region, which we call the “fuzzy F O E  [13]. Despite the apparent 
loss in accuracy, the Fuzzy FOE can be employed as a practical 
tool in dynamic scene analysis [6] ,  [12]. In the following sections, 
we discuss the effects of camera motion upon the image and 
ways to decompose these effects. We distinguish between the 
FOE-from-rotation and rotation-from-FOE approaches, whiqh 
are characterized by opposite search strategies in the multi- 
dimensional parameter space. Although the latter approach turns 
out to be superior, the actual location of the FOE can generally 
not be determined precisely under noisy conditions. A description 
of the fuzzy FOE algorithm is followed by some typical results 
on real image sequences which were taken from the autonomous 
land vehicle (ALV). 

11. IMAGE EFFECTS OF 3-D CAMERA MOTION 
It is well-known that any rigid motion of an object in space 

between two points in time can be decomposed into a combi- 
nation of translation and rotation. While many researchers have 
used a velocity-based formulation of the problem [l], [26], the 
following treatment views motion in discrete time steps. Given 
the world coordinate system shown in Fig. 1, a translation T = 
(U V W)’ applied to a 3-D point X = (X Y Z)‘ is accomplished 
through vector addition: X’ = T + X .  

A 3-D rotation R about an arbitrary axis through the origin of 
the coordinate system can be described by successive rotations 
R+, Re, and R, about its X-,  Y-, and Z-axes, respectively. Thus, 
X ’  = R X  = R,+R,R,X, where 

0 cos0 0 sin0 

-sin0 0 cos6 

(1) 

cos$ sin$ 

The transformation M for arbitrary rigid motion in three-space 
is thus given by 

Fig. 1. Camera model showing the coordinate system, lens center, image 
plane, and angles of rotation. The origin of the coordinate system 0 is located 
at the lens center. The focal length f is the distance between the lens center 
and the image plane. 

rotation matrices is not commutative, a different order of rotations 
would result in different amounts of rotation for each axis. For 
a fixed order of application, however, this motion decomposition 
is unique. 

To model the environment of the vehicle, the camera is 
considered as being stationary and the environment as being 
moving as one single rigid object relative to the camera. The 
origin of the coordinate system (Fig. 1) is located in the lens 
center of the camera. The given task is to reconstruct the vehicle’s 
egomotion from visual information. It is therefore necessary to 
know the effects of different kinds of vehicle motion upon the 
observed image. 

Under perspective imaging, a point X = (X Y Z)’ in 3-D space 
is projected onto a location in the image plane x = (x y)’, with 

where f is the focal length of the camera (see Fig. 1). 

A. Effects of Pure Camera Rotation 

The effects caused by pure camera rotation about an axis 
passing through the lens center are intuitively clear (see Fig. 1). 
For example, if the camera is rotated about the Z-axis (i.e., the 
optical axis), points in the image move along circles centered 
at the image location n, = (0 0). In practice, however, we can 
assume that the amount of rotation about the Z-axis is relatively 
small and we therefore, only consider the more significant 
rotations about the X- and Y-axes. 

Rotating the vehicle about the X-axis by an angle -4 and 
about the Y-axis by an angle -0 moves each 3-D point X to a 
new location X’, given as 

X + X ’ = R + . R , . X  

0 sin 0 X 

Consequently x, the image point of X, moves to x‘ given by, 

M : X + X ’  = R+&R+(T+ X ) ,  

with six degrees of freedom (4,0, $, U, V, and W ) .  This decom- 
position is not unique because the translation could be applied 
after the rotation instead. Also, since the multiplication of the 

X c o s 0 +  Z s i n 0  
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Inverting the perspective transformation from (3) and using it 
in (4) leads to the 2-D rotation mapping ?-,To which moves 
each image point x = (zy)  into the corresponding image point 
x' = (x'y') under the sequence of 3-D rotations R,Ro, 

R , R s ( X )  : x + X '  

T , T ~ ( z )  : z = (x y) + 2' = (2' y') 

[ i:] f --2 cos 4 sin 0 + y sin 4 + f cos 4 cos 0 

' [zs in4s inB + y c o s 4  - f s i n 4 c o s o  1 -  (6) 

It is important to notice that this transformation contains no 
3-D variables, such that its effects can be simulated without 
knowing the distance of the observed points from the image 
plane. Therefore, the acquired image changes when the camera 
rotates around its lens center, but no additional, entirely new 
views of the environment are obtained. Ignoring the effects at 
the boundary of the image and errors due to the discretization 
of the image, we can assume that pure camera rotations merely 
map the image to itself. 

To compute the amount of rotations from a pair of observa- 
tions, we need to solve the inverse problem. Given are two image 
locations xo and xI, which are the projections of a 3-D point X 
at time to and time t l ,  what are the amount of rotation 4 and B 
which when applied to the camera between instances to and t I ,  
would move image point xo onto xI, assuming that no camera 
translation has occurred? 

If horizontal rotation R, and vertical rotation RO are applied 
to the camera separately, the points in the image move along 
hyperbolic paths [24]. If pure rotation Rs were applied to the 
camera, a given image point 2,) = (xuy,,) would move on a path 
described by 

:c cos 0 + f sin B 

Similarly, pure vertical rotation R, would move an image point 
x1 = (xclyl) along a path described by 

Since the composite 3-D rotation is modeled as two separate 
steps (RQ followed by Rd), the rotation mapping, T,TQ,  can 
also be separated into T~ followed by T, .  In the first step T ~ ,  

rotation around the Y-axis, moves the original image point xo to 
an intermediate location x,. Subsequently, T ,  would take point 
x, to the final location x, by camera rotation around the X-axis. 
All this can be expressed as 

where 

and 

T ,  : Z c  = (ZcYc)  + 2 1  = (21 Y l ) .  (8) 

As shown in Fig. 2, the image point x, = (zcyc) is located at 
the intersection of a horizontal hyperbola passing through xo (7a) 
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Fig. 2. Effects of camera rotation. Rotation about the Y-axis is applied first, 
which moves the arbitrary image point xo along a hyperbolic path to xc. 
Subsequent rotation downwards about the X-axis moves x, to x1 . The image 
location x( is found by intersecting the two hyperbolae passing through xo 
and X I .  

and a vertical hyperbola through xI (7b). The coordinates of the 
intersection point x, are 

From this, the angles of rotation B and 4 (for this particular order 
of rotations) are finally obtained as (see Fig. 2), 

-tan-' E! (10) 0 = tan-' c. -tan-' 3 4 = tan-' 
f f '  f f '  

B .  Effects of Pure Camera Translation 

When the vehicle undergoes pure translation T = (U V W)' 
between time to and t l  , every point X ,  in the environment moves 
relative to the vehicle by the vector -T. Since every stationary 
point is affected by the same translation vector, these points 
actually move along imaginary parallel lines in 3-D space. It 
is a fundamental result from perspective geometry [16] that 
the images of parallel lines pass through a single point in 
the image plane called a vanishirig point (Fig. 3). Therefore, 
when the camera moves forward along a straight line in space, 
image points seem to diverge from this vanishing point (the 
focus of expansion-FOE) or converge towards it (the focus of 
contraction-FOC) when the camera moves backwards. 

Fig. 3 demonstrates that the straight line passing through the 
lens center 0 of the camera and the FOE is also parallel to the 
3-D motion _vectors of the environmental points. Therefore, the 
3D vector OF (from lens center to FOE) points in the direction 
of camera translation in space but does not supply the length 
of T .  The actual translatiy vector T applied to the camera is a 
multiple of the vector OF: 

T = A 0 3  = X[X, yf f ] ' ,  X E R. (1 1) 

In velocity-based models of 3-D motion, the FOE has fre- 
quently been interpreted as the direction of instantaneous head- 
ing, i.e., the direction of vehicle translation during an infinitely 
short period of time. When images are given as a sequence of 
snapshots taken at discrete instances of time with significant 
image motion in between, a discrete model seems more appro- 
priate that treats the FOE as the direction of accumulated vehicle 
translation over a certain period of time. 
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Fig. 3. Effects of camera translation in the forward direction. Under pure 
camera translation, points in the environment (A,B,C)  move relative to 
the camera along parallel 3-D vectors in space. These parallels have a 
common vanishing point x, = ( . r f  yf) (the focus of expansion, FOE), in the 
perspective image, from which all displacement vectors seem to expand. 

1) Measuring the Amount of Camera Translation: Fig. 4 
shows the geometric relationships for measuring the amount of 
camera translation for the 2-D case. It can be considered as a 
top view of the camera, i.e., a projection onto the X/Z-plane of 
the camera-centered coordinate system. The cross section of the 
image plane is shown as a straight line. The camera is translating 
from left to right in the direction given by T = (xf f)T. A 
stationary 3-D point is observed at two instances of time, which 
moves in space relative to the camera from X to X’, resulting in 
two images x and x’. 

X =  [:] and X ‘ =  [::I = [,-,,]. X - A X  

Using the inverse perspective transformation from (3) yields 

Z = -X and Z‘ = 2 - A 2  = -X’ = -(X - AX). f f f  
5 2’ 2 

From similar triangles (shaded in Fig. 4) 

AX AZ -- - - 
“f f ’ 

and therefore 

Thus, the rate of expansion of image points from the FOE con- 
tains direct information about the distance of the corresponding 
3-D points from the camera. Consequently, if the vehicle is 
moving along a straight line and the FOE has been located, the 
3-D structure of the scene can be determined from the expansion 
pattern in the image. However, the distance Z of a 3-D point 
from the camera can only be obtained up to the scale factor AZ, 
which is the distance that the vehicle advanced along the Z-axis 
during the elapsed time. 

When the velocity of the vehicle (AZ/t) in space is known, 
the absolute range of any stationary point can be computed. 
Altematively, the linear velocity of the vehicle can be obtained if 
the actual range of a point in the scene is known (e.g., from laser 
range data), In practice, of course, any such technique requires 
that the FOE can be located in a small area, and that the observed 

Fig. 4. Amount of expansion from the FOE for discrete time steps. The 
camera moves by a vector T in 3-D space, which passes through the lens 
center and the FOE in the image plane. The 3-D Z-axis is also the optical 
axis of the camera. 

image points exhibit significant expansion away from the FOE. 
As will be shown in the following section, image noise and 
camera distortion pose serious problems in the attempt to assure 
that both of the above criteria are met. 

If a set of stationary 3-D points {(XtXi)} is observed, then 
of course the translation in the Z-direction is the same for every 
point. 

Therefore, the range of every point is proportional to the observed 
amount of expansion of its image away from the FOE, 

x: -xf 
2, o( - x: - 2, ’ 

which renders the relative 3-D structure of the set of points. 
The effects of camera translation T can be formulated as a 

mapping t between two ordered sets of corresponding image 
points I = {z,} and I‘ = {s:}. Unlike in the case of pure 
camera rotation, this mapping not only depends upon the 3-D 
translation vector but also upon the position of each point in 3-D 
space. Therefore, the quantitative image effects of a particular 
translation T cannot be predicted without knowing the actual 3-D 
structure of the scene. However, there is an important qualitative 
property of the 2-D mapping t, namely that each point maps onto 
a straight line passing through the original point and the FOE, 
i.e., if the vehicle undergoes pure forward translation, then there 
must exist one image location xf ,  such that t is a radial mapping 
between Z and I‘ with respect to x,. In other words, the condition 

radial-mapping (I, I’ , zf ) : 
t = {(2*,2:) E I x I’ I 2: = 2, + p,(s, - s,), 

P, E R, L 0) 
must be satisfied. This observation is the key for decomposing 
the effects of arbitrary camera motion into its translational and 
rotational components. 

111. DECOMPOSITION OF IMAGE MOTION 
The image effects of a composite 3-D camera motion M : 

X + X’ = R+Re(T + X) can be summarized by a mapping 
d : In + I ,  = rmrst(In), where d stands for displacement and 



1044 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 12, NO. 1 I ,  NOVEMBER 1990 

the mapping transforms the original image Io into the subsequent 
image I , .  For the purpose of clarity, we introduce the intermediate 
image I' = t I o  which is the result of the translation component 
of the vehicle's motion such that the condition radial-mapping 
(Io, I*,  xf) is satisfied for some xP Unlike the two images Io and 
I , ,  this new image I* is generally not observed, except when no 
camera rotation occurs. It serves as an intermediate result to be 
reached during the separation of the translational and rotational 
motion components. 

Fig. 5 shows the top view of a vehicle traveling along a curved 
path to explain this decomposition. At the two instances in time 
to and t , ,  the position of the vehicle in space is specified by 
the location of a reference point (i.e., the lens center) P and the 
orientation R of the vehicle with respect to its environment. The 
original image Io is seen at time to. Following the adopted scheme 
of motion decomposition, the translation T is applied first, which 
takes the vehicle's reference point from position Po to position 
PI without changing its orientation Ro. This transforms image Io 
into image I* .  Notice that the FOE is found at the intersection 
of the 3-D translation vector T with the image plane Io.  In the 
second step, the vehicle is rotated by w to its new orientation R I ,  
generating the final image II. 

To allow a unique reconstruction of the actual motion 
parameters R,, Rs, Rc., and T from their 2-D effects, a 
minimum number of environmental points must be included in 
the computation. Tsai and Huang [30] have shown that seven 
points in two perspective views suffice to obtain a unique 
interpretation in terms of rigid motion and structure, except for 
a few cases where points are arranged in some very special 
configuration in space. Ullman [3 11 reports computer experiments 
which indicate that six points are sufficient in many cases and 
seven or eight points yield unique interpretations in most practical 
cases. Of course, to reduce the effects of noise and tracking 
errors, in practice we will always try to include some redundancy 
by observing a much larger set of environmental points. 

The fact that 

t I" = I' = ?-;lT-;'Il (13) 

suggests two altemative strategies for separating the motion 
components. 

1 )  FOE from Rotation: Successively apply combinations of 
inverse rotational mappings (?-;'TG,'), ( T ~ ~ T ; ~ ' ) ,  . . . , (TG'T;;)  

to the second image I , ,  until the resulting image I' is a radial 
mapping with respect to the original image Io. Then locate the 
FOE zfk in Io. 

2 )  Rotation from FOE: Successively select FOE-locations 
zf,, zf2, . . . , zfr, (different directions of vehicle translation) in the 
original image Io and see if inverse rotational mappings (?<'?;%') 
exist that yield a radial mapping with respect to the selected FOE 
zf7, in the original image Io .  

Both altematives were investigated under the assumption of 
realistic forward vehicle motion. Although originally the first 
approach had appeared more attractive, it tumed out to be difficult 
to determine how close a given displacement field is to being 
radial when the location of the FOE is not given. In the presence 
of noise, this problem becomes even more difficult. The second 
approach was examined after it appeared that any method which 
extends the given set of displacement vectors backwards to find 
the FOE is inherently sensitive to image degradations [6].  

In practice, the displacement vectors may not pass through a 
single pixel. Even for human observers it seems to be difficult to 
determine the exact direction of heading (i.e., the location of the 
FOE on the retina). Average deviation of human judgement from 

Fig. 5. Interpretation of the focus of expansion (FOE) for discrete time steps. 
Vehicle motion between its initial position (where image Z0 is observed) and 
its final position (image I , )  is modeled as two separate steps. (a) First the 
vehicle translates by a 3-D vector T from position PO to position P I  without 
changing its orientation 610. After this step, the intermediate image I* would 
be seen. Subsequently (b), the vehicle rotates by changing its orientation from 
Ro to R I .  Now image ZI is observed. The FOE is found where the vector T 
intersects the image plane IO (and also I*) .  

the real direction has been reported to be as large as 10" and up 
to 20" in the presence of large rotations [25]. It was, therefore, 
an important premise in this work that the final algorithm should 
determine an area of potential FOE-locations (called the fuzzy 
FOE) instead of a single (but probably incorrect) point. In the 
following, we briefly describe the FOE from rotation method and 
then present the details of our rotation from FOE technique. 

A .  FOE from Rotation 

In this method, the image motion is decomposed in two steps. 
First, the camera rotations are estimated and their inverse effects 
are applied to the second image I ,  , thus producing a "derotated" 
image I f .  If the rotation estimate was accurate, the resulting 
displacement field from Io to I '  should be radial since only the 
effects of camera translation remain. The second step verifies 
that the displacement field is actually radial and determines the 
location of the FOE. In the FOE from rotation approach, two 
problems have to be solved: 

1) How to estimate the rotational motion components without 
knowing the exact location of the FOE? 

2) How to measure the "goodness of derotation" and locate 
the FOE? 

There are several ways to get an initial estimate for the 
rotations. If the platform has sufficient inertia, the results from 
one pair of frames can be carried over to the following pair 
as an initial guess. Also, the displacement vectors of points at 
far distance from the camera (known from earlier observations) 
are not significantly affected by translation and can be used to 
obtain an immediate estimate for the rotations [e.g., using (lo)]. 
Another approach is discussed by Bhanu and Burger [51, t61, 
where the range of possible rotations is successively constrained 
by geometric operations. 

After applying the inverse rotations to the second image I ,  , the 
question is how much the resulting displacement field between 
Io and the derotated image I'  deviates from a radial mapping. 
Of course, due to finite image resolution, noise, and inaccuracies 
from point tracking, we can never expect any mapping to be 
perfectly radial. Prazdny [24] suggests to measure the disturbance 
of the displacement field by computing the variance of the 
intersections of one displacement vector with all other vectors. If 
those intersections lie close together, then the variance is small, 
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indicating that the displacement field is almost radial. Similarly, 
instead of selecting a particular displacement vector, one could 
compute the intersection with imaginary horizontal or vertical 
lines, as was pursued by Bhanu and Burger [5 ] ,  [61. 

Common to this class of techniques is that they all need to 
extend the given displacement vectors backwards along straight 
lines to find their intersections which, of course, multiplies the 
disturbances caused by m y  existing errors. This is particularly 
true for short displacement vectors. As a consequence, the error 
functions to measure the quantitative deviation from a radial 
displacement field are not well-behaved under noisy conditions. 
They usually exhibit local minima which prohibit efficient search 
for the optimal derotation (see Bhanu and Burger [5], [6] for 
details). 

B .  Rotation from FOE 
While the above method iterates over rotation angles, the 

rotation from FOE technique, discussed in the following, suc- 
cessively evaluates potential FOE-locations. An initial guess for 
the FOE may be obtained from knowledge about the orientation 
of the camera relative to the vehicle. Subsequently, the solution 
from the previous frame pair can be used as a starting point. Once 
a particular FOE, xf ,  has been selected, the problem is to find the 
rotational mappings T;' and T;' which, when applied to the 
image Z, to produce Z', will result in an optimal radial mapping 
between Zo and I' with respect to a given FOE, xf. To apply a 
local search strategy (e.g., the method of steepest descent), we 
need a suitable error function that is well behaved in a large 
region around the global minimum. 

The error measure that was chosen for this purpose uses 
the deviation of the displacement vectors from straight rays 
originating from the selected FOE. Given a set of corresponding 
image points {(x,~:) E I o  x 1')  and some FOE-location xf the 
error measure E is defined as 

Fig. 6 shows the interpretation of this error measure as the sum of 
the squared perpendicular distances of the displacement vectors' 
end points from the radial lines. Notice that this expression 
implicitly puts more weight upon the long (i.e., dominant) 
displacement vectors and less on short ones. 

Since under perspective transformation, image points move 
along hyperbolic paths when the camera performs pure rota- 
tion, the resulting displacement is not uniform over the entire 
image plane (7). However, if the amount of rotation is small 
(less than 4") or the focal length of the camera is large, we 
can replace the nonlinear mappings ~ 8 '  and T;' by a linear 
shift vector S+g which is independent of the image location, 
i.e., 

I*  = r;lT.;lIl M S@ + I1 = I + .  (15) 

Notice that this assumption does not imply that the algorithm 
is valid just for small rotations. It only serves as an approx- 
imation to estimate the optimal rotation angles more quickly. 
In most practical cases, this condition is satisfied, provided 
that the time interval between frames is sufficiently small. 
However, should the amount of vehicle rotation be very large 
for some reason, a coarse estimate of the actual rotation can 

I 

Fig. 6. Measuring the deviation from a radial displacement field. For the 
assumed FOE-location xf, d,'s are the perpendicular distances between the 
endpoints of the displacement vectors and radial lines emanating from xf and 
passing through xi's. The sum of the squared distances is used to quantify the 
deviation from a radial displacement field with respect to xf. 

be found and applied to the image before the FOE computa- 
tion [6]. With sO0 as a free variable, the error measure (14) 
becomes 

where x, E I and x', E I' .  
This second-order error function can be minimized with stan- 

dard numerical techniques to obtain an optimal value for ~ $ 0 .  To 
reduce this problem to a one-dimensional search, one point xR, 
called the guiding point, is selected in image Zn which is forced 
to maintain zero error for its displacement vector. Therefore, 
the corresponding point must lie on a straight line passing 
through x: and xf. Any shift s (see Fig. 7) applied to the set 
of image points 2' E I' must keep x: on this straight line, i.e., 
x: = xk + s = zCf + X(x, - x ~ f )  for all s, and thus, 

s = xf - X; + X(Z, - xf), X E R. (17) 

For example, for X = 1, s = x9 - x; which is the negative of 
the displacement vector from xg to xi. In this case, xi and zg 
would overlap. 

This leaves X as the only free variable and the error function 
( 16) becomes 

E(X) = [AA, - B, + C,I2 (18) 
2 

with 

1 

Differentiating (18) with respect to X and setting the result equal 
to zero yields the parameter Xwt for the optimal shift sop, as 

CA,B, - cA,C, 
c A? Xopt = 
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Fig. 7. Use of a guiding point. The problem is to register the two images 
I = { s, } and I' = { .r: } onto a radial pattem out of the FOE xf (dashed lines) 
by shifting the second image I' uniformly by some (unknown) 2-D vector s. 
We simplify this to a 1-D search by selecting a displacement vector x, .+ xh 
whose deviation from the radial line must be zero under any shift vector s. 
Intuitively, this means that the entire image I' is first shifted such that xk 
coincides with a radial line through xn ( 1 )  and then I'  is translated parallel 
to this line (2) until a minimum error is reached. 

The optimal shift vector sopt is obtained using (17). However, to 
evaluate the selected FOE-location xf, we are primarily interested 
in the error value E(Xop,) that would result from applying the 
approximate derotation sopt. E(Xop,) is obtained by inserting A,, 
into (18), giving 

or 

The normalized error EN shown in the results that follow 
(Figs. 9-15) is defined as 

where N is the number of displacement vectors used for com- 
puting the FOE. 

Since in a displacement field caused by pure camera translation 
all vectors must point away from the FOE, this restriction must 
hold for any candidate FOE-location (Fig. 8). If after applying 
soP(xf) to the second image Z ' ,  the resulting displacement field 
contains vectors pointing toward the hypothesized xf ,  then this 
FOE-location is prohibited and can be discarded from further 
consideration. Fig. 8 shows a field of five displacement vectors. 
The optimal shift sopc for the given xf is shown as a vector in 
the lower right-hand comer. When sop[ is applied to point zi, 
the resulting displacement vector (shown with a heavy line) does 
not point away from the FOE. Since its projection onto the line 

points toward the FOE, it is certainly not consistent with 
a radial expansion pattem. 

The following function Evaluate-SingleFOE examines one 
hypothetical FOE-location xr in a given pair of images Io  and 
I , .  It uses the functions Optimal-Sh$t for computing the optimal 
shift vector sop and Equivalent-Rotation to obtain the rotation 

..@'?!- 
,'FOE 

A:; 
Fig. 8. FOE-locations are prohibited if the displacement field resulting from 
the application of the optimal shift sop, contains vectors pointing towards the 
FOE. This is the case at point XI.  

angles equivalent to sOpt [by (IO)]. The parameters and Omax 
are the maximum angles of rotation for which the approximation 
in (15) is acceptable. If the estimated rotation angles exceed that 
limit, the intermediate image Z+ is derotated exactly by procedure 
Derotate-Zmage [using (6)] before another estimate is computed. 

Evaluute_Single_FOE(xf, Io ,  Z I  , &,,ax, Omax): 
I+ t I , ;  
(4,@ +- (0,O); 

repeat /* usually only one iteration required */ 
(sOpt, error) t Optimal-Shijt(Zo, I+ ,  xf);  
(@, 0+) +- Equivalent-Rotation (soPC); 
(4,O) + (40) + ( 6 9  e+); 
I++- Derotute-Image ( I , ,  4,O); 
until (6 5 &ax & B+ 5 Om,,) 

retum (I+,  $,d ,  error). 

The error function E is computed in time proportional to the 
number of displacement vectors N .  The final size of the FOE- 
area depends on the local shape of the error function and can be 
constrained not to exceed a certain maximum M .  Therefore, the 
time complexity is O ( M N ) .  

The first set of experiments was conducted on synthetic 
imagery to investigate the behavior of the error measure under 
various conditions, namely 

the average length of the displacement vectors (longer 
displacement vectors lead to a more accurate estimate of 
the FOE), 
the amount of residual rotation components in the image, 
and 
the amount of noise applied to the location of image points. 

Fig. 9 shows the distribution of the normalized error EN 
for a sparse and relatively short displacement field (length 
factor = 2 = 8 pixels) containing 7 vectors. Residual rotation 
components of +2" in horizontal and vertical direction are present 
in Fig. 9(b)-(d) to visualize their effects upon the image. The 
displacement vector through the guiding point is marked with 
a heavy line. The choice of this point is not critical, but it 
should be located at a considerable distance from the FOE to 
reduce the effects of noise upon the direction of the vector 

In Fig. 9, the error function is sampled in a grid with 
a width of 10 pixels over an area of 200 by 200 pixels around 
the actual FOE, which is marked by a small square. The size 
of the circle at each location indicates the amount of error, 
i.e., the deviation from the radial displacement field that would 
result if that location were picked as the FOE. Heavy circles 
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Fig. 9. Error function for a synthetic displacement field. Displacement field and minimum error at selected FOE-locations. The shape of the error function 
is plotted over an area of flOO pixels around the actual FOE (marked with a small square). The diameter of each circle reflects the amount of normalized 
error (21) for that particular FOE-location. Heavy circles indicate error values above a certain threshold (4.0), prohibited locations (as defined earlier) 
are marked "+". (a) No residual rotation. (b) 2.0" of horizontal camera rotation (camera rotated to the left). (c) 2.0' vertical rotation (camera rotated 
upwards). (d) -2.0' vertical rotation (camera rotated downwards). 

indicate error values which are above a certain threshold (4.0). 
Those FOE-locations that would result in displacement vectors 
which point toward the FOE (as described earlier) are marked 
as prohibited (+). It can be seen that this two-dimensional error 
function is smooth and monotonic within a large area around 
the actual FOE (marked by a small square). The shape of 
this error function makes it possible that, even with a poor 
initial guess, the global optimum can be found by local search 
methods. 

Figs. 10 to 15 show the effects of various conditions upon 
the behavior of this error function in the same 200 x 200 pixel 
square around the actual FOE as in Fig. 9. 

An important criterion is the function's behavior when the 
amount of camera translation is small or the displacement 
vectors are noisy. Fig. 10 shows the effects of varying the 
average length of the displacement vectors in the range of 
4-60 pixels in the absence of any residual rotation or noise 

(except digitization noise). Note that longer displacement vectors 
result in a sharper minimum around the actual FOE. 

Fig. 11 shows the effect of increasing residual rotation in 
horizontal direction upon the shape of the error function: Fig. 12 
shows the effect of residual rotation in vertical direction. Here, 
it is important to notice that the displacement field used is 
extremely nonsymmetric along the Y-axis of the image plane. 
This is motivated by the fact that in real ALV images, long 
displacement vectors are most likely to be found from points 
on the ground, which are located in the lower portion of the 
image. Therefore, positive and negative vertical rotations have 
been applied in Fig. 12. 

In Fig. 13, residual rotations in both horizontal and vertical 
direction are present. It can be seen [Fig. 13(a)-(e)] that the 
error function is quite robust against rotational components in the 
image. The result in Fig. 13(e) shows the effect of large combined 
rotation of 4.0°/4.00 in both directions. Here, the minimum of 
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error < I O  . error = I O  error = 2.0 o ernr - 3.0 0 error I 4 0 0 error > 4 0 + prohibited 

(a) (b) (c) ( 4  (e) 
length-factor- 1 0  length-faclor- 2.0 length-factor. 5 0  length-factor. 10 0 length-factor- 15.0 
rolation. 0.0 0.0 deg rotation- 0.0 0.0 deg 
noire- +- 0.0 P X I S  uniform noire. +- 0.0 pxlr uniform 

rotation- 0.0 0.0 deg 
noire. +- 0.0 p x l ~  unilorm 

rotation- 0.0 0 0 deg 
noise. +- 00 pxlr uniform 

rotation. 0.0 0.0 deg 
noice- +- 0 0  pxls uniform 

Fig. 10. Effects of increasing the average length of displacement vectors upon the shape of the error function. The same displacement field as in Fig. 9 
was used. (a) Average length is 4 pixels, (b) 8 pixels, (c) 20 pixels, (d) 40 pixels, (e) 60 pixels. (Length factor varies from 1 to 15.) Note that FOE is 
better defined by longer displacement vectors. 

error < 1 0  . error - 1.0 I) error - 2.0 o error = 3 0  0 error = 4 0  o error > 4.0  + prohihiled 

(a) (b) (c) ( 4  (e) 
lenglh-laclor= 2.0 Ienglh-factor. 2.0 length-lactor- 2 0 length-laclor. 2.0 length-laclor- 2.0 rotation- 0.0 0 0 deg 
noise- +- 0 0  pxlr unitnrm 

rotalion= 0.1 0.0 deg 
ncise- +-  00 pxlr unilorm 

rotation- 0 5 0 0  deg 
noise- +- 0 0  pxlr uniform 

rotations 1.0 0 0  deg 
n c i v =  +- 0 0  pxls  uniform 

relation. 2.0 0 0 dog 
noiw= +- 0 0  pxlr unlfnrm 

Fig. 11. Effects of increasing residual rotation in horizontal direction upon the shape of the error function for relatively short vectors (length factor 
2.0). No noise was applied. 

(b) (c) ( 4  (e) (a) 
length-factor- 2.0 length-factor- 2.0 length-factor- 2 0 length-factor. 2.0 length-faclor- 2.0 rolalion. 0 0 -2  0 &g 
nlire= +- 0 0  p x l ~  uniform 

rotalion- 0.0 -1 0 deg 
noire- +- 0.0 pxls uniform 

rotation; 0.0 0 0 deg 
nois?= +- 0.0 pxlr uniform 

rotation- 0.0 1.0 deg 
noise- +- 0.0 pxlc uniform 

rolation- 0.0 2 0 dsg 
noire. +- 0 0   XIS uniform 

Fig. 12. Effects of increasing residual rotation in vertical direction upon the shape of the error function for relatively short vectors (length factor 
2.0). No noise was applied. 

the error function is considerably off the actual location of the 
FOE because of the error induced by using a linear shift to 
approximate the non-linear derotation mapping. In such a case, it 
would be necessary to actually derotate the displacement field by 
the amount of rotation equivalent to sOpt found at the minimum 
of this error function and repeat the process with the derotated 
displacement. 

The effects of various amount of noise are shown in Fig. 14. 
For this purpose, a random amount (with uniform distribution) 
of displacement was added to the original (continuous) image 
location and then rounded to integer pixel coordinates. Random 
displacement was applied in ranges from f0.5 to k4.0 pixels in 
both horizontal and vertical direction. Since the displacement 
field contains only seven vectors, the results do not provide 
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Fig. 14. 
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(c) ( 4  ' (e) 
lenglh-faclor= 2 0 length-factor; 2.0 
rotation; 2.0 2.0 deg 
noire- +- 0.0  XIS unlform 

(a) (b) 
ienglh-factor= 2 0 length-factor; 2 0 length-factor= 2 F 
rotalion; 0.0 0 0 deg 
noise- + -  0 O F X ~ S  uniform 

rotation- 0.5 0.5 deg 
noise. +- 0 o pxis uniform 

rotation- 1.0 1.0 deg 
noire. +- 0 0 pxis uniform 

rotation- 4 .0  4.0 deg 
noise= +-  0.0 F X I ~  unifnrm 

Effects of increasing residual rotation in horizontal and vertical direction upon the shape of the error function for relatively short vectors 
(length factor 2.0). No noise was applied. 

(a) (b) (c) ( 4  (e) 
length-faclor. 50 length-factor- 5.0 length-faclor. 5 0  length-factor. 5.0 length-factor. 5.0 
rotation- 0.0 0.0 deg 
noise- +- 0.0 pxlt uniform 

rotation- 0.0 0 0 deg 
noise- +- 4 0 pxls uniform 

rotalion. 0.0 0.0 deg 
noise- +- 0 5 pxlr uniform 

rotation. 0.0 0.0 deg 
noise- +-  1 0 pxlr uniform 

rotation- 0.0 0 0 dag 
noire. +- 2 0 p x l ~  uniform 

Effects of varying the amount of noise. Uniform noise was applied to the same displacement field as in Fig. 9. (a) Zero noise, (b) 50.5 pixels, 
(c) k1.0 pixels, (d) k2.0 pixels, (e) k4.0 pixels. The error function becomes flat with increasing noise levels. 

information about the statistical effects of image noise. This 
would require more extensive modeling and simulation. How- 
ever, this figure serves as an indicator for the amount of noise 
present in the image and the reliability of the final result. 
It can be observed that the error function flattens out with 
increasing levels of noise, although the generic shape of the 
function does not change. Further, the location of the global 
minimum error may be located considerably off the actual FOE 
which makes it difficult to locate the FOE precisely under noisy 
conditions. 

Again, it should be noted that the length of the displace- 
ment vectors is an important factor. The shorter the displace- 
ment vectors are, the more difficult it is to locate the FOE 
correctly in the presence of noise. Fig. 15 shows the error 
functions for two displacement fields with different average 
vector lengths. For the shorter displacement field (length-fuctor 
2.0) in Fig. 15(a), the shape of the error function changes 
dramatically [compare Fig. 13(a)]. A search for the minimum 
error would inevitably converge toward a point indicated by 
the small arrow, far off the actual FOE. For the image with 
length-factor 5.0 [Fig. 15(b)], the minimum of the error function 
coincides with the actual location of the FOE (a). The different 
result for the same constellation of points in Fig. 14(d) is 
caused by the different random numbers (noise) obtained in 
each experiment. This experiment shows that a sufficient amount 
of displacement between consecutive frames is essential for 

reliably determining the FOE and thus, the direction of vehicle 
translation. 

These experiments demonstrate the need to somehow quantify 
the reliability of the resulting FOE by analyzing the local shape 
of the error function. Our goal is therefore not to compute a single 
FOE, but rather a 2-D distribution of possible FOE-locations. The 
final result is a connected image region, which we call a "Fuzzy 
FOE," that can be assumed to contain the actual FOE with high 
certainty. The following algorithm describes the basic steps in 
computing the Fuzzy FOE for a given pair of images Zo and Z I :  

F u z ~ y F O E ( l o ,  Z I ) :  

1) Guess an initial FOE, XO. 

2) Starting from xo, search for an FOE, x,,,, with minimum 
error (following the steepest descent). 

3) Around x,,,, grow a connected region such that the error 
for each member FOE location is below a given limit. 

In implementing this algorithm, several measures can be taken 
to improve its efficiency. First, the required search in steps 2) and 
3 )  can be done over a grid of varying resolution from coarse to 
fine. To eliminate multiple evaluations of the same FOE-location 
(by function Evulua teS ing leFOE) ,  results could be kept for 
later reference, e.g., in a hash table. Finally, FOE-locations can 
be evaluated in parallel if suitable hardware is available. Results 
from computing the Fuzzy FOE on real data taken from a moving 
ALV are shown in the following section. 
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IV. EXPERIMENTAL RFSULXS 
In the following, the results of the FOE-algorithm and compu- 

tation of the vehicle's velocity over ground (see Appendix) are 
shown on a real image sequence, illustrated in Fig. 16, taken from 
the moving ALV. The spatial resolution in these images is 512 x 
512 pixels. The vehicle traveled at approximately 14 kilometers 
per hour and the elapsed time between each pair of frames is 
0.5 seconds, such that the translation vector has a length of about 
1.9 meters. 

For the experiment described in the following, points were 
tracked manually after computing binary edge images from the 
original sequence. Since some information (e.g., color cues) 
that is useful for a human observer is lost in the process 
of edge detection, the potential performance of an automatic 
tracking procedure should not be too far from these results. 
The assumption was that points that are significant in an edge 
image should also be relatively easy to track by a program, as 
compared to points which are subjectively selected in a high- 
quality color image. Recent experiments [7], [18], in fact, indicate 
that adequate results can be obtained by selecting and tracking 
point features in a fully automatic mode. 

Approximately 25 points were selected in each image and 
the period of observation for these points was in the range 
of 2-16 frames. The particular types of local image features 
considered were endpoints and comers of lines as well as 
centers of small closed regions. Features on the road surface, 
which are important for estimating camera motion, turned out 
to be difficult to follow from frame to frame when they are 
approached by the vehicle. Since the edge operator uses the same 
mask regardless of the 3-D distance of the feature, the resulting 
edge image may change dramatically when features get closer 
and change their scale. A successful implementation for feature 
extraction and tracking will need to take this into account and 
employ some form of range-dependent image operation [7], [18]. 
Fig. 17 shows 16 edge images of the original ALV sequence 
(Fig. 16), where the selected feature points are labeled with 
numbers. 

Fig. 18 shows the final results of computing the vehicle's 
motion for the sequence in Fig. 16. Each frame n at 
time t displays the motion estimates for the period between 
t and the previous frame n - 1 at time t - 1. Therefore, 

the first motion estimate is available after the second 
frame (n = 183). Throughout, in search for the FOE, the 
optimal FOE-location (i.e., the one with minimum error) 
from the previous frame pair was taken as the initial 
guess. For the very first pair of frames, the FOE was 
guessed from the known camera orientation relative to the 
vehicle. 

Each motion estimate consists of three components: a) the 
fuzzy FOE, b) the angles of horizontal and vertical rotation, 
and c) the approximate distance traveled over ground. The 
fuzzy FOE is marked by a shaded area of varying shape 
and size. The jagged outline of the fuzzy FOE is caused by 
the relatively coarse grid (10 pixels wide) used for growing 
the region. The small circle inside this region marks the 
location of the optimal FOE. The shape of the FOE-region 
depends strongly upon the most dominant (longest) displacement 
vectors in the scene. Since these vectors are usually found 
in the lower central parts of the image, the FOE tends 
to be elongated along the vertical axis, i.e., the horizontal 
position of the FOE is usually better defined than its vertical 
position. This may be different, of course, for other types of 
scenes. 

The estimates for the rotations in horizontal and vertical 
direction are shown in a coordinate frame *lo in the 
lower left-hand comer of each image. Since the amount 
of rotation is relatively small, it was never necessary 
to apply intermediate derotation during the FOE search. 
Along with the original displacement vectors (solid lines), 
the vectors obtained after derotation (dotted lines) are also 
shown. 

The absolute velocity of the vehicle is estimated after com- 
puting the FOE (see Appendix). The essential measure used for 
this calculation is the height of the camera above the ground, 
which is constant and known (3.3 meters). If the road is assumed 
to be flat and parallel to the direction of vehicle translation, 
the 3-D distances of points on the road surface and thus the 
amount of vehicle translation can be found in absolute terms. 
The estimated advancement (in meters) between each frame pair 
is also given in Fig. 18. Since points on the road, particularly 
those close to the camera, are difficult to track, these estimates 
are approximate. 
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Fig. 16. A sequence (frames 182-197) taken from a moving autonomous land vehicle (ALV). The Scene contains two moving objects, one car moving away 
from the ALV and another car approaching the ALV. 

V. CONCLUSIONS 
The goal of this work was to develop a robust technique for 

computing the parameters of self-motion of a land vehicle from 
visual information. This information is useful for a variety of 
tasks, such as vehicle control, navigation, obstacle avoidance, 
etc. It turned out that particularly the direction of heading (i.e., 
the focus of expansion-FOE) is difficult to compute under 
practical conditions, i.e., finite image resolution, noise, and 
feature tracking errors. 

Our solution to this problem is not to search for a 
single-point FOE, but rather to determine a 2-D region 
of possible FOE-locations (termed the fuzzy FOE), whose 
shape is an explicit indicator for the reliability of the result. 
It is particularly suited for motion sequences that exhibit 
a significant translation component, i.e., for most vehicular 
applications. In contrast to other methods, however, the fuzzy 
FOE performs well even under the conditions of small rotation, 
image noise and also provides a measure for the quality 
of the result. Experiments show that even erroneous point 
matches in the given image displacement vector field can be 
tolerated, which is absolutely necessary in a fully automated 
process. 

Although land-based vehicles and autonomous robots have 
been considered as the main application, the approach appears 
to be useful in other environments as well. For example, the 
described algorithm has been successfully applied to images 
taken from a helicopter flying at low altitude [7], where the 
rotations are much more significant than in the examples shown 
here. 

APPENDIX 

COMPUTING V E L O C ~  OVER GROUND 
In the following, it is shown how the absolute velocity of 

the vehicle can be estimated after the location of the FOE has 
been determined. The essential measure used for this calculation 
is the absolute height of the camera above the ground which 
is constant and known. As discussed in Section 11, from the 
derotated displacement field and the location of the FOE, the 
3-D layout of the scene can be obtained up to a common scale 
factor (12). This scale factor and, consequently, the velocity of 
the vehicle can be determined if the 3-D position of one point 
in space is known. Furthermore, it is easy to show [16] that it is 
sufficient to know only one coordinate value of a point in space 
to reconstruct its position in space from its location in the image. 
As the ALV travels on a fairly flat surface, the road can 

be approximated as a plane which lies parallel to the vehicle’s 
direction of translation (see Fig. 19). This approximation holds 
at least for a good part of the road in the field of view of 
the camera. Since the absolute height of the camera above the 
ground is constant and known, it is possible to estimate the 
positions of points on the road surface with respect to the vehicle 
in absolute terms. From the changing distances between these 
points and the camera, the actual advancement and speed can be 
determined. 

First, a new coordinate system is introduced which has 
its origin in the lens center of the camera. The Z-axis 
of the new system passes through the FOE in the image 
plane and points, therefore, in the direction of translation. 
The original camera-centered coordinate system (XYZ)  is 
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Fig. 17. ALV image sequence (frames 182-197) after edge detection and point selection. Points were tracked manually on these images from one frame to 
the next and labeled with numbers. The actual image location of each point lies at the lower left-hand comer of the corresponding label. 

transformed into the new frame (X' Y'Z') merely by applying 
horizontal and vertical rotation until the Z-axis lines up with the 
FOE. 

The horizontal and vertical orientation in terms of pan and tilt 
are obtained by "rotating" the FOE (x,y,) into the center of the 
image (00) using (10): 

6, = -tan-' 7, 4f = -tan-' 
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Fig. 17. (Continued. ) 

The two angles 8, and 4, represent the orientation of the camera 
in 3-D with respect to the new coordinate system. This allows 
us to determine the 3-D orientation of the projecting rays 
passing through image points by use of the inverse perspective 
transformation. A 3-D point X in the environment whose image 
x = (xy )  is given, lies on a straight line in space defined by 

cos 8, sin 8 sin 4, -sin 8, cos 4f 

sin Of -cos 8, sin 4f cos 8, cos or cos 4f 
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F R A M  194 FRAME 195 

Fig. 17. (Continued) 

FRAM 182 FRAME 183 
I 

Fig. 18. Displacement vectors and estimates of vehicle motion for the ALV image sequence shown in Fig. 16. The shaded area in each image marks the 
computed fuzzy FOE, whose shape depends upon the most dominant (i.e., longest) displacement vectors. The small circle inside the shaded area is the 
FOE-location with minimum error. Estimated vehicle rotation is plotted in a coordinate frame in the range over *l.Oo. The estimated absolute advancement 
for each frame pair is given in meters. Original and demtated displacement vectors are drawn with solid and dotted lines, respectively. 

For points on the road surface, the Y-coordinate is -h which is 
the height of the camera above ground. Therefore, the value of 
n, for a point on the road surface (xSy,) can be estimated as 

-h 
U, = 

yB cos er + f sin 8, 
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Fig. 18. (Continued. ) 

and its 3-D distance is found by inserting v, into the above 
equation as 

at t and 2: at t' yield the amount of advancement AZ,(t, t') and 
estimated velocity V,(t, t') in this period as 

If a point on the ground is observed at two instances of time, z, 
at time t and at t', the resulting distances from the vehicle 2, 

Of course, image noise and tracking errors have a large impact 
upon the quality of the final velocity estimate. Therefore, the 
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FRAME 190 
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longest available displacement vectors are generally selected 
for this measurement, i.e., those vectors which are relatively 
close to the vehicle. Also, in violation of the initial assumption, 
the ground surface is never perfectly flat. In order to partially 
compensate these errors and to make the velocity estimate more 
reliable, the results of the measurements on individual vectors 
are combined. The length of each displacement vector 12, - 2: I 

the final result. Given a set of suitable displacement vectors 
S = {z8 - z:}, the estimate of the distance traveled by the 
vehicle is taken as the weighed average of the measurements 
AZ, on individual vectors 

( 1 2 2  - .:lAzJ 
Iz, - z:I 

in the image is used as the weight for its contribution to , A Z ( t , t ' )  = 
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Fig. 18. (Continued.) 

GROUND c 
a 
a 

3z, : * zo 
Fig. 19. Side view of the camera traveling parallel to a flat surface. The 
camera advanced in direction Z, such that a 3-D point on the ground moves 
relative to the camera from Zo to Z1. The depression angle 4 can be found 
from the location of the FOE in the image. The height of the camera above 
the ground is given. 

and  the final estimate for the vehicle velocity is 

A2 V(t , t ’ )  = -. t’ - t 
This computation was applied to  a sequence of real images shown 
in Section IV. 
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