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Abstract The recent advent of Multiple Instruction Multiple Data (MIMD) architectures together with 
the potentially attractive application of range images for object recognition, motivated the development 
of a successful goal-directed 3-D object recognition system on a 18 node Butterfly multiprocessor. This 
system, which combines the use of range images, multiprocessing, and rule-based control in a unique 
manner, provides several new insights and data points into these research areas. 

Several topics pertinent to current research were explored. First, a new method of surface characterization 
using a curvature graph was proposed and tested. It was determined that by jointly using information 
provided by the principal curvatures, the potential exists for uniquely identifying a larger variety of 
surfaces than has heretofore been accomplished. Second, a 3-D surface-type data representation, coupled 
with the depth information available in range images, was used to correctly recognize and interpret 
occluded scenes. Finally, it was determined that both multiprocessing and a rule-guided/goal-directed 
search can be successfully combined in an object recognition system. Multiprocessing was employed both 
at the object level and within objects. This enabled the achievement of near linear speedups for scenes 
containing fewer objects than the number of available processors. 
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I. INTRODUCTION 

Object recognition approaches in computer vision 
can conceptually be classified into two categories. The 
first, or traditional approach, involves the use of 
statistical and structural techniques. Over the years 
this approach, by itself, has proven to be inadequate 
in handling some of the more difficult real world 
problems where noise and improper illumination 
exist, and the problem domain has not been con- 
strained to well-defined geometric objects. The second 
approach attempts to overcome these problems in 
much the same way a human does, through the 
use of contextual information, experience, or expert 
knowledge. The advantages derived from the second 
approach, however, typically come at the expense of 
speed. 

For many computer vision applications, real time 
processing are mandatory. For nearly a decade pipe- 
lined or Single Instruction Multiple Data (SIMD) 
image processors have been successfully used to 
overcome many of the speed constraints associated 
with the large volumes of data found in image 
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processing. They have been successful in image pro- 
cessing because many low-level algorithms and 
enhancement techniques can be applied uniformly 
across an entire image. On the other hand, many of 
the higher level computer vision tasks such as image 
understanding or object recognition, depend on algor- 
ithms which are local in nature and contain logic, 
pixel addressing, and control sequencing which are 
not easily performed on typical image processors. 
Such tasks are more naturally suited to the use of a 
Multiple Instruction Multiple Data (MIMD) 
machine. With such architectures now becoming a 
reality, the next step seems obvious; to test whether 
the advantages of more flexible control sequencing, 
and the contextual and expert knowledge utilized by 
high-level vision algorithms, can in fact be gained 
without sacrificing speed. 

The problem domain chosen for this research (i.e. 
object recognition in range images) is one that stands 
to gain much from such an approach. Depth informa- 
tion provided by 3-D range images, and the utilization 
of contextual knowledge and rule-based control are 
particularly useful in resolving some of the problems 
associated with 3-D object recognition tasks. This 
project implemented a goal-directed object recogni- 
tion system on a Butterfly multiprocessor in order 
to investigate some of the issues mentioned above. 
Section 2 provides a brief overview of this system. As 
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part of this project, two primary areas of research were 
studied. The first relates to surface characterization via 
curvature, and is discussed in Section 3. The results 
of object recognition and occlusion are also discussed. 
The second is presented in Section 4 and reviews 
the methodology and results of the multiprocessor 
implementation of the object recognition system. 

2. SYSTEM DEFINITION 

The purpose of the object recognition system in 
this research was to conduct a goal directed search 
in order to identify all objects in a range image 
matching a specified goal. 

2.1. System hardware 

The image processing system developed for this 
research was implemented on an 18 node BBN 
Butterfly multiprocessor. Each node consists of an 
MC68020 processor, an MC68881 floating-point co- 
processor, memory, and an interface to the Butterfly 
switch. Sixteen of these nodes have 1 Mbyte of on- 
board memory, while the other two have 4 Mbytes. 
The Butterfly is connected to a VAX 11/785 via two 
serial lines and an ethernet interface. The serial lines 
are used primarily for booting the Butterfly, while 
normal access occurs over the ethernet. Because the 
Butterfly does not have a file server, executable code 
as well as images were downloaded over the ethernet. 

2.2. System input, output, and data structures 

There were two inputs to the system. (1) A three- 
dimensional range image containing one or more 
objects. Each object was composed of surfaces from 
the following types: cones, interior cones, cylinders, 
troughs, spheres, dishes and planes. There were no 
restrictions as to object size and orientation, in fact 
the system took advantage of scale information to 
assist in the resolution of occluded objects. This 
system was designed to accept objects which did not 
have concave boundaries. (2) The second system input 
was a high-level description of the goal object to be 
located in the input image. As output the system 
returned the description and location of all objects in 
the input image, as well as identifying those objects 
which matched the goal. 

2.3. lmage data 

The broad scope of this study necessitated several 
different types of images. The first image, scene_3 
(Fig. 1), is an actual range image containing 3 objects, 
a sphere, a cylinder, and a cube. It was taken from 
the Utah Range Database, 14~ a collection of range 
images created by a Technical Arts 3-D White Scanner 
Model 100-A. Range data returned by the White 
Scanner is in the form of x, y and z coordinate values 
relative to a world coordinate system. Because the 
White Scanner derives range information via triangul- 
ation, the z or range data is not orthogonal to the 

Fig. 1. Image scene 3: White Scanner data. 

scanning plane. In order to facilitate processing, a 
raster-formatted image was created from this data. 
Essentially, the x and y information was discarded 
and the image was displayed according to scan lines, 
using the nonorthogonal z values. The effect of this 
nonorthogonality will be discussed in Section 3. 

In order to test the object recognition algorithms 
on a larger variety of composite objects than those 
available from the Utah Database, five 16 bit, 
512 x 512, synthetic range images were also created. 
These images represent range data sampled at regular 
x and y intervals relative to a fixed x, y, and z 
coordinate system. The pixel values are range values 
or distances from the x-y plane. These images differ 
from those generated by the White Scanner in two 
ways: first, they are regularly sampled in x and y, and 
second, the plane of this raster scan is perpendicular 
to the z axis. As required by this project, each image 
contained multiple objects at arbitrary orientation. 
Each object was composed of various combinations 
of the basic curved surface shapes: cones, spheres, 
cylinders, and planes. Objects containing different 
sizes of all of these surface types, as well as similar 
surface types at different radii or curvature were 
included. 

Four of these five images contain 1, 3, 5 and 7 
composite objects respectively, and are referred to 
throughout this paper as images R1-R7. Images R5, 
and R7 are shown in Figs 2 and 3. These images 
contain different numbers of the same objects placed 
at different locations in the image. The same objects 
were used primarily to provide a stable level of 
processing complexity when analyzing the multi- 
processing performance of the system. 

Proceeding from the upper left corner to the lower 
right corner of image R7 (Fig. 3), the seven objects in 
images R1-R7 can be described as follows. (1) A 
closed can consisting of a cylindrical surface of radius 
30, and a planar bottom. (2) An open can consisting 
of a cylindrical surface of radius 40, rotated so that 
the trough-like interior of the can can be seen. (3) A 
cone of radius 40 also rotated so that the interior of 
the cone is visible. (4) A sphere of radius 40. (5) A 
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Fig. 2. Image R5: synthetic data. 

in Fig. 4, contains two cylinders. The larger cylinder 
of radius 30 was rotated so that the interior of the 
cylinder was visible. This object was then occluded 
by a smaller cylinder of radius 15. 

2.4. The object data structure 

One of the main goals of computer vision is to take 
an input image and transform it in some way so that 
we can understand the real world it portrays. This 
portrayal of the real world exists in the data represen- 
tation we choose. Hence, it is one of the first issues 
which must be resolved when designing a vision 
system such as the object recognition system devel- 
oped for this research. 

In general, a 3-D data representation should satisfy 
the following considerations. (l) It should be invariant 
to translation, rotation, and scale. In other words, it 
should be view independent. Although high level 
object descriptions should not depend on scale, it 
may still be possible to capitalize on size or scale 
differences as a further discriminator between objects. 
(2) The model should be as memory conservative as 
possible. (3) The data representation should facilitate 
the matching of randomly oriented objects. (4) It 
should maximize the advantages and information 
derived from range images. In particular, range data 
provides depth information invaluable in interpreting 
occluded objects. Data representations must include 
this adjacency and edge-type information. 

Three-dimensional object representations are typ- 
ically classified into three categories: surface or 
boundary descriptions; sweep; and volumetric rep- 
resentations. Besl and Jain t21 give an excellent critique 

Fig. 3. Image R7: synthetic data. 

sphere of radius 60. (6) A cube rotated so that 3 planar 
faces are visible. (7) A "dome can" consisting of a 
spherical surface resting on a cylindrical surface, both 
of radius 50. Image R1 consists of (6), image R3 
consists of (1), (5) and (6), and image R5 consists of 
(1), (2), (5), (6) and (7). 

The last of the synethetic images, "occlude", shown Fig. 4. Image occlude: synthetic data. 
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of 3-D object representations. They point out that 
many of the volumetric representations (e.g. CSG) 
and the algorithms required to compute them, are 
often memory and compute intensive. In addition, 
there are many surfaces which are not easily defined 
in terms of a closed form formulae, resulting in 
nontrivial descriptions for complex objects. Generally 
speaking, these same objections apply to the "sweep" 
representations (e.g. generalized cylinders). Surface 
representations are often given at a higher level of 
abstraction t7) and were therefore considered the best 
choice for the application pursued in this research. 

The primary data structure used by this system, 
therefore, was the "object", similar in concept to the 
"winged-edge" data structure. "~ In keeping with the 
concept of a surface representation, objects were 
merely lists of surfaces. Each surface had associated 
with it a surface type, a list of adjacent surfaces, and 
a description of the connecting edges. In addition to 
this surface list, each object contained several Boolean 
types indicating the processing state of the object. 

2.5. Multiprocessor control 

Similar to several of the rule-based vision systems 
developed by other researchers, t5'6) this system incor- 
porates several sets of control and high-level process- 
ing rules to direct multiple processors in an optimized 
search for a goal object. Figure 5 displays the general 
processing steps performed on each object in order 
to accurately identify it. As indicated in the figure, 
matching was performed after various stages of pro- 
cessing. Depending on its state of completion, an 

Range Image 

Find objects [ 

j / 
/ 

,.,°.1t/ 

Identified Object[s] 

Fig. 5. Basic processing flow. In this figure lines drawn to 
the "match object" box merely indicate that matching is 
performed after each of the four processing steps indicated. 
Matching does not alter the sequential flow of processing, but 
merely allows prioritization of objects, so that these proces- 
sing steps are performed on the most promising objects first. 

object's surface types, number of surfaces, surface 
adjacencies, and connecting edge types were compared 
with the goal object during the matching process. 
While it is evident that these processing steps were 
performed sequentially, parallelism was achieved by 
performing them simultaneously on each object, as 
well as by subdividing some of these tasks among the 
multiple processors. Results from the multiprocessing 
portion of this research are discussed in Section 4. 

As depicted in Fig. 6, the system can conceptually 
be viewed as data on which to operate, specific work 
to be done, and multiple processors to perform the 
work. All processors are equally capable of performing 
all processing, and may either remove or place data 
or work on the data and job queues. The word 
"queue" is used loosely here. Work or data may be 
placed at either the front or back of these control 
structures allowing them to be used as either a queue 
or a stack. 

The system control strategy is quite simple. Bas- 
ically, each processor possesses an identical set of 
control rules which directs it in a search for work to 
do. Work can be found in one of two data queues or 
one of two job queues. The job queues contain specific 
work to be done, (e.g. calculate curvature measures 
for row 10 of object 2), while the data queues contain 
image objects which are awaiting the next stage of 
processing. 

The fact that this study implements a goal-directed 
recognition system, strongly suggests the use of a 
top down approach using backward chaining rules. 
Backward chaining requires a reasonably complex 
interpretation and control scheme typically 
implemented within special purpose "expert system" 
languages. Unfortunately, none of these languages, 
including Lisp (the language upon which most of 
these higher level languages are based), were available 
on the Butterfly. Consequently the goal-directed, 
or backward chaining, nature of this system was 
accomplished via forward chaining "if then else" rules 
which prioritized the data and work to be done. 
Because the "Butterfly" allows the insertion of data 
only at the beginning and end of queues, four queues 
were used in this scheme to provide essentially eight 
priority levels. After each stage of processing, objects 
were placed at either the front or the back of either 
the low or high priority data queues. When all 
processing had been completed on an object, it was 
either announced as a match or discarded. 

When seeking work, processors were directed by 
the control rules to first check the high priority job 
queue. The idea was that the most important work 
to be done was that which had already been identified. 
If no specific high priority jobs were available, a check 
for data (i.e. image objects) on the high priority data 
queue was made. Both work and data were always 
extracted from the front of the queues. The processing 
rules were then applied to the object in order to 
further identify work to be done. On completion of 
some of the processing tasks, the object was marked, 
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Fig. 6. System components. 

indicating that an evaluation of its "match likelihood" 
was needed. This flag caused one of the processing 
rules to fire, which in turn caused the matching rules 
to be applied to the object. 

In contrast to the control rules, the processing and 
matching rules were applied directly to an object, and 
assessed that object's state of processing or match 
likelihood. Many of the jobs to be performed on 
objects were easily performed in parallel, such as 
calculating curvature values. Assistance for complet- 
ing such jobs was requested from other processors by 
placing a specific task on a job queue. So as to avoid 
deadlock, results from these tasks were collected by 
a separate task also placed on the job queue. The 
task responsible for collecting results also placed the 
completed data object back on the appropriate queue, 
depending on its match likelihood. System processing 
was terminated on the occurrence of one of two 
events: (1) when the first match had been found, or 
(2) after all objects had been processed and identified. 
The second event was recognized when there were no 
further jobs to be done, and no more data on the 
data queues. In both events, objects matching the 
specified goal were identified. 

3. SURFACE CHARACTERIZATION VIA CURVATURE 
GRAPH 

The success of the object data structure described 
in Section 2 depends almost entirely on the method 

selected for characterizing surfaces. Two of the criteria 
for the selection of a data representation enumerated 
in that section suggest that the chosen representation 
should maximize information derived from range 
images, and also be invariant to translation and 
rotation. Surface curvature can readily be obtained 
from range data, and satisfies both of these criteria. 
Because it is an intrinsic property of objects, curvature 
is a natural choice to be used for maching and object 
recognition, and is becoming an increasingly popular 
method of surface classification. 12'31 For  these reasons 
a surface data representation with curvature as the 
primary descriptor was used for this project. As 
indicated, curvature has been used by many 
researchers for the purpose of surface classification. 
Some of these approaches used single curvature 
measures, others used combinations of curvature 
measures, and still others used combinations of the 
signs of curvatures. At best, 8 surface types TM were 
identifiable: pit surfaces, minimal surfaces, ridge sur- 
faces, saddle ridges, peak surfaces, fiat surfaces, valley 
surfaces, and saddle valleys. 

In this research, a significant variation from these 
approaches was explored. The motivation for doing 
so came when realizing that conical surfaces cannot 
be satisfactorily recognized using only the signs of 
the Gaussian and mean curvatures. While analyzing 
alternate uses of curvature for this purpose, it was 
realized that (at least theoretically), a complete map- 
ping of all surface types should be achievable, not just 
the limited classifications accomplished to date. In 
this paper, the term surface type generally refers to 
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the nature of the surface at any point on that surface. 
In discrete range images, points are pixels, and the 
description of the surface at that pixel is limited by 
the spatial resolution of the image. Large surface 
patches whose pixels have surface types with similar 
characteristics are generally recognized at a high level 
as one surface. Discovering how to identify those 
characteristics common to such surfaces is an active 
field of research. 

3.1. Curvature graphs 

In this study, surface types were determined accord- 
ing to an estimation of the principal curvatures for 
each pixel on the surface of interest. It was recognized 
by Fan et al. t3) that the magnitude and orientation of 
the principal curvatures completely and uniquely 
define a surface. Although their work concentrated 
on the identification of jump boundaries, folds, and 
ridge lines, this concept can be extended to enable 
the identification of a continuum of surface types. 
This is possible by preserving the information inherent 
in the principal curvatures rather than arithmetically 
combining them as is done to obtain the Gaussian 
and mean curvatures. Specifically, each pixel's surface 
type is determined according to the location of its 
principal curvature values on a graph, where the 
principal curvatures (i.e. the minimum and maximum 
curvatures) are the coordinate axis of that graph (see 
Fig. 7). Throughout this paper this graph will be 
referred to as the curvature graph. By definition, the 

maximum curvature cannot be less than the minimum 
curvature. Surface types will, therefore, not be found 
in the shaded area to the right of and below the 45 ° 
diagonal line as shown in Fig. 7. Every position above 
this 45 ° diagonal, however, represents a unique set of 
principal curvatures and hence can be considered a 
different surface type. Pixels with the same principal 
curvatures have identical surface types. It becomes 
clear then, that there is in reality a potential for 
representing a continuum of surface types. In fact it 
can be seen from Fig. 7, that the 8 types identifiable 
using the combinations of the Gaussian and mean 
curvatures are subsets of the curvature space rep- 
resented on the curvature graph. These 8 surface types 
define large areas and are indicated in Fig. 7, as are 
also the surface types which were of particular interest 
to this research. Surface patches consisting of many 
pixels whose surface types have some common charac- 
teristic, are often perceived as a single "surface". Some 
familiar surfaces, such as spheres and cylinders, consist 
of pixels having identical principal curvatures or 
surface types. Principal curvatures from such surfaces 
map to a single location on the curvature graph and 
are therefore easily identified. Other surfaces, such as 
cones, have pixels whose surface types are not exactly 
the same, but which still form an identifiable pattern 
on the curvature graph. 

It is conceivable that surface types from an entire 
object may create a pattern on the curvature graph 
which is unique for a particular application. To be 
specific, spherical surfaces ideally have minimum and 

H= 
K<I 

Minimal S~ 

Fig. 7. Curvature graph: regions identified by signs of the Gaussian and mean curvatures (K--Gaussian 
Curvature, H--Mean Curvature), as well as basic surface types are labeled. 
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maximum curvatures which are equal. Points from 
such surfaces should plot directly on the 45 ° diagonal. 
Cylinders have minimum curvatures of 0 and a 
single maximum curvature. Cylindrical surfaces will 
therefore be found at a single point on the y axis 
corresponding to the value of its maximum curvature. 
Cones will also be located on the y axis, but because 
each cone's maximum curvature ranges from infinity 
to the curvature at its base, points plotted from this 
surface will form a pattern of points spread along the 
y axis, rather than being located at a single point. 
Reflecting plots of these surfaces around the 135 ° 
diagonal yields the expected plots for the inverses of 
these surface types (e.g. dishes, troughs, and interior 
cones). Planes of course ideally have minimum and 
maximum curvatures equal to zero and will therefore 
be plotted at the origin. Because curvature is inversely 
proportional to the radius of curvature, even surfaces 
of similar types yet different radii will occupy different 
locations on the curvature graph and should therefore 
be distinguishable. The ability to resolve surfaces on 
the graph depends, of course, on the spatial resolution 
of the image and on the effects of noise and the 
quantization of the range data. 

Figures 8 and 9 show plots of principal curvatures 
taken from all of the surfaces represented in the 
synthetic image R7. For  the most part surface types 

plotted exactly where expected and were easily distin- 
guishable. In particular, notice the clear distinction 
between the cylindrical and conical surfaces. The only 
surface which was not easily identified was the interior 
surface of the cone. Because only a small interior 
portion near the base of the cone was visible, there 
were not enough pixels available to distinguish it 
from a trough like surface. Without the contextual 
information provided by neighboring surfaces, it is 
likely that the human visual system would also be 
unable to clearly identify this surface. Although the 
planar points from image R7 mapped to an identifi- 
able region on the curvature graph, they were slightly 
displaced from the origin (Fig. 8). Figure 10, however, 
shows that planar points from the real data in scene 3, 
plotted directly at the origin as expected and the 
spherical and planar surfaces clearly segmented on 
the curvature graph. An initial investigation into this 
discrepancy indicated that the planar points in the 
synthetic data were abnormally effected by quantiz- 
ation during the synthetic data generation process. 
Figure 11 shows the curvature graph of the soda pop 
can. It was sitting on its top so that three different 
surface types were visible. A cylindrical surface of 
course makes up the majority of the can. The bottom 
of the can is an inverted sphere or dish, and there 
exists a narrow spherical-type surface between the 

R7 Surfaces 

max curvaturelp~.T Cylinder I.  
c ubee~ / sphere 

Trough rain curvature 

S3 Sphere/Cube 

max curvature f 4.~i1~;~ 
• sphere 

cube min curvature 

Fig. 8. Curvature clusters from image R7. Cylinder, sphere, 
cube, and trough. 

Cone 

I ! 

Interior Cone 

R7 Surfaces 

i max curvature 

I I 

rain curvature 

Fig. 9. Curvature clusters from image R7. Cone and interior 
cone. 

Fig. 10. Curvature graph results for sphere and cube in 
scene_3. 

Dome Can 

max curvature I ; ~ :  

: : : : " ~ l ~  I I I I I I 

m i n  c u r v a t u r e  

Fig. l l. Curvature graph results for pop can in scene_3. 
Shows three surfaces: sphere, cylinder, and trough. 
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cylindrical side and the bottom dish of the can. All 
three surface types on the can are clearly segmented 
on the curvature graphs. 

It should be mentioned that curvature graphs do 
not give information as to how many pixels were 
plotted at each location on the graph. This is evident 
from the spherical surface plotted for the can, which 
at first glance seems to suggest that the spherical 
surface had the most points. This surface in fact was 
the smallest, and its proportionately large number of 
near edge pixels account for the less compact cluster. 
The cylindrical surface, on the other hand, actually 
contains the greatest number of surface points. 
Because these all had very nearly the same principal 
curvatures, the cluster on the graph is much more 
compact. A better indication as to representative 
surface sizes is obtained from the histogram analysis 
discussed in Section 3.2. 

It is also evident that while the clusters from scene_3 
were easily distinguishable and generally where they 
belonged, the nonorthogonality of this range data, as 
expected, did cause some distortions. In particular 
spheres did not lie on the 45 ° diagonal line as one 
would hope, but instead plotted somewhere between 
the diagonal and the min = 0 or y axis. 

3.2. Use of curvature graph for edge detection 

In addition to determining the usefulness of the 
curvature graph for surface characterization, this 
research also investigated the utility of the graph for 
edge detection and identification, indicating whether 
edges are jump or interior, concave or convex. Essenti- 
ally jump edges are indicated by large discontinuities 
in the range data. These are typically found between 
objects and the background, or between occluding 
surfaces. One would expect, therefore, that relatively 
large curvature values should also be the characteristic 
of jump edges. In this paper interior edges refer to 
edges between two continuously connected surfaces 
on the same object, and are typically indicated by 
local extrema of curvature. The terms convex and 
concave define the direction of the surface change as 
one traverses the edge from one surface to the next. 
Convex edges are typically distinguished by large 
positive curvatures, while concave edges are identified 
by large negative curvatures. Because they give direc- 
tional information, it is convenient to use them when 
describing interior edges. In the vicinity of jump edges, 
curvature values yield information about the nature 
of the discontinuity at the edge rather than the surface 
itself. Zero-crossings occur in the curvature at jump 
boundaries. The sign of the curvature on either side 
of these zero-crossings is useful in resolving occlusion 
problems. 

One can actually think of a straight convex edge 
as a continuous extension of a cylinder, and a straight 
concave edge as the continuous extension of a trough 
or interior cylinder. The range of cylinders of course 
have radii of curvature varying from near zero to 
infinity. The smaller the radius, the more the cylinder 

looks like an edge. Straight interior and jump edges 
can be defined to exist somewhere along that con- 
tinuum. Such edges therefore lie along the x and y 
axis of the curvature graphs. One expects jump edges 
to have curvature values well in excess of those found 
on normal surfaces. Exactly where the distinction 
between a surface and an edge lies is a matter of 
definition and may depend on the context. Typically 
nonstraight edges should also have relatively high 
curvature values but will not lie on the coordinate 
axis. 

With one exception, all edges associated with the 
objects used in this study were clearly distinguishable 
from normal surface pixels by their extreme principal 
curvature values. The "dome can" in image R7, 
however, demonstrated the fact that some edges or 
boundaries lie on smooth transitions between surfaces 
and are not accompanied by large curvature disconti- 
nuities. As with all surface types, however, such 
boundaries occupy a distinct region on the curvature 
graph and should therefore be identifiable. This is 
shown in Fig. 12 which displays the plot of curvatures 
as one traverses from the spherical to the cylindrical 
surface on the dome can. For this application it was 
a simple matter to define pixels falling within the 
portion of graph between these two surfaces as edge 
or boundary points. This fact enabled the segmen- 
tation of the "dome can" for which no discontinuities 
in range, derivatives, or curvature values existed on 
the boundary between the spherical and cylindrical 
surfaces. 

3.3. Curvature histogramming 

As mentioned previously, the difficulties anticipated 
in applying the curvature graph concept are associated 
with digitization, quantization, and noise. To some 
degree, smoothing curvature values helped to minim- 
ize these problems, but at the same time somewhat 
altered the pattern for the conical surface on the 
curvature graph. The fact that all surface types can 
visually be distinguished when viewing the curvature 
graph, suggested that a statistical approach using well 

Dome Can 

!. 
. . . . . .  I m I J 

Fig. 12. This figure shows the smooth transition of curvature 
values from a spherical to a cylindrical surface on the dome 

can. 
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established pattern recognition techniques may reduce 
the adverse effects of noise, etc., as well as make the 
recognition of many complex surfaces possible. Ideally 
such statistical approaches should include the quan- 
tity information, that is, how many pixels on a surface 
are represented at each location on the curvature 
graph. A three dimensional curvature graph or space 
could be used where the three variables would be: 
the maximum curvature, minimum curvature, and 
the number of pixels possessing these curvatures. 
Clustering and statistical techniques could then be 
used to identify surfaces, (or possibly entire objects), 
in this 3-D space. Because the surfaces used in this 
study were easily identifiable without such an involved 
analysis, a simple histogram approach was used. 

The histogram approach involved mapping the 
2D information in the curvature graph into a one 
dimensional histogram. Although this method loses 
spatial resolution on the graph, it does take advantage 
of the quantity information useful in identifying cones. 
This mapping takes place by assigning each pixel on 
an object's surface a single value according to its 
location on the curvature graph. Future use of the 
term mapped-curvature in this paper refers to this 
one dimensional value. Specifically, mapped-curvatu- 
re = base_value x distance, where the base_value is 
determined by the region on the graph in which the 
principal curvatures lie. Distance is the distance from 
the plotted point on the graph to the origin of the 
graph. Because the object recognition portion of this 
research required only that a limited number of 
surface types be distinguished, defining broad regions 
corresponding to these required surface types proved 
to be adequate for this work. All range pixels whose 
curvature graphs were greater than a specified dis- 
tance from the origin, were considered to be edge 
pixels and were not utilized for determining the 
classification of surfaces. 

Once mapped-curvature values had been assigned 
over the entire object or region of interest, the surface 
types within that region were identified by examining 
the histogram of these values (see Fig. 13). The 
histogram was divided into regions corresponding to 
the different surface types. The broad categories 

required for this project were defined approximately 
over the following mapped-curvature values: spheres 
0-50; cylinders 51-100; planes 101-150; troughs 151- 
200; and dishes 201-250. The visible area of each 
surface type represented in the region is derived by 
integrating the histogram over the correct value range. 

Figure 14 shows the actual histogram of the map- 
ped-curvature values derived from the pop can in 
scene_3 (Fig. 1). The three surface types, spherical, 
dish, and cylindrical are very distinct. In addition, 
relative surface areas can be derived from the cumulat- 
ive distribution function. Even a visual inspection of 
the histogram indicates that the cylindrical surface of 
the can is two or three times as large as the dish 
portion, which is also two or three times as large as 
the spherical surface. 

Table 1 summarizes the total number of pixels, 
average mapped-curvature values, and standard devi- 
ations found for each section of the histograms derived 
for each object in image R7. These sections are 
labeled according to the surface types to which they 
correspond. The *'s indicate for each object which of 
the surfaces are significant or valid. As evidenced in 
Table 1, all surfaces of all objects were correctly 
identified with the exception of the interior of the 
cone which was classified as a trough or the interior 
of a cylinder. This was due to the fact that not enough 
of the interior portion of the cone was visible. 

This table also demonstrates that resolution 
between spheres, cones, and cylinders of different radii 
is possible. Because curvature is inversely pro- 
portional to the radius of curvature, however, the 
larger the radii, the less distinguishable were surfaces 
of different sizes. Specifically we note that the average 
mapped-curvature values for the spheres of radii 40, 
50, and 60 are 19, 14, and 12 respectively. Similarly, 
values for the cylinders of radii 30, 40, and 60 are 77, 
82, and 90. As expected, we see that the difference 
between curvatures for surfaces with larger radii is 
smaller than the difference between surfaces of smaller 
radii. Without testing on a larger variety of images 
these results demonstrate that as a minimum, both 
cylindrical and spherical shaped surfaces are distin- 
guishable into at least 3 different size groups using 

Nuber of Pixels 

Spheres Cylinders Planes 

i , . ~ ~  Curvature Values 

I 
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Fig, 13. Simulated mapped-curvature histogram for an open-ended can. 
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Fig. 14. Histogram of mapped-curvature values on the pop can in scene_3. 

Table 1. Histogram results of mapped curvature values taken over objects in image R7 

Canl Cone 
Surface Type Tot. Pixels Ave. Val. S.D. Surface Type Tot. Pixels Ave. Val. S.D. 

Sphere 46 33 4 Sphere 0 0 0 
Cylinder "2124 77 5 Cylinder *2040 82 8 
Plane * 1159 119 23 Plane 254 120 16 
Trough 26 155 2 Trough *906 153 5 
Dish 0 0 0 Dish 56 223 4 

Can2 Small sphere 
Surface Type Tot. Pixels Ave. Val. S.D. Surface Type Tot. Pixels Ave. Val. S.D. 

Sphere 0 0 0 Sphere *3269 19 2 
Cylinder *2759 80 4 Cylinder 0 0 0 
Plane 174 135 12 Plane 80 139 1 
Trough *2304 157 5 Trough 88 139 1 
Dish 0 0 0 Dish 0 0 0 

Large sphere Cube 
Surface Type Tot. Pixels Ave. Val. S.D. Surface Type Tot. Pixels Ave, Val. S.D. 

Sphere *8573 12 2 Sphere 2 42 0 
Cylinder 20 53 2 Cylinder 632 26 7 
Plane 0 0 0 Plane *5978 112 21 
Dish 0 0 0 Dish 0 0 0 

Dome can 
Surface Type Tot. Pixels Ave. Val. S.D. Surface Type Tot. Pixels Ave. Val. S.D. 

Sphere *2787 14 2 
Cylinder *4857 90 0 
Plane 158 144 0 
Trough 164 145 2 
Dish 0 0 0 

the histogramming approach. Because of the greater 
resolution at smaller radii, it appears the actual 
number of differentiable size groupings will in fact be 
much larger. 

3.4. Object recognition and occlusion 

The successful application of the curvature graph 
approach described in the previous section enabled 
the correct classification of surface types and edges in 
the object recognition system. As shown by the 
processing steps outlined in Fig. 5, once an object's 
surface types had been identified, segmentation and 
complete labeling was possible. The classifier output, 
showing the final results of classifying all objects in 

image R7 (Fig. 3), is shown in Fig. 15. The center 
of each object's bounding rectangle is shown as a 
coordinate pair, and listed with each surface are two 
numbers. The first is the identification of the surface 
type according to the following labels: 1--sphere; 2 - -  
dish; 3--cylinder; 4-- t rough;  5--cone; 6--interior 
cone; and 7--plane. The second number is the average 
mapped-curvature value for the surface. This number 
can be directly mapped to the radius of curvature. 

The processing steps described thus far were 
sufficient to successfully identify all objects in each 
image with the exception of image "occlude" shown 
in Fig. 4, The last two processing steps shown in Fig. 
5 are necessary to handle occlusion. In the following 
a simple example is given which illustrates the basic 
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There are 7 objects in the image: 

object 1, at (56,56), has 2 visible surfaces: 

surf 1 ; 3 77 

surf 2; 7 120 

object 2, at (64, 400), has 2 visible surfaces: 

surf 1; 4 158 

surf 2; 3 82 

object 3, at (112,200), has 2 visible surfaces: 

surf 1 ; 5 77 

surf 2; 4 155 

object 4, at (248,400), has 1 visible surfaces: 

surf 1; 1 12 

object 5, at (256, 256), has 1 visible surfaces: 

surf 1; 1 19 

object 6, at (368, 60), has 3 visible surfaces: 

surf 1; 7 122 

surf 2; 7 117 

surf 3; 7 103 

object 7, at (424,352), has 2 visible surfaces: 

surf 1; 1 14 

surf 2; 3 90 

Fig. 15. Printed results after identifying all 7 objects in image 
R7. The two figures associated with each surface indicate 

their surface type and average curvature value. 

concepts involved. 
Figure 16 shows a line drawing of image "occlude" 

(Fig. 4). Because of their experience, most observers 
would probably interpret the combinations of surfaces 
contained in the leftmost object to actually be two 
objects as shown on the right in Fig. 16. This 
interpretation combines surfaces 1 and 3 from the 
leftmost object into one surface occluded by surface 
2. Although the interpretation shown on the right may 
be the most probable, we realize that the description 
of the leftmost object in fact has many possible 
interpretations. Without taking into account surface 
adjacencies and other factors, there are in fact 16 

Cylinder ~ ' ~  

I 2 I I I 

Trough 

Fig. 16. Occluded objects: surfaces 1 and 3 in the left figure 
have been interpreted as being the same surface in the right 

figure. 

possible interpretations, one for each combination of 
the 4 surfaces involved. Some of these interpretations 
will of course not make any sense in light of other 
information. 

One possible method for determining which are 
the meaningful interpretations, would merely involve 
evaluating each possibility separately, examining all 
of the adjacencies and situations where two surfaces 
should be interpreted as one. A different approach 
was utilized in this study. Simply stated, this method 
involved the recursive procedure of extracting the 
occluding surfaces, defining the resulting possible 
interpretations, and placing these new objects back 
on the data queues, themselves to be matched and 
evaluated for possible multiple interpretations due to 
occlusion. Extracting surfaces in this manner involved 
only the high-level data representations, and did not 
involve modifying image data in any way. 

No matter which method is used to resolve 
occlusion, it will most likely depend on having surface 
adjacency information. The method applied to deter- 
mine surface adjacencies was fairly straightforward. 
Briefly, this approach involved traversing the object 
from the center of one surface to the center of another 
and counting the number of edges between them. If 
there was only one edge, it was concluded that the 
two surfaces were adjacent. It is obvious that this 
approach depends on the fact that surface boundaries 
are not concave. In other words, they were not allowed 
to fold back on themselves. None of the objects used 
by this study had difficulties with this restriction. 

Figure 17 shows the results of evaluating image 
"occlude", (Fig. 4), giving as the goal any object 
composed of two adjacent surfaces, one cylindrical, 
and the other a trough. The printout gives a descrip- 
tion of all possible interpretations of the occluded 
objects. Objects 0 15 correspond to (binary) interpret- 
ations 0-15. Interpretations 12 and 13 were correctly 
identified as the only matching interpretations, while 
interpretations 0, 9, 10, and 11 were identified as being 
impossible. The printout lists object 13 as having only 
2 visible surfaces. This is due to the fact that original 
surfaces 1 and 3 were successfully combined into a 
single cylindrical surface. 

4. MULTIPROCESSING RESULTS 

In order to properly evaluate the success of the 
multiprocessing aspects of this study, several basic 
measurements were used. They are total speedup, 
plots of speed vs the number of processors, processor 
utilization under varying circumstances and the pro- 
gression of processing in time for each object to be 
recognized. These results are discussed in this section. 
For the sake of establishing the accuracy of timing 
measurements, duplicate measurements were 
occasionally performed which indicated that timing 
measurements may vary by approximately 50-100 ms 
from one measurement to the next, all other factors 
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MATCH: Obj 13 matches goal; at 1392 
MATCH: Obj 12 matches goal; at 1409 

object O, has 0 visible surfaces: 
object 1, has 1 visible surfaces: 

surf 1 ; 3 79 
object 2, has 1 visible surfaces: 

surf 1 ; 3 66 
object 3, has 2 visible surfaces: 

surf 1 ; 3 66 
surf 2; 3 79 

object 4, has 1 visible surfaces: 
surf 1 ; 3 79 

object 5, has 1 visible surfaces: 
surf 1 ; 3 79 

object 6, has 2 visible surfaces: 
surf 1 ; 3 79 
surf 2; 3 66 

object 7, has 3 visible surfaces: 
surf 1 ; 3 79 
surf 2; 3 66 
surf 3; 3 79 

object 8, has 1 visible surfaces: 
SUrf 1; 4 158 

object 9, has 0 visible surfaces: 
object 10, has 0 visible surfaces: 
object 11, has 0 visible surfaces: 
object 12, has 2 visible surfaces: 

surf 1 ; 3 79 
surf 2; 4 158 

object 13, has 2 visible surfaces: 
surf 1 ; 3 79 
surf 2; 4 158 

object 14, has 3 visible surfaces: 
SUrf 1 ; 3 66 
SUrf 2; 3 79 
surf 3; 4 158 

object 15, has 4 visible surfaces: 
surf 1 ; 3 79 
surf 2; 3 66 
surf 3; 3 79 
surf 4; 4 158 

Fig. 17. Printed results after resolving interpretations of 
occluded objects in Fig. 16. 

remaining constant. The initiation of timing should 
also be explained. Because the Butterfly does not have 
a file system, all code and image data was first down 
loaded to the Butterfly. Timing began once this had 
been accomplished and all processors had been started 
and initialized. 

4.1. Total speedup 

This is the simplest measurement of performance 
and is displayed in Table 2 for images R7, R5, R3, 
and R1. This table compares the time taken by a 
single Butterfly processor to process the applicable 
image, against the best or fastest processing time 
when using multiple processors. 

4.2. Speedup vs the number of  processors 

This is one of the most common measures of 
performance of algorithms implemented on a multi- 
processor. As shown in Figs 18 and 19, the results are 

Table 2. Total speedup 

Image Single processing time Best time 

R7 21.07 s 2.64 s 
R5 18.10s 2.20s 
R3 8.09 s 1.48 s 
RI 3.89 s 1.41 s 

displayed by plotting the reciprocal of the normalized 
processing time (speedup), against the number of 
processors used. Processing times were normalized 
by the processing time for a single processor. The 
ideal is to achieve a "linear speedup", where the plot 
is not only linear, but the slope of the plot is 1. To 
better understand this goal, it may help to realize 
that unless synergistic relationships are possible in 
multiprocessing, the best one could hope to achieve 
is that the processing time would be reduced by two 
when the number of processors have been doubled. 
This defines a function of the form, f ( x )  = l /x,  where 
f ( x )  is time and x is the number of processors. As has 
been mentioned, however, the inverse function is 
normally plotted, f ( x )  = x, where f ( x )  is 1/time and 
x is the number of processors. This of course defines 
a linear function of slope 1, and becomes the upper 
limit or goal. The overhead involved in multiprocessor 
communication, shared and remote data access, and 
work distribution usually make this a very difficult 
goal to achieve. 

Figure 18 shows the speedup plot obtained when 
processing image R7 (Fig. 3), containing 7 objects. 
The plot is indeed linear with a slope of about 0.7 
through 10 processors, at which time the plot becomes 
non-linear showing essentially no speedup beyond 12 
processors. This is to be expected due to the fact that 
most of the parallelism is achieved by processing 
different objects simultaneously. If this were the only 
form of parallelism employed, however, the plot 
would in fact only be linear through 7 processors, 
corresponding to the 7 objects in the image. The fact 
that the linearity extends well beyond 7 indicates that 
efforts to utilize parallelism within objects were useful. 

The plot for image R3 with three objects, (Fig. 19), 
also demonstrates that while multiprocessing benefits 
do extend beyond the one to one ratio of processor to 
objects in the image, the number of useful processors is 
still linked to the number of objects in the image. For  
three objects, linearity with a slope of about 0.6 is 
maintained through 6 processors. 

It is of interest to see what effect multiprocessing 
had on speedup when processing was halted on 
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Fig. 18. Speedup plot for R7. 
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Fig. 19. Speedup plot for R3. 

detection of the first matching object. Figures 20 and 
21 show speedup plots on R7 when the goal object 
was the closed can (object 1) and the large sphere 
(object 4) respectively. Because the can was the first 
object found and was the goal object, it was processed 
immediately with no processing time diverted to 
the other objects. One would expect that adding 
additional processors would do little to improve speed 
in this scenario. In fact, the slope of the line in Fig. 
20 is about 0.04. Changing the search goal to an 
object located in the middle of the image, (Fig. 21), 
once again demonstrates the benefits of multiple 
processors. The approximate slope of this line is 0.4 
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Fig. 20. Speedup plot for R7 goal: closed can (object 1). 
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Fig. 21. Speedup plot for R7 goal: large sphere (object 4). 

compared to 0.7 when processing all objects. Similar 
results were observed when performing goal-directed 
searches on images R5 and R3. 

Table 3 shows a different viewpoint of essentially 
the same data. It compares times obtained when 
processing all objects to those obtained when halting 
processing on the identification of the first match. 
The number in the goal object column refers to the 
order in the image in which the goal object was 
initially found. That is, a goal object of 3 means that 
the goal object specified is the third object to be 
located by the find objects routine (see Fig. 5). Results, 
of course, depend greatly on the order in which the 
objects are initially located. These results show that 
performing a goal-directed search did in fact yield 
additional speedups from 12 to 33% beyond those 
times recorded when processing all objects. 

The utility of combining multiprocessing with a 
goal-directed search has been and is still a debatable 
issue. It should be noted that at least for the complex- 
ity of the images and processing required in this 
research, it was found that although performing a 
goal-directed search did in fact diminish the usefulness 
of multiprocessing, overall speedups (with 16 proces- 
sors) from 6.5 to 10.2 times were achieved using 
multiprocessing in combination with a goal-directed 
search for the images R3, R5 and R7. This was due 
primarily to the fact that most of the processing time 
was spent performing low-level image processing, 
which had to be accomplished before sufficient know- 
ledge was available to prioritize the work. Images of 
higher complexity may very well require greater 
portions of processing to be accomplished at higher 
levels, enabling the goal-directed approach to have 
an even greater effect. 

For the control strategy used in this system, the 
advantages to be expected from multiprocessing and 
heuristic search actually seem to be somewhat inde- 
pendent, and can be determined from the following 
two observations. (1) The more compute intensive the 
processing to be performed, the greater the benefit of 
multiprocessing. (2) The sooner object characteristics 
can be determined, the greater the advantage of 
heuristic search. In other words, if there remains a 
considerable portion of computer intensive work after 
work prioritization is possible, the greater is the 
benefit of performing a goal-directed search. 

4.3. Processor utilization 

Processor utilization in this study is defined as a 
processor's processing time divided by the total 
elapsed time. Processing time is the time spent by a 
processor performing real work. In other words, it 
does not include idle time checking data and job 
queues. Total elapsed time is the interval between the 
start and the time at which all the objects have been 
identified. Total processing time is the sum of the 
individual processing times (i.e. the total amount of 
work required to process the entire image). Average 
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Table 3. Speedup resulting from goal-directed search. Times are given 
in ms 

Goal object Image Total time First match time % Speedup 

1 R7 2601 2285 12% 
4 R7 2601 2223 15% 
6 R7 2601 2285 12% 
2 R5 2270 1788 21% 
4 R5 2270 1992 12% 
5 R5 2270 2007 12% 
1 R3 1479 984 33% 
2 R3 1479 1245 16% 
3 R3 1479 1144 23% 

processing time is the total processing time divided 
by the number  of processors. Finally, the average 
processor utilization is the average processing time 
divided by the total elapsed time. 

Processor utilization was computed for 16 scen- 
arios; one for each of four different processor con- 
figurations on each of the 4 images R1-R7. Figure 22 
shows four plots portraying the utilization measure- 
ments made for each of the four configurations, (i.e. 
16, 12, 8, and 4 processors), relative to processing 
done in image R7. Figure 23 shows the utilization for 
16 processors on image R1. The other cases were not 
included because of their similarity to the results 
observed in these two figures. Table 4 displays the 

total elapsed times, total processing times, and the 
average processor utilization for each of the 16 
scenarios measured. 

The most important  observation to be made from 
examining Figs 22 and 23, is that they show a fairly 
even distribution of work among the processors as 
long as there is sufficient work to be performed in the 
image. Beginning with image R3 it was observed that 
several processors were doing an uneven port ion of 
the work. This became even more pronounced on 
image R1 (Fig. 23). This, of course, is to be expected. 
In fact it is somewhat surprising that all of the 16 
processors were able to participate in the processing 
of even the single object in image R1. 

Table 4. Processor utilization. Times are given in ms 

Image Processors Elapsed time Total process time Average utilization 

R7 16 2,528 25,083 62.0% 
R7 12 2,951 24,939 70.5 % 
R7 8 3,844 24,241 78.8% 
R7 4 7,327 25,183 85.9% 
R5 16 2,162 20,177 58.3% 
R5 12 2,634 20,514 64.9% 
R5 8 3,492 20,165 72.2% 
R5 4 5,639 19,968 88.5% 
R3 16 1,558 9,555 38.3% 
R3 12 1,502 9,410 52.2% 
R3 8 1,740 9,332 67.0% 
R3 4 3,087 9,289 75.2% 
R1 16 1,484 5,738 24.2% 
RI 12 1,237 5,294 35.7% 
R1 8 1,382 5,392 48.8% 
R1 4 2,765 6,728 60.8% 

Percent  
Ut i l izat ion 

1 0 0  

90 

80  

70 

60 

50 

40  

30 

20  

10 

0 : : 

0 2 4 

. 
[] 

. . . : • : 

6 8 1 0  1 2  1 4  1 6  

Processors  

Fig. 22. Processor utilization on R7. Top to bottom, utiliz- 
ation is shown for 4, 8, 12, and 16 processors respectively. 
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Fig. 23. Processor utilization on R1 with 16 processors. 
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A number of observations can be made by examin- 
ing the data shown in both Table 4 and Fig. 24. 
The primary conclusion is that in general, as image 
complexity increases, processor utilization also 
increases. Second, as one would expect, the total 
processing time on each image was essentially inde- 
pendent of the number of processors being used. This 
adds credibility to the average processor utilization 
values which were based on this total processing time. 
Finally, as was discovered when examining speedup, 
both images R1 and R3 show an increase in total 
elapsed time when increasing the number of proces- 
sors from 12 to 16. This confirms the earlier conclusion 
that there is probably an overhead and memory 
contention penalty to be paid when increasing the 
number of processors beyond that warranted by the 
amount of work to be accomplished in the image. 

In general, Fig. 24 confirms the conclusion that the 
fewer the processors and/or the higher the image 
complexity, the better the processor utilization. The 
natural expectation is that increasingly complex 
images could be effectively and efficiently processed 
by increasing numbers of processors. Contrary to this 
expectation, however, all of these plots indicate that 
there is a limit to the processor utilization. In particu- 
lar, the plot for the four processor configuration 
shows a slight decline in the processor utilization 
when increasing image complexity from 5 to 7 objects. 
This seems to suggest that if more complex images 
were available, the utilization of processors may not 
increase significantly. This apparent limitation is most 
likely the result of "hot spots" or memory contention 
between processors attempting to access the same 
global data structures at the same time. It is probable 
that there are refinements, possibly at a low level 
utilization of the Butterfly memory and processors, 
which would improve these results somewhat. In order 
to make more definite conclusions such refinements 
should be studied, and tests with more complex 
images should be made. 

5. C O N C L U S I O N S  

A new method of surface characterization using 
curvatures is presented. It uniquely classifies each 
surface type according to a plot of its principal 
curvatures in conjunction with a histogram analysis. 
Goal-directed search is used for the recognition of 
objects. Range information is used to resolve ambi- 
guities associated with occlusion. Combining rule- 
based control with distributed processing leads to 
several interesting control issues, which are discussed 
in detail. The performance of the system is evaluated 
with respect to the number and types of objects, size 
of the images, location of objects, occluded/non- 
occluded objects, speed vs number of processors 
and processor utilization. By applying the use of 
multiprocessing, not only to process image objects 
simultaneously, but also to accelerate processing 
within each object, near linear speedups were 
obtained. Results from this study seem to indicate 
that multiprocessing is warranted any time there is a 
great deal of computationally intensive processing, 
independent of whether a rule-guided approach is 
used. The requirements of this system were such that 
most of the processing time was spent performing 
low-level tasks, which had to be accomplished before 
sufficient knowledge was available to prioritize the 
work. Consequently, greater advantage was achieved 
through the use of multiprocessing than was realized 
using the rule-guided search. 

By equally equipping all processors with the ability 
to locate and process work, this system was able to 
achieve a balanced work load between as many as 16 
processors when processing images with as few as 5 
objects. As expected, however, the average processor 
utilization depended directly upon the amount of 
work (i.e. the number of objects), in the image. It 
appeared that there may be a utilization limit for this 
system of about 88%, due most likely to the overhead 
involved with the control algorithms, and delays due 
to memory contention. It would be valuable to explore 
in more depth the exact nature and extent of this 
apparent limitation. 
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Fig. 24. Utilization summary. The plots from top to bottom 
show processor utilization for 4, 8, 12, and 16 processors 
respectively, as image complexity increases from one to seven 
pR 22:1-E objects in images R1-R7. 

S U M M A R Y  

The recent advent of Multiple Instruction Multiple 
Data (MIMD) architectures together with the poten- 
tially attractive application of range images for object 
recognition, motivated the development of a successful 
goal-directed 3-D object recognition system on a 18 
node Butterfly multiprocessor. 

A new method of surface characterization using 
curvatures is presented. It uniquely classifies each 
surface type according to a plot of its principal 
curvatures in conjunction with a histogram analysis. 
Goal-directed search is used for the recognition of 
objects. Range information is used to resolve ambi- 
guities associated with occlusion. Combining rule- 
based control with distributed processing leads to 
several interesting control issues, which are discussed 
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in detail. The performance of the system is evaluated 
with respect to the number and types of objects, size 
of the images, location of objects, occluded/non- 
occluded objects, speed vs number of processors 
and processor utilization. By applying the use of 
multiprocessing, not only to process image objects 
simultaneously, but also to accelerate processing 
within each object, near linear speedups were 
obtained. Results from this study seem to indicate 
that multiprocessing is warranted any time there is a 
great deal of computat ionally intensive processing, 
independent of whether a rule-guided approach is 
used. The requirements of this system were such that 
most of the processing time was spent performing 
low-level tasks, which had to be accomplished before 
sufficient knowledge was available to prioritize the 
work. Consequently, greater advantage was achieved 
through the use of multiprocessing than was realized 
using the rule-guided search. 

The system was able to achieve a balanced work 
load between as many as 16 processors when process- 
ing images with as few as 5 objects. As expected, 
however, the average processor utilization depended 
directly upon the amount  of work (i.e. the number of 
objects), in the image. It appeared that there may be 
a utilization limit for this system of about  88%, due 

most likely to the overhead involved with the control 
algorithms, and delays due to memory contention. 
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