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This paper presents a novel approach for the computation of displacement fields along
contours which correspond to moving homogeneous regions in an image sequence. Individual
frames of the image sequence are treated one at a time by performing segmentation and 2D
motion analysis simultaneously. For the first frame, an original segmentation of the image into
disjoint regions is assumed to be given in the form of pixel markings and the properties of
these regions. The analysis of each new frame consists of (a) finding the new segmentation and
(b) a set of displacement vectors that link corresponding points on the original and the new
contour. The new region is assumed to overlap with the original region, such. that their
intersection is not empty. After finding the intersection, wavefront region growing is applied to
obtain the new region and to compute a set of tentative displacement vectors. The final
approximation is found by using a relaxation-type algorithm which “rotates” the mapping
between the original and the new boundary until a correspondence with minimum deformation
is found. The proposed algorithm is simple and lends itself to parallel implementation. Various
examples are presented to illustrate the approach. © 1988 Academic Press, Inc.

1. INTRODUCTION

Motion analysis is concerned with the reconstruction of an object’s 3D motion
parameters from a dynamic scene, given a series of two-dimensional projections [1,
9]. From the apparent motion of a sufficient number of points on each moving object
its actual three-dimensional rotation and translation components can be de-
termined, assuming that the objects involved are rigid. Here we address the problem
of how to obtain the apparent motion from a sequence of two-dimensional images.

Two main approaches have been used to compute the optical flow field or
displacement field from a given motion sequence of grey-level images. They are
commonly referred to as the gradient method and the displacement method.

The gradient method [6] uses spatial and temporal grey-level variations to
estimate the instantaneous velocity at each pixel in the image. It relies on sufficient
object texture, continuous motion, and small displacements between subsequent
frames. Since the magnitude of flow can only be determined in the direction of the
spatial gradient (perpendicular to the tangent of the boundary), the flow vectors
cannot be computed locally. Global optimization schemes which smooth the flow
field must be applied. However, no scheme for smoothing optical flow fields has
been presented yet that gives realistic motion estimates for a wide range of scenes
and in the presence of noise. Simple smoothing of the flow field gives rise to
problems at flow discontinuities such as object boundaries. Paradoxically, those are
the locations where motion estimates should be most easily obtained.
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The displacement method [7, 9] uses the parts of the image, where discontinuities
in brightness or motion occur which create problems in the gradient method.
Significant features such as line segments or distinguished (“interesting”) points in
two consecutive frames are selected and matched, thus giving a field of displacement
vectors for the selected features. Two problems arise during this process: one is the
selection and location of significant image features, especially when the images are
noisy; the other problem is finding an optimal match between them, commonly
referred to as the correspondence problem [3, 10].

We propose a solution which lies between these two methods, one that combines
the implicit matching process of the gradient method and the locality of the
displacement method and avoids the correspondence problem. One such approach
has been suggested by Hildreth [5], where an approximation of the actual displace-
ment field of moving closed contours is sought in two steps: first the displacement
vectors perpendicular to the original contour are determined, and second the
resulting flow fields along the contour are smoothed. Experiments indicate that the
approximations are close to the motion perceived by the human visual system.
However, there are two problems which arise in Hildreth’s [5] approach.

First, since the perpendicular components of the flow vectors are obtained using
the gradient method mentioned above, the resultant vectors will be susceptible to
errors in direction as well as in length. Estimating the perpendicular direction is
done by determining the direction of the edge encountered. This is difficult due
to noise and limited spatial resolution. Estimation of magnitude of the flow
vectors from the brightness gradients is inherently unreliable in cases of missing or
too fine texture and/or displacement that exceeds the range of approximately
linear gradient. .

Second, the final result of this approach gives at best an approximation to the
motion that humans would perceive, including some forms of illusionary motion.
This is an important aspect for understanding human vision, but it is not necessarily
the goal of quantitative motion analysis useful in machine vision.

The method proposed here is region-based and makes use of the fact that
(assuming sufficient sampling in time) corresponding regions in two subsequent
frames will overlap, thus giving the initial cue for correspondence. In contrast to
finding corresponding boundary segments, the direction of search is implicitly given
by the assumption of overlapping regions. The intersection of the old and the new
region serves as the seed [8] for a region growing process, which produces a
segmentation for the new image frame. Region growing is done layer-by-layer, very
much like a wavefront to keep the overall region consistent. By propagating
shortest-distance information an approximate mapping between the two boundaries
is obtained. This mapping between boundary points is smoothed such that the
. distribution of the endpoints of the displacement vectors on the old and the new
region boundary becomes approximately uniform. Subsequently, the mapping is
rotated until a region-correspondence with minimum deformation is found. Experi-
ments show that the final results approximate the actual displacement fields closely,
even for extreme displacements. '

This approach goes beyond pure motion analysis as it provides a dynamic
segmentation scheme as well. Each frame is segmented by region-growing, using the
previous segmentation as a starting point, while displacement data are computed
simultaneously. This is an important benefit in dynamic scene analysis and under-
standing, where both segmentation and motion estimates are essential.
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2. APPROACH

2.1. Outline

The input assumed to be given is a sequence of digitized images, representing a
time-varying scene. The time interval between consecutive images is furthermore
assumed to be sufficiently small, such that the condition of overlapping regions is
met. This of course depends upon the granularity of the segmentation used and thus
also upon the region properties that govern the segmentation process. An initial
segmentation is supposed to be available, which is constantly updated while frames
are processed successively as part of this dynamic segmentation scheme. At this point
no attention is paid to the problem of how this initial segmentation is obtained. This
could either be accomplished using standard segmentation techniques, or it could
become an integral part of the proposed algorithm.

During dynamic segmentation it may occur, that certain regions vanish due to
occlusion or when they move out of sight. Similarly new regions are created when
objects move into the field of view. The case of occlusion does not pose a problem,
since we can assume that the shape of a region will not change dramatically between
two frames, and the vanishing of a region is easily detected. Newly created regions
can be handled by the same process that provides the initial segmentation. Here we
concentrate on the problem, how an established segmentation is carried over from
one frame to the next while extracting motion data at the same time.

The suggested approach of approximating displacement vector fields consists in
the following steps:

(1) Update the given segmentation by growing each individual region onto its
corresponding region in the next frame.

(2) For every region in the scene compute a set of displacement vectors which
links the boundary points of the original region to corresponding points on the
boundary of this region in the next frame. This again is done in two steps:

(a) Get an initial estimate for the displacement vectors by establishing a
tentative correspondence between the two contours. Here the closest neighbors on the
opposing boundaries are selected.

(b) Improve the initial match by searching for an optimal correspondence
that implies minimal deformation of the region between the two instances of time.

The segmentation and the search for the closest neighbors are accomplished
simulatenously in one computational step, using a purely local technique. The result
is the new segmentation and a relation in the form of pairs of coupled boundary
points. The algorithm lends itself naturally to pipelined and VLSI implementations,
making realtime operation feasible. The optimal correspondence is found by rotat- ‘
ing one of the boundaries until the minimum deformation is observed. The sum of
differences between corresponding diameters is used as the measure for deforma-
tion. Details are given in the remainder of this section.

.; 2.2. Wavefront Region Growing

This first step of the algorithm opérates on a given segmentation for the current
frame and finds the new segmentation for the following frame. In addition to that, a
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tentative correspondence between the contour points of the two related regions is
determined. Both tasks are accomplished simultaneously by a relaxation-like al-
gorithm, which scans the image iteratively and adds one new layer to every region
during each iteration. The growth of the regions as well as the displacement data
propagate similar to a wavefront during this process.

2.2.1. Seed

First the intersection between the old and the new region is determined, which is
nonempty since we assume that regions overlap in successive frames. Pixels on the
intersection are given the symbolic label new.

find_intersection:
given:
S1...a segmentation into disjoint regions at time ¢
I2...the input frame at time ¢ + 1
return:
S2...a segmentation into disjoint regions at time ¢ + 1
for all image points (P) do
if I2(P) is consistent with S1(P) then
mark S2(P) as new
end_if
end_ for

2.2.2. Region Growing

The intersection serves as the seed to grow onto the new image by acquiring
points that are consistent with the properties of the region. Starting with the
intersection, one new layer of consistent image points is added to the current region
during each iteration. The region-growing process stops when no points could be
added during an iteration (Fig. 1). At this point the new segment covers the
corresponding image region in the new frame completely. During each iteration the

INTERSECTION

F1G. 1. The shortest distance to the original intersection (shaded area) is determined for every point
from the displacements of its 8 neighbors. Assume that the shortest distance between point X and the
intersection is to be found. For its neighbors N2 to N6 the shortest distances are already known, while
NO, N1, N7 have no displacement values assigned yet. The shortest path from the intersection to X will
thus go through N2, N3,..., or N6. The computation proceeds in “waves” which are shown as dashed
lines. T
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following update is performed:

add_layer:
for all image points P do
if P is marked new then
for all 8 neighbors N do
if N is consistent with S2(P) then
mark S2(N) « S2(P)
end_if
end_ for
end_if
end_ for

2.2.3. Displacement Propagation

During the region-growing process, displacement data are propagated into the
newly created parts of the region, such that each point in this region holds
information about the location of the closest point in the original intersection
(Fig. 1).

The entire image can be viewed as a connected graph, where each node corre-
sponds to a pixel which is connected to all the neighboring points that are members
of the same region. Each node in the graph holds information about the closest
point on the original intersection. Those nodes lying on the intersection are
initialized as referring to themselves, their displacement from the intersection is
zero. The problem can thus be stated as finding the shortest distance from one node
(on the intersection) to all other nodes of the graph. This is well known in graph
theory as the shortest path problem [2] (Dijkstra algorithm). Here the only difference
from the classical problem is that, due to the region-growing process, new neighbor-
hoods (and thus links in the graph) are established successively. The graph becomes
stable when no further changes in the nodes can be made. As a consequence, the
entire image must be scanned and displacement data propagated until all displace-
ments have settled (relaxed) to stable values. Although this might appear computa-
tionally expensive on a conventional (serial) computer, this technique is well suited
for pipelining and VLSI implementation where high regularity of computation is an
important requirement.

propagate_displacement:
for all image points P do
for all 8 neighbors N of P do
if disp(N) + d(N,P) < disp(P) then
disp(P) « disp(N) + d(N, P)
end_if
end_ for
end_ for

where

disp(P) . . . displacement of P from the closest point on the intersection (initially
set to + o0), " '

d(N, P)...Euclidean distance between points N and P.
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F16. 2. Region growing and shrinking: (a) growing a region by adding a new layer of pixels; (b)
shrinking the region obtained in (a) yields a region which is different from the original region.

2.2.4. Region Shrinking

Growing an original region onto the new region in the subsequent frame and
propagating displacement information while the growth proceeds is a straightfor-
ward approach. The question is how to obtain displacement vectors for those parts
of the new boundary which could not be grown, i.e., which lie on the intersection of
the original and the new region. ‘

One approach is to shrink this part of the original region until the intersection is
reached, while propagating displacement data in the same fashion as on the growing
side. Whenever a point gets absorbed into another point, it would propagate its data
to the “absorber.” At the end of this process, each point on the boundary of the new
region would hold a valid set of displacement vectors from either shrinking or
growing. This originally appealing idea suffers from three drawbacks:

First, shrinking a region is not necessarily inverse to growing a region (Fig. 2)
which may lead to the creation of pathological intermediate shapes (Fig. 3). Second,
on the shrinking side the old contour is generally concave as seen from the new
contour, which results in a strongly nonuniform distribution of terminal points
along the original boundary. Third, region shrinking does not contribute to the
segmentation of the new region, since it only operates in areas which are already
marked in the given segmentation and thus no additional information is gained.

Figure 3 shows five steps of the region-forming process, using both region
growing and region shrinking. While the region develops quite regularly on the
growing side (upper right), the region is narrowed down on the shrinking side and
finally cut off. This behavior is not desirable, since one would expect both sides to
develop similarly.

Thus region shrinking is not used in favor of applying only displacement propa-
gation in this part of the region, but in backward direction, i.e., starting at the
intersection of the original and the new region. This means that in areas where the
intersection can grow onto the new region, region growing and displacement
propagation are done simultaneously. In those areas of the original region which are
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F1G. 3. Applying region growing and shrinking to a moving region: (a) the boundaries of the original
region (left) and the new region; (b)—(f) the original region shrinks from the left towards the intersection,
while it grows on the right onto the new region. Five layers are removed and added between each pair of
ellipse on the shrinking and on the growing side.

not part of the intersection, displacement data are propagated backwards from the
intersection until the original boundary is reached (Fig. 4).

2.3. Correspondence Relation

After the process of region growing and displacement propagation has terminated,
the boundary points of the union of the old and the new region carry pointers to the
closest points on the intersection. From this information a correspondence relation C
is computed, consisting of pairs of boundary points:

Correspondence relation C(B1, B2):

= {(P,Q)IP = (x,,5,) € BL,Q = (x,, y,) € B2}, @)
where B1 is the original region boundary and B2 is the new region boundary.

This relation represents a mapping of the original boundary onto the new
boundary of the region. Notice that one point in the original boundary may have
several corresponding points on the new boundary and vice versa, while some points
on either boundary are not linked to any other points at all. The finite spatial
resolution exaggerates this fact, since corner points on a jagged boundary are likely
to be closer to other points than their neighbors. Smoothing (see below) is applied to
greatly reduce this effect and obtain a more uniform distribution of linked boundary
points. Still this shortest-distance approximation is “well-behaved,” in the sense that
the displacement vectors do not cross over, a fact that will be useful in the following
section.
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F1G. 4. Propagation of displacement data. From the intersection of the original region and the new
region, displacement data are propagated in two directions: forward, where the intersection grows onto
the new region and backward over the original region.

2.3.1. Optimal Correspondence

Given the tentative correspondences between the old and the new region
boundaries (as described in the previous section), we try to obtain a more realistic
set of point-to-point relations. In general, the initial approximation by selecting the
nearest neighbor on the opposite contour is not a good estimate for the actual
displacement vectors. For instance, displacement caused by translation in the
direction of the boundary is not detected, because the estimated displacement
vectors are zero at these points. This has been termed the aperture problem in
motion analysis.

A better correspondence relation is obtained by smoothing to remove the effects
of finite spatial resolution and to distribute matched points more uniformly along
the boundaries. The smoothed correspondence is then modified by rotating the new
boundary in order to find an optimal correspondence. An error function is used,
which indicates the amount of deformation applied to the region under the given
boundary mapping.

2.3.2. Smoothing

The initial shortest-distance mapping represents a set of displacement vectors,
which link points on the original boundary (origin points) to points on the new
boundary (terminal points). Due to the finite spatial resolution, however, origin
points may have several corresponding terminal points and vice versa while other
points in the neighborhood may not be matched at all. Ideally, we would like to see
the endpoints of the displacement vectors uniformly distributed along both
boundaries. The smoothing step tries to remove those clusters of endpoints using a
technique similar to histogram equalization [4].

A local smoothing algorithm is applied, which iteratively traverses the correspon-
dence relation and dissolves clusters of boundary points on both sides of the
relation. The smoothed relation is available after a few iterations, in fact only two
iterations were applied in the actual experiments. The following outline of the
smoothing algorithm provides separate steps for smoothing each side of the corre-
spondence relation for the sake of clarity. The two boundaries are assumed to be
available as two cyclically linked lists of points, such that for each point its
successor (succ) and its predecessor (pred) are defined. '
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smooth_correspondence:

given:
B1... original boundary (linked list of origin points)
B2...new boundary (linked lists of terminal points)
C(B1, B2)... Correspondence Relation B1 — B2
N...number of tupels in C

density(P)...
function that returns the number of displacement vectors meeting in boundary
point P.
repeat
Smooth-B2 {new boundary}:
fori from0toN —1do {traverse the relation C clockwise}
P, Q,) < C()
P, Q,) < C(i + 1)
if Q;# Q, then {terminal points Q,, Q; are not identical}
if succ(Q;) = Q; then {terminal points Q,, Q; are neighbors}
if density(Q;) > density(Q,) + 1 then
Qi <« Q0.
else if density(Q,) > density(Q,) + 1 then
Q< Q
end_if
else {terminal points P;, Q, are not neighbors}
if density(Q,) > 1 then {points can be spread out clockwise }
Q,; < succ(Q,)
end_if
if density(Q;) > 1then  {points can be spread out counterclockwise }
Q; « pred(Q,)
end_if
end_if
end_if
end_ for
Smooth-B1 {original boundary}: {analogous to smoothing B2}
for i from0to N — 1do {traverse the relation C clockwise}
P, Q,) « C(i)
P,Q) « Ci+1) _
if P, + P, then {origin points P, P; are not identical}
end_ for

until no more boundary points can be moved.

The two main steps of the algorithm could be done in parallel. The results of the
smoothing algorithm applied to an initial approximation are shown in Fig. 5. The
displacement field between the old (outlined) and the new (dashed) boundary is
shown for an ellipse undergoing rotation. First the relation is smoothed by spread-
ing points on the new boundary (Fig. 5a) and then the original boundary is
smoothed (Fig. 5b).
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(a) (b) ()

FIG. 5. Smoothing of the correspondence relation in two steps: (a) the boundaries of the original and
the new region (dashed); (b) after equalizing the density of endpoints on the new boundary; (c) after
equalizing the density of endpoints on both boundaries.

2.3.3. Error Function

A measure is required which indicates, how good the initial set of point-to-point
correspondences represents the actual displacement vectors. The error function
should furthermore be well behaved, e.g., the optimal value should be unique and
distinct. Since the actual displacement vectors are unknown, we cannot expect to
find an objective error function without applying additional restrictions. Previous
approaches [5] have used the constraint of “smoothness of flow” either as a global
restriction or along boundaries. As mentioned earlier, global smoothness of flow
cannot cope with motion discontinuities which occur at object boundaries. Also a
smooth vector field along a region boundary is not a good approximation in general,
such as in the case of pure rotation as illustrated by the experimental results in
Section 3. '

The error function that we apply quantifies the amount of deformation that the
region would undergo with a given set of point-to-point correspondences. The
correspondence that results in the least deformation of the region is chosen as the
closest approximation to the real situation. The measure of deformation is based on
the differences of diameters across the region. If no deformation has occurred, then
the distance between one point-pair on the old region should be the same as the
distance between the corresponding point-pair on the new region. Pairs are selected
such that their points lie approximately opposite to each other on the regions’
boundaries. For all point-pairs that correspond on the old and the new boundary,
the resulting diameters are compared. The sum of the squares of their differences is
taken as the error measure.

Given a correspondence relation C(B1, B2) containing N tupels, the deformation
error is defined as

E0)= Y [d@P)-dQQ)) )
®,Q), P, Q)eC
opposite(P,P’)

where opposite(P,P’) means that P’ and P are separated by approximately half the
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circumference of boundary B1:

M
opposite(P,P)= =P =C(i), P =C(j), Jj= (i + ?)mod(M -1),
M = B1|. (3)

The diameter d is defined as

d®,P) = [(x, - x,) + Gy =3,V (4)

To obtain a quantitative estimate of the goodness of fit for the selected correspon-
dence, this error measure could be normalized, e.g., by the sum of the diameters.
Since here we are only interested in finding the optimal correspondence for each
region individually, normalization is not required. Minimal deformation as an
indicator for the optimal correspondence will produce satisfactory results as long as
there are no dramatic changes in the shape of a region between two frames. This
measure will fail when the shape of a region is undergoing dramatic changes, such as

in the case of rapid occlusion. Since sufficient sampling in time is assumed, these

changes will generally proceed gradually. The final error resulting from the optimal
correspondence furthermore indicates whether the deformation is within acceptable
bounds.

2.3.4. Modification Rules

After defining the criterion to guide the search for an optimal correspondence
mapping, we define rules to select candidate mappings out of the many different
mappings possible. It turns out that the search space of suitable mappings can be
reduced considerably by making use of the implicit order of the set of boundary
points. The initial shortest-distance approximation has the property, that displace-
ment vectors do not crossover, which means that the order of pairs of points on
boundary (for instance, clockwise) will be the same for the corresponding points on
the other boundary. We term this property of a mapping between two closed
boundaries as radial:

Given:

B1, B2, two ordered sets of boundary points representing two closed boundaries.
A mapping C: B1 — B2 is called radial, iff

for all (P,, Q,’), (Bp Qj)’ (Pk’ Qk) eC:
orderedy, (P, P, P,) = orderedy,(Q;, Q;, Qi) ®)

where orderedy(P,, P;, P,) means, that points P, P, P, lie on boundary B in
(clockwise) order.

This condition must hold for the optimal mapping as well, so we never need to
investigate permutations of the initial mapping. Among all the other remaining
possible mappings we select those that can be found by a cyclic shift. This means
that the maximum number of mappings to be considered equals the number of
boundary points. The optimization problem can thus be stated as:
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Given:

B1, B2, two ordered sets of boundary points with approximately equal number
of elements

C,, an initial radial mapping B1 — B2.
Find a radial mapping C,,: Bl — B2, such that

E,(C,,) is a minimum for all radial mappings C': B1 — B2.

Therefore, we only have to rotate the correspondence relation until the mapping
of minimal deformation is found. In practice it is sufficient to restrict the amount of
cyclic shifting to a limited neighborhood of the original estimate. A shift of + } the
length of the boundary (as used in the experiments) will include the optimal solution
in most practical cases. For each cyclic displacement the deformation error of the
corresponding mapping is evaluated. From all the inspected mappings the one that
results in the minimal deformation is selected. The associated set of displacement
vectors is taken as an estimate for the actual displacement field. Results of this
algorithm obtained from simple (elliptical) moving regions are given in the following
section.

3. RESULTS

The selection of the type of objects and motion used was influenced by the work
of other researchers in the motion analysis community. All experiments were
conducted with ellipses undergoing translation and rotation in 2D space, which
allows a direct comparison with the results obtained by Hildreth [5].

3.1. Experiments

Programs were written in C and run on a VAX 11/785 under the UNIX
operating system. The frames shown have a resolution of 128 X 128 pixels and the
major axis of the elliptic objects is 80 pixels long. A Grinnell color display system
was used to observe the region growing process visually. The results were printed on
paper using the plot-library in C. Four different types of 2D motion were investi-
gated on elliptic objects:

(1) translation only (Figs. 6a-g),

(2) rotation only (Figs. 7a-g),

(3) translation and rotation (Figs. 8a—f), and
(4) extreme rotation (Figs. 9a-f).

For experiments (1) and (2), the corresponding results from Hildreth [5] are
included.

3.2. Discussion

Experiment 1 (Fig. 6). In this case of pure translation, the smoothed approxima-
tion is identical to the correspondence of minimum deformation, i.e., rotation of the
new boundary does not improve the result in this particular case. One reason is that
the terminal points are not spread uniformly over the old and the new boundaries
by the local smoothing algorithm. Increasing the local support of the smoothing
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FIG. 6. Pure translation: (a) the boundaries of the original and the new region (dashed); (b) actual
displacement vectors; (c) perpendicular components of displacement vectors; (d) shortest-distance
approximation; (e) smoothed approximation; (f) final approximation; (g) comparable results from
Hildreth: (g') actual displacement vectors; (g”) perpendicular components; (g”) smoothed displacement
field.

algorithm to obtain a more uniform distribution of points along the boundaries
would remedy this problem. Better approximations for pure translation can also be
expected for regions which are not symmetric and do not have extremely smooth
boundaries. Compared to the corresponding result from Hildreth [5, p. 50] (Fig. 6g)
the approximation shown in Fig. 6f is inferior. This is no surprise, since in the case
of pure translation the smoothest displacement field (i.e., with uniform orientation)
obtained by Hildreth is always the correct solution. However, extremely uniform
orientation of the displacement field is not optimal for other forms of motions and
the type of motion is generally not known a priori.

Experiment 2 (Fig. 7). Here pure rotation of 15° about the center of the ellipse
was applied. The initial approximation differs significantly from the actual displace-
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F1G. 7. Pure rotation: (a) the boundaries of the original and the new region (dashed); (b) actual
displacement vectors; (c) perpendicular components of displacement vectors; (d) shortest-distance
approximation; (e¢) smoothed approximation; (f) final approximation; (g) comparable results from
Hildreth: (g’) actual displacement vectors; (g”) perpendicular components; (g”’) smoothed displacement
field.

ment field. However, the final result after smoothing and rotating the new boundary
represents a good estimate of the real situation. In this case extreme smoothing of
the vector field around the boundary will not yield the optimal result and therefore
the corresponding approximation by Hildreth [5, p. 52] (Fig. 7g) fails to come close
to the real situation.

Experiment 3 (Fig. 8). Here translation and rotation were both applied. The
initial approximation is already very good at points of small displacement, whereas
areas of large displacement are not estimated well. This means that some areas
along the boundary require rotation while other areas do not. Since rotation is
applied uniformly to the entire boundary, no perfect mapping can be expected.
Local smoothing improves the estimate significantly and the final mapping of
minimum deformation is a very realistic approximation.
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(a) T T (b)

Fi1G. 8. Translation and rotation: (a) contours of the two regions (original contour is solid); (b) actual
displacement vectors; (c) perpendicular components; (d) shortest-distance approximation; (¢) smoothed
approximation; (f) final approximation.

Experiment 4 (Fig. 9). This setup was originally chosen to demonstrate the
limits of the approach in the presence of extremely wide rotation (60°). After
looking at the initial approximation, one might well assume that the approach
would fail in this situation. The final result, however, shows a very good estimate of
the actual displacement field. Of course, in this case it applies even more that the
smoothest displacement field as in Hildreth [5] would not yield a valid approxima-
tion.

4. CONCLUSION

A novel, region-oriented approach for estimating the displacement fields of
moving objects has been devised and implemented, performing segmentation and
two-dimensional motion analysis simultaneously. Corresponding regions in succes-
sive image frames are supposed to overlap, such that connectivity information is
carried over from one frame to the next. Region growing and wavefront propagation
of displacement data is used to obtain a new segmentation and a motion estimate
simultaneously. Both processes can run in parallel, lending this technique to
Dpipelined and VLSI implementations. For the initial shortest distance approxima-
tion, the solution is improved by rotating the mapping between contours until the
correspondence of least deformation is found. Experiments conducted on elliptical
regions show, that for the case of pure rotation almost perfect estimates are
obtained. In the presence of translatory motion, the results depend crucially on how
uniformly the terminal points of displacement vectors are distributed on the original
and on the new boundaries. Here a local smoothing technique was applied to
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F1G. 9. Extreme rotation: (a) contours of the two regions (original contour is solid); (b) actual
displacement vectors; (c¢) perpendicular components; (d) shortest-distance approximation; () smoothed
approximation; (f) final approximation.

=

eliminate point clusters on either boundary. This method is fast and requires only
local interaction between neighboring boundary elements. Improved results can be
expected from increasing the size of the local support and the number of iterations
for the local smoothing algorithm to distribute points more uniformly around the
boundaries. '

The experiments shown here were limited to regions of extremely simple shape
and restricted motion. More work must be done to investigate the effects of region
shape, especially nonconvex regions, deformation of regions due to arbitrary 3D
object motion, and the effects of noise.

The wavefront region growing approach offers several advantages over other
techniques commonly used in 2D motion analysis. First, it is based on region
boundaries and therefore has the potential to supply denser displacement fields than
tracking individual points. The extraction of regions is also more robust than the
extraction of points or lines. Second, correspondence between features in successive
images is easier to establish if overlapping regions can be assumed. Third, the
direction of displacement vectors is not obtained from the local direction of a
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boundary and is therefore less sensitive to noise. Finally, the described technique
can be used for image segmentation itself, apart from its application in motion
analysis.
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