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In the automated manufacturing sys-
tem shown in Figure 1 are three key
components: the CAD/CAM

(computer-aided design/computer-aided
manufacturing) system, the vision system,
and the intelligent robot system. The
CAD/CAM system supports the design,
analysis, and manufacturing of each part
of a product. The vision system integrates
information from sensors such as TV
cameras, laser range finders, tactile and
ultrasonic sensors. It provides the robot
with information about the working envi-
ronment and the location, identity, and
quality of the designed parts. The intelli-
gent robot aligns the inspected parts and
performs assembly operations using tactile
and force-torque sensors.
Most existing vision systems rely on

models generated in an ad hoc manner and
have no explicit relation to the
CAD/CAM system originally used to
design and manufacture these objects. We
desire a more unified system that allows
vision models to be automatically gener-
ated from an existing CAD database. A
CAD system contains an interactive design
interface, graphic display utilities, model
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analysis tools, automatic manufacturing
interfaces, etc. Although it is a suitable
environment for design purposes, its
representations and the models it generates
do not contain all the features that are
important in robot vision applications.

Current vision systems use only one rep-
resentation in their models. However,
there is no single representation or a
matching technique based on a single rep-
resentation that can efficiently and relia-
bly recognize different classes of objects.
A systematic approach for building vision
models employing multiple representa-
tions is to derive them from a CAD data-
base and incorporate features crucial for
object recognition and manipulation.'

In this article, we propose a CAD-based
approach for building representations and
models that can be used in diverse appli-
cations involving 3D object recognition
and manipulation. There are two main
steps in using this approach. First, we
design the object's geometry using aCAD
system, or extract its CAD model from the
existing database if it has already been
modeled. Second, we develop representa-
tions from the CAD model and construct
features possibly by combining multiple
representations that are crucial in 3D
object recognition and manipulation.

In this work we used the Alpha-l solid
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Computer vision
researchers lack a
systematic approach
for building object
models for industrial
environments. We
propose a CAD-based
approach for building
representations and
models for applications
involving 3D object
recognition and
manipulation.
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Figure 1. An automated manufacturing system.

modeling system2 developed at the Uni-
versity of Utah. It utilizes spline-based
boundary representation. We present the
following six CAD-based representations:

(1) surface points and normals,
(2) surface curvatures,
(3) generalized sweep,
(4) polyhedral,
(5) extended Gaussian image, and
(6) object decomposition and hierar-

chical representation.
The construction of vision models that

organize and use these representations
efficiently requires consideration of both
image feature-extraction algorithms and
feature-matching techniques. We do not
include them here. These details can be
found in a recent survey on model-based
robot vision by Chin and Dyer.3

3D object
representations
A representation for shape as defined by

Marr4 "is a formal scheme for describing

shape or some aspects of shape together
with rules that specify how the scheme is
applied to any particular shape," and "the
results of using a representation to describe
a given shape is called a description of the
shape in that representation. " It is always
possible to describe a given shape using
different representations. The choice of a
representation to obtain an efficient
description depends not only on the kind
of object to be described, but also on how
the description is to be used.

Three general classes of 3D solid object
representations used in computer
graphics, CAD, and computer vision are

(1) volume,
(2) sweep, and
(3) surface or boundary.

Besides these, other 3D object representa-
tions are used in computer vision. A use-
ful representation is the extended Gaussian
image (EGI), in which each face of an
object is mapped onto a unit sphere, called
the Gaussian sphere, according to its
orientation and area. Here we do not con-
sider ambiguous CAD schemes, such as

the wireframe representation, which can
be perceived as more than one object from
a given description.5

Volume representation. An intuitive
way to represent a solid object is to
describe the space occupied by that object.
Instead ofenumerating a huge number of
spatial points, we can use a combination
of primitives, possibly with different
shapes and sizes. Each ofthe primitives is
then described by its geometrical
parameters. Increasing generality of
primitives and their combinations lead to
different schemes:

(1) pure primitive instancing,
(2) spatial occupancy enumeration,
(3) cell decompositions, and
(4) constructive solid geometry (CSG).

CSG is a super-set of the other three vol-
ume representations. It is commonly used
in CAD geometric modeling systems.
CSG represents an object as a binary

tree (see Figure 2) where each leaf
represents an instance of a primitive and
each node represents an operation of its
descendent(s).

Primitives such as blocks, spheres,
cylinders, and cones are first transformed
(translation, rotation, and scaling) and
then combined (union, intersection, or
difference) from the bottom to the top of
the tree. Regularized set operators5 help
ensure the regularity and the validity ofthe
combined object so that there are no dan-
gling edges or faces.
CSG representation is sufficient to cover

most conventional, unsculptured objects.
However, it cannot describe a large class
of sculptured, freeform shapes precisely,
even using a fairly large number ofprimi-
tives. For unsculptured objects that con-
tain primitives as their subparts, CSG can
give concise descriptions. Similar objects
may have the same subtrees, and different
configurations of primitives may yield
different objects. This representation is
unambiguous but not unique, i.e. it can
have different decompositions ofan object
using the same set of primitives.
The greatest drawback of using CSG in

robot vision applications is that surface
evaluation is always required because we
can only see the object's surface. The sur-
face evaluation is computationally inten-
sive. Moreover, since the primitives are not
equal to the subparts of an object in
general, wemay not be able to perceive or
derive any of the primitives from the
object's surface. It makes the reconstruc-
tion of the CSG tree from a given scene
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and the use of its topological information
almost impossible.

Sweep representation. A generalized
sweep, or generalized cylinder (GC) or
cone, is defined as the volume swept by a
set of cross sections along an axis under
some sweeping rule. It was first introduced
by Binford6 in computer vision for the
recognition of 3D curved objects. Accord-
ing to the formal definition ofGC given by
Shafer,7 a GC consists of four parts:

(1) There is a space curve, called the axis
of the shape.

(2) At each point on the axis, at some
fixed angle to the tangent to the axis, there
is a cross-section plane.

(3) On each such cross-section plane,
there is a planar curve which constitutes
the cross-section of the object on that
plane.

(4) There is a transformation rule that
specifies the transformation of the cross-
section as the cross-section plane is swept
along the axis. This rule always imposes (at
least) the constraint that the cross-section
changes smoothly.
The surface of the object is the union of

these cross sections and the volume swept
by the closed cross-sectional curves is the
GC. With different restrictions on the axis
and the cross sections together with their
intersections and the manner in which
cross sections blend, there is an exhaustive
taxonomy of different classes of GCs.
Sweep representation is well suited for

many manmade objects that have an axis
of symmetry. It is very concise. Similar
objects have similar axes and cross sec-
tions. A small difference between similar
objects will be reflected by a small differ-
ence in the axes or cross sections.
Sweep representation is not unique in

general. Although it is unambiguous under
a given blending rule, there is no efficient
way to describe the shapes at both ends for
an arbitrary GC. We cannot precisely esti-
mate the axis and cross sections without
seeing the whole surface. However, we can
use the axis alone in object recognition. By
using hierarchical grouping of GCs, it is
possible to describe more complex shapes.
But to get a unique and reasonable decom-
position of an object is a difficult problem.
GCs have been used only to a very

limited extent in CAD.

Boundary representation. To represent
an object by its enclosing surface or
boundary is the most commonly used
scheme in both computer graphics and

Figure 2. An example of constructive solid geometry (CSG) representation.

computer vision. A solid is represented by
segmenting its boundary into a finite num-
ber of bounded subsets, usually called
faces or patches.

If we use planar patches only, each face
is represented by its edges and vertices,
resulting in polyhedral or polyhedron-
approximated objects. In order to describe
curved surfaces efficiently, splines are used
in many CAD systems. However, some
geometrical computations are expensive in
spline representation. For example, find-
ing the intersection points of a line and a
surface or the intersection curves between
two surfaces is not easy in general. Polyg-
onal approximations are still used in most
applications.

Boundary representations (B-rep) can
be derived from 3D range data directly. In

fact, the data itself is a description of the
object's shape in the form of surface
points. (For an example of the advanced
3D range sensing technology available
today, see the accompanying sidebar.) B-
rep is unambiguous but the validity is not
guaranteed and it is also not unique.
Different tessellations of the surface and
different polygonal approximations of
each patch can still give the same object.
Spline-embedded surface representation
gives a concise and optimal approximation
of the true shape.i However, finding
high-level features is not easy and there are
no spline forms for some computations,
such as surface curvatures.

Extended Gaussian image. Extended
Gaussian image9 (EGI) is a mapping from
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Figure 3. An illustration for the relationship between Gaussian curvature and
extended Gaussian image (EGI).

surface normals onto a unit sphere, called
the Gaussian sphere, with the surface area
as its weight. An alternative definition for
a continuous case is a mapping which
associates the inverse of the Gaussian cur-
vature at a point on the surface of the
object with the corresponding point on the
Gaussian sphere. In discrete cases such as
polyhedra, EGI can also be obtained by
placing a weight at each point equal to the
sum of the surface area of the faces in the
corresponding orientation. It can be com-
puted easily and is used to find the object's
orientation.
The inverse relationship between EGI

and Gaussian curvature can be understood
using the concept of Gaussian curvature,
as the spread of surface normals, that is
equal to the area on the Gaussian sphere
mapped from a unit area on the object's
surface. Conversely, EGI is the total area
on the object's surface mapped onto a unit
area on the Gaussian surface.
A simple example is the EGI and Gaus-

sian curvature on spheres of different
radii. Shown in Figure 3 are three concen-
tric spherical triangles with radii of 0.5, 1,
and 2. The ratio of the areas of these tri-
angles is 0.25: 1 : 4. Since all the triangles

map onto the same region of the Gaussian
sphere, the EGI ratio is exactly the same as
the area ratio. However, the patch on the
smaller sphere has a larger Gaussian cur-
vature. It is not hard to figure out that for
a sphere of radius r, the Gaussian curva-
ture is l/r2 and the EGI is r2. A full
mathematical proof of the inverse rela-
tionship is given by Horn.9
EGI is used in the analysis, but not the

synthesis, of surface shapes. It has the fol-
lowing properties:

(1) The center of mass of the extended
Gaussian image is at the origin of the
Gaussian sphere.

(2) The total mass of the EGI equals the
total surface area of the object.

(3) It is unique for any convex object.
(4) For a convex object, the weight of

each point of the EGI is equal to the
inverse of the Gaussian curvature at the
corresponding point on the original
surface.

(5) EGI does not depend on the position
of the object. It allows us to determine the
object's orientation before knowing its
position. Since it represents objects
explicitly by their orientation, the degree
of freedom is reduced, from 6 (position

plus orientation) to 3 (orientation only).
(6) The rotation of the object does not

affect the relative weight distribution of its
EGI.

For concave objects, different faces
may have the same orientation and are
mapped onto the same cell on the Gaussian
sphere. Therefore, EGI representation is
not unique. Ikeuchil' used a global
approach for concave objects. Instead of
mapping the whole object onto one EGI,
he selected 60 different viewer directions
and mapped the visible surfaces from each
of these views onto an EGI. This is not
only inefficient in storage (60 EGIs for one
object), but also it cannot deal with
occluded objects. In general, a local
approach in which we decompose the
boundary into patches and use one EGI
for each patch seems better. However,
subdividing the object to get a unique EGI
for each part is a difficult problem.

Evaluation of 3D object representations
for recognition requirements. The prob-
lem of 3D object recognition can be
defined as follows":
Given

(a) digitized sensory data corresponding
to one particular, but arbitrary, view of
the real world (may be in a certain,
known environment) and
(b) knowledge, or models of a set of dis-
tinguishable objects.

Then find the following for each object in
the set:

(1) Does the object appear in the digi-
tized sensory data? If so, how many times
does the object occur?

(2) For each occurrence of the object
determine its location and orientation with
respect to a known coordinate system.
Marr4 has given a set of criteria for the

representation of a shape, used in object
recognition:

Scope: What kind of objects can it rep-
resent?

Accessibility: Can it be obtained inex-
pensively from the image?

Conciseness: Can it describe objects
efficiently?

Uniqueness: Can a unique description
of an object be obtained under different
conditions?

Stability: Can it reflect the similarity
between different objects?

Sensitivity: Can it reflect the differences
between similar objects?
A summary of the 3D object represen-

tations using Marr's criteria is given in
Table 1.
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3D range sensor-phase shift detection
Robert E. Sampson
Environmental Research Institute of Michigan

Three-dimensional irmaging sen-
sors and their informational content
have been under investigation for
many years, with two main sensor
techniques, triangulation and time of
flight, recognized as the fundamental
technical approaches to the problem.
The triangulation method can be
implemented in a variety of ways,
including stereographic, structured
light, etc., all of which present a num-
ber of complex problems that need to
be overcome. A preferred concept
that greatly simplifies and enhances
range Imaging uses a modulated
laser diode to optically directly mea-
sure the range to each point in the
scene. In original envisioned forms
of such a system, a pulsed laser Is
directed at the scene and the time
until a returned pulse is received is
determined, which is proportional to
the range to the object.

In a practical adaptation of this
concept recently developed at the

Environmental Research Institute of
Michigan (ERIM) shown schemati-
cally in Figure 1, the difference in
phase between the transmitted and
received signals is determined rather
than the time of flight. The major
components of the sensor in Figure i
include the laser diode and modula-
tion source, a scanning mechanism
(either polygon or nodding mirror), a
photo detector, and the phase shift
detection electronics. The difference
in phase between the transmitted
and received signals is determined
and the phase shift is directly related
to range. This sensor yields both a
normal reflectance image and an
image in which each pixel value is
directly proportional to the distance
to the pixel area.

This method of obtaining 3D
images, often referred to as optical
radar, has a wide variety of applica-
tions, including navigation, robot gui-
dance, and inspection. Although

these tasks may seem similar at first
glance, the requirements differ
greatly.

At ERIM, the phase-detection
method of 3D Imaging has been
employed in the development of a
family of sensors. One of these sen-
sors was developed for autonomous
vehicle navigation. This navigation
sensor has a field of view (FOV) of
plus or minus 40 degrees in the
horizontal plane and covers a vertical
FOV at depression angles of 15 to 45
degrees. It has a range resolution of
8 centimeters.

Another, more advanced, naviga-
tion sensor uses multiple lasers that
operate at various frequencies in the
visible, near infrared, and shortwave
infrared wavelengths. These multiple
wavelengths allow not only determi-
nation of the range to the terrain, but
also the reflectance values of the
materials in the scene. This sensor
has a FOV of 60 x 80 degrees and a

Figure 1. 3D laser scanner
simplified block diagram.
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range resolution of 2 centimeters.
A third sensor developed by ERIM

has been employed to perform bin
picking and other robot guidance
tasks. This sensor has an adjustable
FOV ranging from 1.6 x 1.6 degrees
to 35 x 35 degrees and can operate
over distances from 15 centimeters
to over 90 centimeters. In the robot
guidance mode the sensor has a
resolution of 0.08 centimeters. It can
also operate in an inspection mode,
where it has a resolution of 0.003
centimeters. This sensor consists of
three modules: the optics head,
power supply, and electronic mod-
ules. The optics head can be moni-
tored on a robot arm and connected
via remote cables to the rack-
mounted electronics and power
supply.

This sensor can provide range data
at 100,000 measurements per second
taken in a programmable scan pat-
tern (any image size from one pixel to
1000 x 1000 pixels can be pro-

grammed). Image collection takes
less than a second to over 10
seconds, depending upon image
size. While image acquisition is
slower than normal visible cameras,
for range imagery the system is
faster overall because we need not
perform complex computational
analysis to determine range-it is a
direct output from the sensor.

Figure 2 includes an example of
range imaging from the robot gui-
dance sensor. Figure 2a is a normal
visible image of a telephone. Figure
2b is a range image from the same
view. In Figure 2b, the value of each
pixel is directly proportional to range
(light tone is closer, dark tone further
away) rather than a measure of the
intensity of reflections as in Figure
2a. In Figure 2c, the telephone image
is processed into a perspective view
using an ERIM-developed "cytocom-
puter" that provides high-speed
range-image processing capability
for the sensor.

(a) (b)

Figure 2. Visible image of a tele-
phone (a), approximately 30 x 30
centimeters taken with a normal pho-
tographic camera. Range image of a
telephone (b), 300 pixels by 300
pixels by 8 bits-25 x 25 x 20 cen-
timeters deep-taken in 10 seconds
with the range sensor. Perspective
view from the range Image (c), with
the range Image of (b) rotated by
cytocomputer to give a different per-
spective of the scene; processing
time. 0.4 seconds.

(c)

Model building using
the Alpha1 CAD
system
We use the CAD system Alpha_l, an

advanced experimental solid modeling
system2 developed at the University of
Utah. Alpha_l models the geometry of
solid objects by representing their bound-
aries as discrete B-splines. B-splines are an
ideal design tool, simple yet powerful.
Many common shapes can be represented
exactly using rational B-splines. For exam-
ple, all of the common primitive shapes
(spheres, cylinders, ellipsoids, etc.) used in
CSG systems fall into this category. Other
advantages include good computational
and representational properties of the
spline approximation: the variation
diminishing property, the convex hull
property, and the local interpolation
property.

The single underlying mathematical for-
mulation of Alpha_l simplifies implemen-
tation, but it is sufficiently powerful to
represent a very broad class of shapes. It
is able to create images of the designed
objects, to perform certain analysis func-
tions on them, and to produce information
for numerically controlled machining. It
uses the Oslo algorithm, 12 for computing
discrete B-splines. Subdivision, effected by
the Oslo algorithm, supports various capa-
bilities including the computation
associated with Boolean operations, such
as the intersection of two arbitrary
surfaces.
At present, tolerancing information is

not included in object specification in the
Alpha_l system. Once it is available, we
can make models in terms of classes of
objects (rather than a single object) that
are functionally equivalent and inter-
changeable in assembly operations.
Alpha_I has powerful shape description
facilities and it supports several modeling
paradigms. These include direct manipu-
lation of the B-spline surfaces, creation
and combination of primitive shapes using
set operations, and high-level shape oper-

ators such as ruled surface, loft, bend,
stretch, twist, warp, and sweep. The steps

in building a CAD model using Alpha_I
follow:

(1) Analysis of the object. Usually a

complex object is decomposed into simpler
parts that can be designed more easily.
Each of the subparts is called a shell and
need not be closed.

(2) Design ofpartsandmeasurement of
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parameters. Geometric operators are used
to design each subpart. Sometimes one

shape can be designed using different
paradigms, which may require a different
set of parameters. For example, an arc can

be specified by its center point and two end
points. It can also be specified by two tan-
gent lines and its radius. We want to use

those parameters that can be measured
easily and precisely.

(3) Validation ofdesigns. When design-
ing the surface patches of each part, ensure
that they have the correct orientation and
that the adjacency information between
patches is correct. Otherwise an invalid
object may have been created and the com-
biner (used in the next step) will be unable
to manipulate it. At present, the designer
makes explicit the correctness of orienta-
tion and adjacency. We want the system to
be able to generate such information auto-
matically.

(4) Application of the combiner. The
last step is to put all the parts of the object
in the correct positions and orientations by
performing appropriate transformations,
then use the combiner to perform the
required set operations on them. This
results in the design ofthe complete object.

Two examples demonstrate some of the
modeling paradigms of the Alpha_l
system.

Example 1: green piece. To design sim-
ple objects such as the "green piece" in
Figure 4a, which has many local features,
we build the complete object in a stepwise
manner. First, we design the plate and all
the holes, then the dent part and the
scratches shown in Figure 4b. To design
these parts, we first design curves using B-
splines, then use various high-level oper-
ators for surface construction, such as

revolving a curve about an axis, extruding
a curve in some direction, and filling the
surface between two curves.

There are seven holes with threads in the
green piece. We design each ofthese by fill-
ing two surfaces between two twisted
curves. Figure 4c shows the line drawing
and shaded display ofthe completed CAD
model.

Example 2: Renault piece. For objects
like the automobile "Renault piece" in
Figure 5a, which contains sculptured sur-

faces, it is still possible to divide it into a

set of simpler parts, although the decom-
position may not be obvious. Here we

divide it into five subparts in Figure 5b:
small right head (upper left), base plate
(upper right), left head (lower left), back

Table 1. Evaluation of 3D object representation.

bump (lower center), and neck (lower
right). For the right head and the left head,
we find all sharp edges and then construct
the surfaces from them as we did in design-
ing the green piece. For the base plate, the
neck, and the back bump, first we design
some pseudo edges, which are the intersec-
tion of the surface planes. Then we con-

struct these surfaces but leave small gaps
between them where cubic patches are

used to produce the rounded edges. Figure
5c shows the intersection curves of these
parts, which are computed to obtain the
complete object using set operations per-
formed by the combiner. Figure 5d shows
the completed CAD model of the Renault
piece.

Note that Alpha_l can be used to model
a large class of sculptured mechanical
parts that are not representable by either
aCSG or a sweep model. Although the use
of nonuniform rational B-splines allows
significant flexibility in the geometric
modeling, spline representation does not
explicitly exhibit important features used
in most recognition techniques. Thus we
want to construct descriptions based on

other vision representations from this
CAD model.

CAD-based 3D object
representations

In this section we derive vision represen-
tations from the Alpha_l CAD models.
These representations can then be inte-
grated into a vision model employing mul-
tiple representations. Appropriate models

are used based on the results from differ-
ent recognition tests."'3

Surface points and normals representa-
tion. Surface points representation pro-

vides a universal discrete description of the
object's boundaries. However, it requires
a large amount of data to describe a given
surface. Note that in a spline-based sys-

tem, the surface normal is a byproduct of
the surface (point) evaluation procedures,
called knots insertion, spline refinement,
or subdivision.
Although this representation does not

carry more information than the original
CAD model, it provides the ability to com-
municate with other vision modules that
create higher level descriptions based on

data in this format. For example, region
growing and edge detection algorithms are

commonly used with 3D range data and
matching is done on the extracted symbolic
features. 14,15 Moreover, this representa-
tion generates synthetic data for arbitrary
shapes as well as for regular objects (cubes,
spheres, cylinders, etc.). For an example
of the use of surface points to parts locali-
zation problem in manufacturing, refer to
the article by Gunnarsson and Prinz16 in
this issue of Computer.

Surface points extraction. A simple
technique to extract surface points from B-
spline patches uses the subdivision
method.' In this technique a B-spline
patch is first subdivided into smaller pieces
that are within the given resolution, then
the centroid of each of these small patches
is computed. The points extracted by this

August 1987

Criterion CSG Sweep B-rep EGI

Scope Fair Fair Good Good

Accessibility Poor Poor Good Good

Conciseness Fair Good Fair Poor

Uniqueness Poor Poor Fair Poor

Stability Fair Good Good Fair

Sensitivity Fair Fair Good Fair
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(a) (b)

Figure 5. Design of the Renault piece
using the Alpha_1 CAD system. (a)
shows the Renault piece object, (b)
shows the subparts of the Renault piece
CAD model, (c) shows intersection
curves of the subparts of the Renault
piece, and (d) shows the designed CAD
model of the Renault piece.

(a)
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Figure 4. Design of the green piece
using the Alpha_1 CAD system. (a)
shows the green piece object, (b) shows
the subparts of the green piece CAD
model, and (c) shows the designed CAD
model for the green piece.

(c)
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(a) (b) (C)
Figure 6. Surface points and normals representation. (a) shows surface points on the green piece (0.1-inch resolution), (b)
shows the surface points on the Renault piece (0.2-inch resolution), and (c) shows the surface normals on the green piece
(0.4-inch resolution).

method depend not only on the shape of
the surface but also on its parameteriza-
tion. However, after the set operations,
some parts of an Alpha_l CAD model are
represented as polygons and some parts as
B-spline surfaces. Our strategy is to sub-
divide all the surfaces into polygons to
make the problem uniform. By applying
a contour-filling algorithm,'7 we get
interior line segments of the polygons and
then extract points along these segments at
a desired resolution.
The main element of a contour-filling

algorithm is to find the intersection seg-
ments of a line and the region enclosed by
that contour, including the contour itself.
This can be done by first splitting the line
into segments at each intersection point of
the line and the contour, then deciding
which of these segments lie inside the
region.
An edge-based contour-filling algo-

rithm described by Pavlidis'8 requires an
expensive preprocessing of the contour
(sorting and marking the edges). It is used
in applications, such as surface shading,
where the same contour is used repeatedly.
Since, in our case, the number ofpolygons
in a model is usually very large and we
extract only a small number of points from
each one of them, we have developed a
new algorithm17 that uses topological
information of the contour at each inter-
section point to decide which segments lie
inside the polygon. It gives a linear com-
putational complexity in the average case.
We obtain the surface normal vector at

each sampled point by using bilinear inter-
polation of normals at the adjacent ver-
tices. In Figures 6a and 6b we show the
surface points on the green piece and on
the Renault piece at 0.1-and 0.2-inch reso-
lution, respectively. In Fig. 6c, we show
the surface normals on the green piece at
0.4-inch resolution.

Surface curvature representation. The
local surface shape can be characterized by
curvatures, which combine information of
both the first and second derivatives.
These derivatives have been used in vari-
ous techniques for segmentation of 2D
contours, 2D images, and 3D range data.
Features such as edges, corners, and pla-
nar patches can also be defined quantita-
tively by curvatures. In differential
geometry,8 the curvature of a 2D contour
is defined as the change in the tangent vec-
tor per unit length. If this change has the
same direction as the normal vector, the
curvature is positive, otherwise it is nega-
tive. For 3D surfaces, the normal curva-
ture at a point in one direction is defined
as the curvature of the intersection curve
of the surface and the plane containing this
directional vector and the surface normal
vector at this point. Therefore, each point
has different values of normal curvature,
one for each direction. Among these
values, the maximum and the minimum
are called the principal curvatures and
their corresponding directions are called
the principal directions. The product of
the principal curvatures is called Gaussian

curvature and their arithmetic average is
called mean curvature.

Recently, various approaches that use
curvatures as intrinsic characteristics of
surfaces and describe shape by curvature
have been addressed in the literature on
computer vision.'113 Curvature-based
intrinsic features are very useful in object
recognition techniques.
We compute four basic types of surface

curvatures-Gaussian, mean, maximum,
and minimum-for a given CAD model
designed with Alpha_l. The input CAD
models may be in different forms: sampled
surface points, continuous B-spline sur-
faces, and subdivided polygons.
For sampled surface points, we use

finite differences to approximate the first
and second partial derivatives. Then we
apply standard equations to find the Gaus-
sian, mean, and principal curvatures.8
Figure 7a exhibits samplings of surface
points for one view of the Renault piece at
various resolutions. Using this data, Fig-
ure 7b shows the edge points of the sam-
pled Renault piece model, which are found
by simply requiring the larger absolute
value of the principal curvatures to fall
above a threshold. We can observe the
similarity of results on synthetic and real
data. Also note that the curvature results
even at low resolution are quite good. Like
the edge points, planar patches can be
found by using a low pass filter.
We can obtain surface curvatures from

continuous B-spline surfaces in a simple
manner. The basic surface type in the
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Alpha_l system is a tensor product B-
spline patch. A convenient way to think of
the tensor product surface is to think ofthe
rows or columns of the matrix of spatial
points (control mesh) as a set of individual
B-spline "control curves, " with one knot
vector and one order associated with each
of them. The other knot vector and its
order then describe how these curves will
be blended to form the surface. The
derivative of this B-spline surface is
another tensor product B-spline surface
with a lower order formed by the differen-
tiation of these control curves. Higher
order derivatives are found by successive
differentiations. The unit normal vector is
found from the cross product of the first
partial derivatives (tangent vectors). The
rest of the computations of curvatures are
the same as before. Since it requires
rational computations in vector normali-
zation, there is no closedform of surface
curvatures in B-spline.
For models in the form of subdivided

polygons, we use an alternative definition
of Gaussian curvature used in EGI. The
Gaussian curvature of a small polygon can
be approximated by the ratio of the area
of regions enclosed by normals of vertices
on the Gaussian sphere to the actual area
of the polygon.

Interpretation ofcurvature results. Fig-
ure 8 shows the results of the computation
of curvatures for a Coons patch. In the
two views of a Coons patch in Figure 8a,
the surfaces contain four interesting parts:
peak, pit, and two saddles. Figure 8b
shows the four surface curvatures. In Fig-
ure 8b the black lines are isoparametric
lines of curvatures (not lines of curvature)
and the white lines are the zero crossings.
Figure 9 shows the Gaussian curvature and
the extrema of principal curvatures ofa tea
pot. Images in Figure 8b and 9 are gener-
ated by mapping the curvature values onto
its B-spline control mesh approximately.
From Figures 8 and 9 we can make the fol-
lowing observations:

(1) The zero crossings of Gaussian cur-
vature do not necessarily correspond to
step edges. They are just surface inflection
points, a kind of critical point.

(2) Segmentation of range data based
on the zero crossings of Gaussian curva-
ture gives a meaningful decomposition of
surface patches. They are clearly separated
by the zero crossings of Gaussian cur-
vature.

(3) The sign of Gaussian and mean cur-
vatures provides a useful symbolic descrip-

!:....... l'* .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~... .. .,i1.!..I.,.,,...
.. ....

(b),
Figure 7. Surface points and the extrema of principal curvatures. (a) shows a sam-
pling of surface points at two resolutions (0.2-inch and 0.1-inch spacing) and the
real range data taken with a laser range finder (0.12-inch resolution in the x direc-
tion and 0.08-inch resolution in they direction). (b) shows edge points as the

ex1re1aofprincipalcurvaturesforthefiurs.n.a)

extremaofprincipal curvatures for the figures in.....(...

(a)

(b)
Figure 8. Four basic types of surface curvatures of a Coons patch. (a) shows two
different views of a Coons patch and (b) shows surface curvatures: maximum prin-
cipal curvature (upper left), minimum principal curvature (upper right), Gaussian
curvature (lower left), and mean curvature (lower right).
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Figure 9. Gaussian curvature (upper
right) and extrema of principal
curvatures (lower left) for teapot.

tion for the local surface shape.
(4) The local extrema (positive maxi-

mum or negative minimum) of the prin-
cipal curvatures correspond to the object's
edges.

(5) The local maxima of the smaller
absolute values of principal curvatures
correspond to the object's corners.

(6) Conic surfaces (sphere, cylinder,
and cone) and planes can be specified by
the value of principal curvatures.

Generalized sweep representation. We
can extract this representation directly
from the CAD design procedures if the
object is designed in this way. However, to
design the axis, a set of cross sections and
their profile functions for a given shape is
not straightforward. Sometimes, without
special design tools, it even becomes
impossible for some fairly complex
objects. One possible solution is to design
the generalized sweep representation by
other powerful construction operators,
then extract the approximate cross sections
and axis from the designed model's sur-
faces. For more complex objects, we can
use hierarchical structures where different
GCs are joined together. However,
sophisticated decompositions are required
in that case.
To generate GCs for simple objects, or

simple subparts of a complex object, we
have to find some cross sections and link

them by an axis. For example, see the
deformed ellipsoid in Figure 10a, modeled
by the Alpha_l system with several linear
deformations on a surface of revolution.
It became a warped GC (nonplanar cross
sections) after these deformations. One
possible way to generate a GC description
for this object is:

(1) Slice it in some direction to find all
the cross sections.

(2) Find the centroid of each cross sec-
tion. This can be done by applying Green's
theorem8 to the curve, as long as it is
closed.

(3) Link all centroids to construct the
axis.
Figure lOb shows a result of the above pro-
cedure. It has the following properties:

(1) All cross-section planes are parallel
to each other.

(2) All cross sections are planar but not
necessarily circular.

(3) The axis passes through the centroid
of each cross section.

(4) The angle between the axis and each
cross section plane is not necessarily 90
degrees, and each one has a different
angle.

This parallel slicing method is very sim-
ple and the result in Figure 10b looks good.
However, using this technique we will have
an infinite number of descriptions for a
single object. For example, in Figure 1Oc,

we used a different slicing direction and
got a totally different result-a different
axis and different cross sections. This kind
of representation obtained from the par-
allel slicing method is useless in object
recognition. More constraints are needed
to get a unique description.
The initial slicing direction is important

in order to get the canonical axis that is
invariant to rotation and translation. A
splitting scheme given below is similar to
the one used in curve approximation. 19 It
uses the axis of inertia and generates GCs
such that all cross sections are closed, cross
sections do not intersect each other, the
axis is orthogonal to each cross section,
and the axis passes through the centroid of
each cross section.

Iterative splitting methodfor general-
ized cylinder approximation. This algo-
rithm has the following steps:

(1) Find the major axis of inertia, the
one having minimum moments of inertia,
and the extrema of the object along this
axis.

(2) Find the cross sections near these
extrema that are perpendicular to the
major axis of inertia and connect their cen-
troids as the first approximation to the
axis.

(3) Find the cross section that passes
through the midpoint of the approximated
axis and is perpendicular to it. Connect its
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centroid to the two endpoints of the previ-
ous axis and split the axis and the object
into two pieces.

(4) Repeat Step 3 on each of the sub-
pieces recursively until the desired reso-
lution is obtained, or the new cross section
is not closed, i.e. it intersects other cross
sections.

(5) Adjust the axis and cross sections
recursively such that all cross sections are
found at critical points of the axis and are
perpendicular to the axis at their centroids.
This approach provides several

advantages:
* It uses the axis of inertia in the initial-

ization procedure to obtain the canonical
axis of an object.

* The axis is perpendicular to the cross
sections and passes through their centroid.

* The cross sections are closed planar
curves and do not intersect each other.

* Since the whole surface is split during
the recursion, its time complexity is
improved from O(mn) to O(mlog2n)
where m is the total number of polygons
in the CAD model of a component and n
is the number of cross sections.
The algorithm minimizes the number of

possible GC representations for one object
to achieve the unique property of a vision
model, and does not restrict the shapes of
axis and cross sections to represent a larger
scope of objects. Figure lla shows the
results ofthe axis and cross sections extrac-
tion on the object shown in Figure lOa,
after one, three, and five iterations. Fig-
ure 1 lb shows the axis and cross section for
the helicopter shown in Figure 12b. It is a
first-order approximation. A refined GC
representation is obtained by including an
angle test along the axis and a similarity
test by moments on adjacent cross
sections.

Polyhedral representation. Polyhedral
representation is widely used in computer
vision because of its simplicity and good
support of both geometrical and topolog-
ical information. A polyhedral model can
be constructed from vertices, edges and
faces where vertices are 3D spatial points,
edges that are straight-line segments
between vertices, and faces that are planar
polygons enclosed by an ordered list of
edges or their corresponding vertices. A set
of geometrical and topological conditions,
as given by Requicha,5 must be met for
any valid polyhedral model.

In this work, the geometrical conditions
are assumed from the validity of the given
CAD models. Most of the topological con-

Figure 10. Generalized cylinder representation for a simple object showing (a) a
deformed ellipsoid, (b) a generalized cylinder approximation of (a), and (c) another
generalized cylinder approximation of (a).

(a)

(b)

Figure 11. Generalized cylinder approximation showing (a) results of the iterative
splitting algorithm after one, three, and five iterations for the object shown in Fig-
ure lOa, and (b) generalized cylinder approximation for the helicopter shown in
Figure 12b.
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(a)

(b)
Figure 12. Polyhedral representation for a teapot and a helicopter. (a) shows a B-
spline model for a teapot and its polyhedral approximation. (b) shows a B-spline
model for a helicopter and its polyhedral approximation.

(
(a) / (b) - :

Figure 13. Extraction of features from the polyhedral representation showing (a) edge
detection on a teapot and (b) edge detection on a helicopter.

mation is propagated proportionally to the
subdivided patches whenever a subdivision
occurs. In this global approach we first
perform all the required subdivisions, then
build polygons for each small subpatch
which contain not only the subpatch's four
corners but also the adjacent corners of all
neighboring patches. Therefore, the
adjacency information on the subpatch
can be mapped onto each of the approxi-
mated polygons and still maintain the
topological validity of the resulting poly-
hedron.

Figure 12a shows the B-spline model for
a teapot and its polyhedral approximation.
Figure 12b shows a similar example of a

helicopter. Features can also be extracted
from this polyhedral representation. For
example Figure 13 shows the results of
edge detection on the teapot and the
helicopter model by thresholding the
changes in the surface normal vector along
adjacent faces.

Extended Gaussian image representa-
tion. Although there is a continuous
expression9 for EGI for some objects,
such as the solid of revolution, a uniform
approach that allows both smooth sur-
faces and polyhedral objects to have the
same EGI structure first approximates
smooth surfaces by polygons and then
maps each polygon onto the Gaussian
sphere. To gain the advantages of EGI,
such as its invariant mapping under rota-
tion, a tessellation of the Gaussian sphere
should have cells such that

(1) there is no overlap and gap between
cells,

(2) they have the same area,
(3) they have the same shape,
(4) they occur in a regular rounded pat-

tern, and
(5) there exists a formal scheme to

obtain finer resolution that still has
the above properties.

ditions are also ensured by the embedded
linked-list data structure. However, due to
the flexibility of nonuniform B-splines
used in the Alpha_l system, different com-
binations of order, knot vector, and con-
trol points may result in different curves
having identical geometry. For modeling
of complex shapes it is very likely that
adjacent patches will not have the same
knot vector and control points along their
common boundary, and that some patches
will be adjacent to more than one patch on
one side.

Currently Alpha_l does subdivision and

polygonal approximation locally, which
leaves some gaps along adjacent patches
because of the above situations. In order
to get a valid polyhedral model such that
every edge is shared by two and only two
polygons, we use a global approach in this
research. Adjacency information on sur-
face patches contains not only the com-
mon sides but also the ranges in which they
are matched. For partially adjacent
patches and patches that are differently
parameterized along the common bound-
ary, we insert information on more than
one adjacency into each side. This infor-

Unfortunately, these criteria cannot be
satisfied simultaneously.
A simple tessellation by divisions of

meridians and parallels has a higher den-
sity of cells on both north and south poles.
Although we can overcome this by having
fewer strips at higher altitudes, this tessel-
lation does not have a linear relationship
of rotation between the object and its EGI
mapping unless the rotational axis is ver-
tical. Better tessellations result from
projecting regular polyhedra onto a con-
centric unit sphere. These tessellations
have proved to be the optimal sampling of
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a sphere on the corresponding number of
samples.
However, there are only five regular

polyhedra and the maximum number of
faces for an icosahedron is 20. Further
subdivision on each face of these regular
polyhedra is required to obtain finer reso-
lution. A well-known method is the geo-
desic divisions. For a tessellation based on
the icosahedron, each triangle of the icosa-
hedron is subdivided into four equal-sized
right triangles. After projecting these sub-
divided triangles onto a Gaussian sphere,
we obtain an 80-face tessellation.
By repeating the subdivision/projection

procedure, a multiple-resolution tessella-
tion of the Gaussian sphere is constructed
hierarchically. This structure consists of a
set of concentric spherical shells. The out-
ermost shell has the highest resolution of
the geodesic tessellation and the innermost
one is the basic icosahedron. On each face
of the icosahedron is an inverted triangu-
lar pyramid that links the corresponding
triangles at different resolution levels. This
resembles the pyramidal image structure
used in 2D computer vision and has simi-
lar properties and advantages. For exam-
ple, the EGI weight of one cell is equal to
the sum of the weights of its four descen-
dents at the next level.
To construct the multiple-resolution

EGI from a given CAD model, each B-
spline patch is first subdivided into flat
polygons within a given tolerance. The
area of each of the polygons is then
accumulated in the corresponding cell of
each level. The procedure to access the cor-
responding cell in one resolution from the
polygon's normal vector follows:

(1) Determine into which of the trian-
gles of the icosahedron the given normal
falls.

(2) Determine into which of its four
descendents the given normal falls.

(3) Repeat Step 2 until you reach the
required resolution level.

The total number of tests needed to access
one cell at level n, assuming the icosahe-
dron is level 0, is 4n + 20 in the worst
case. In fact, we find not only the cell at
level n, but also all the corresponding cells
from level 0 to level n - I simultaneously.

Figure 14 shows the results of the geo-
desic tessellation based on an icosahedron
and its EGI mapping for a cylinder. Fig-
ure 14a shows the testing cylinder, whose
length is twice the diameter. Its EGI map-
pings are also shown at each resolution
level. The darker triangle has higher
weight. Figure 14b is the icosahedron at

(d)

(e)

level 0. Figures 14c to 14e are levels 1, 2,
and 3 and have 80, 320, and 1280 faces,
respectively. The orientation of the cylin-
der is clearly reflected on its EGIs. The two
black triangles in Figure 14e are images of
the top and bottom circular faces of the
cylinder. The side faces of the cylinder are
mapped onto a circular strip on the Gaus-
sian sphere.

Figure 14. Multiresolution geodesic tes-
sellations of the Gaussian sphere and
the corresponding EGIs for a cylinder:
(a) a cylinder; (b) an icosahedron, level
0 (20 faces); (c) an icosahedron, level 1
(80 faces); (d) an icosahedron, level 2
(320 faces); and (e) an icosahedron,
level 3 (1280 faces).

For a concave object, we decompose the
object's surface and build an EGI for each
patch.

Object decomposition and hierarchical
representation. Hierarchical representa-
tion has been commonly used in different
domains.4,20,2' An approach to this repre-
sentation requires two steps:
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i1.

Figure 15. The CAD-based robot vision system.

(1) Decompose the object into parts.
(2) Construct relational links between

decomposed parts from Step 1.

From a computational point of view, hier-
archical representation simplifies the com-
plexity of the problem. For computer
vision applications, it provides a solution
for recognition of partially visible objects.
In 3D object recognition, self occlusion
occurs even for a single object. Hierarchi-
cal structures based on decomposition of
the object's surface and/or volume are

necessary for any of the above representa-
tions in practical use. Moreover, psycho-
logical studies have given evidence of the
role of parts in human visual recog-

nition 22
Dividing objects into regular primitives

(spheres, cubes, etc.) has been common in
CSG systems. It is useful in CAD/CAM
applications because of the analogy
between set operations and mechanical
manufacturing. However, this decompo-
sition contains primitives that may not
exist in the sensed data. Thus, it does not
suit computer vision applications.
As described in the section "Surface

curvature representation" above, decom-

position of an object can be based on the
shape of its local surface. Although this
kind of partition does not necessarily cor-
respond to the human visual mechanism,
it is computationally simple and invariant
to the viewer's position and direction.
Different representations use different
strategies to decompose objects. General-
ized cylinder representation requires a

volume-based decomposition. Surface
curvature representation and EGI require
a surface-based decomposition. For
volume-based decomposition, we parti-
tion surfaces based on the generic intersec-
tions of surfaces (surfaces intersect
transversally). For surface-based decom-
position, we use the zero crossings of the
Gaussian curvature and the extrema ofthe
principal curvatures. In Figure 9 note that
Gaussian curvature and extrema of prin-
cipal curvatures provide good decompo-
sition.

he CAD-based approach
presented here allows the con-

_T struction of vision models
employing multiple representations for

most of the objects found in industrial
environments. It differs from using CAD
tools to design features that can be visually
measured. As summarized in Figure 15,
the CAD-based vision model preparation
procedure reveals a strong analogy to the
image-understanding procedure. It needs
some preprocessing of the input CAD
designs. Decompositions or 3D segmenta-
tions are then performed on the model's
shape, the physical surface. Finally, we

extract features for different representa-
tions from each subpart and integrate
them into the hierarchical multiple-
representations vision models.
Our approach connects the relationshlip

between the object's image in the real
world and the sensory data and its image
in the designer's mind, the CAD models.
It also provides an automatic and sys-

tematic approach to building models using
multiple representations on different parts
of the same object. These multiple
representations and the multiple matching
techniques based on these representations
are required in a flexible automated envi-
ronment, where robots equipped with
multiple sensors operate. C1
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