The Specification of Distributed
Sensing and Control*

Tom Henderson, Chuck Hansen,t and Bir Bhanu

Department of Computer Science, The University of Utah, Salt Lake City,
Utah 84112

Received February 8, 1985; accepted March 7, 1985

Logical Sensor System Specification (LSS) has been introduced as a convenient means for
specifying multi-sensor systems and their implementations. In this article we demonstrate how
control issues can be handled in the context of LSS. In particular, the Logical Sensor Specification
is extended to include a control mechanism which permits control information to (1) flow from
more centralized processing to more peripheral processes, and (2) be generated locally in the
logical sensor by means of a micro-expert system specific to the interface represented by the

given logical sensor. Examples are given including a proposed scheme for controlling the Utah/
MIT dextrous hand.

BELUY -V ATARUVZOERFOLHODREBNC (Y- AT LEHK (LSS) &k
KERULA, AEAXTRLSSKSVWTEIHHATEDNENRART S, REIEMN
EVHHRBRABESN, (1) MRTOELIANSRATOEANOERORNY (2) 5
ASNEKEEENEL YYD V4 - 71 - AKBTBIFAN-PRKE>TRESNIH

DRNEZHNTIAMERBLTIVD. TRELT2IE2/MITAYFHBOKLHDHR
GEEREG,

I. INTRODUCTION

Multi-sensor systems are becoming much more common and require an appropriate
system organization to efficiently and correctly integrate their data. We have previously

proposed the Logical Sensor Specification (LSS) as one such methodology.' There we
discussed two major issues: ‘

1. How to develop a coherent and efficient treatment of the information provided
by many sensors, particularly when the sensors are of different kinds.

*This work was supported in part by the System Development Foundation and NSF Grants
ECS-8307483 and MCS-82-21750.

+Chuck Hansen is an ARO Fellow.

Journal of Robotic Systems, 2(4), 387-396 (1985)
© 1985 by John Wiley & Sons, Inc.

0471-2223/85/040387-10$04.00

e e e
i -

s ¢

% SETRIYET PITTRTEVE MDY T e

- mazat TR

e Smebe SE

o

a1

388 Journal of Robotic Systems—1985

2. How to allow for sensor system reconfiguration, both as a means of providing
greater tolerance for sensing device failure, and to facilitate future incorporation
of additional sensing devices.

In this article. we propose a solution to the crucial problem: How to control the sensors.

The purpose of the logical sensor specification is to permit an implementation
independent description of the required data and the nature (type) of that data. In
addition, alternative ways of producing the same output can be defined. This makes
it possible to recover if some sensor fails. One can also choose an alternative based
on higher level considerations (e.g., speed. resolution, etc.). Thus, a use for logical
sensors is evident in any sensor system which is composed of several sensors, where
sensor reconfiguration is desired, and/or where the sensors must be actively controlled.
The principal motivations for logical sensor specification are the emergence of sig-
nificant multi-sensor systems, the benefits of data abstraction, and the availability of
smart Sensors.

Logical sensors are then a means by which to insulate the user from the peculiarities
of input devices, which in this case are (generally) physical sensors. Thus, for example,
a sensor system could be designed to deal with camera input, without regard to the
kind of camera being used. However, in addition to providing insulation from the
peculiarities of physical devices, logical sensor specification is also a means to create
and package “virtual” physical sensors. For example, the kind of data produced by a
physical laser range finder sensor could also be produced by two cameras and a stereo
program. This similiarity of output result is more important to the user than the fact

that the information may be obtained by using one physical device, or by using two

physical devices and a program. Logical sensor specification allows the user to ignore
such differences of how output is produced, and treat equivalent means of obtaining
data as logically the same. .

A related research effort is the programming environment (called the Graphical
Image Processing Language) under development as part of the IPON project (an
advanced architecture for image processing) at the University of Pennsylvania.? In
that system a graphics CRT will be used to interactively program an image analysis
sequence. An operator will be able to use symbolic representations for common func-
tions to configure particular applications. The GIPL system will produce technology
independent process definitions and executable process modules. A separate system
then will map these onto the physical architecture. Thus, the GIPL system is very
similar in spirit to the logical sensor system described here.

Il. LOGICAL SENSOR SPECIFICATION

A logical sensor comprises four parts: a logical sensor name, a characteristic output
vector, alternate subnets, each of which is made up of a set of input sources and a
computation unit over the input sources, and finally, a selector whose inputs are
alternate subnets and an acceptance test name. The role of the selector is to detect
failure of an alternate and switch to a different alternate. If switching cannot be done,
the selector reports failure of the logical sensor.

Hendersor

(‘

A logic
themselv e
of data fro
Figure 1 ;
sub~ " acc
the, .nd
characteris
It shoul«
these corr
one path t
declared b
Logical
actually ol
essary to tr
source coc
that source
language r
language +
specificatic

Figure 1.

35

18
mn

ut

re

(&

Henderson, Hansen, and Bhanu: Distributed Sensing and Control 389

A logical sensor can be viewed as a network composed of subnetworks which are
themselves logical sensors. Communication within a network is controlled via the flow
of data from one subnetwork to another. Hence, such networks are data flow networks.
Figure 1 gives a pictorial presentation of this notion. The program of an alternate
subnet accepts input from the source logical sensors, performs some computation on
them, and returns as output a set (stream) of vectors of the type defined by the
characteristic output vector.

It should be noted that there may be alternate input paths to a particular sensor, and
these correspond to the alternate subnets. But even though there may be more than
one path through which a logical sensor produces data, the ouput will be of the type
declared by the logical sensor’s characteristic output vector.

Logical sensor specifications are stored as s-expressions, the database. In order to
actually obtain an executable system from the logical sensor specification, it is nec-
essary to translate the database expressions into some executable form, e.g., to produce
source code for some target language, and then either interpret or compile and run
that source. We currently have two implementations of the logical sensor specification
language running: a C version (called C-LSS) running under UNIX, and a functional

language version (called FUN-LSS). C-LSS produces a UNIX shell script from the
specification.

X Characteristic Output Vector
Logical
Sensor Name
Selector
Program 1 Program n

Logical Sensor

Logical Sensor
Inputs

inputs

Figure 1. Graphical view of a logical sensor.

VIR S 0 peamese

-
-

L T TN IR ST < CRE EEa

390 Journal of Robotic Systems—1985

lil. SPECIFICATION OF CONTROL IN LOGICAL SENSORS

The logical sensor specification system described so far provides a reasonable meth-
odology for the specification of sensing systems. In this paper, we extend the scope
of logical sensors to a form operationally and methodologically more appropriate for
distributed sensing and control. Our specific accomplishments include:

1. The development of a methodology for the specification of distributed sensing
and control. In particular, one based on a reasonably well understood underlying
computational model, e.g., datafiow.

2. The development of an operational environment for computing with respect to
the methodology.

The successful implementation of such a methodology provides a very significant and
fundamental tool for the specification of distributed sensing and control systems.
Moreover, we believe that our approach permits an effective conceptual decomposition
of the problem into manageable units.

LSS provides a design methodology for sensor systems. We have seen that such a
methodology is necessary due to the emergence of multi-sensor systems of great
complexity. Moreover, many systems require that the sensors be widely distributed
both physically and computationally. It may also be necessary to define a hierarchical
relationship between the sensors and/or the algorithms applied to them. For example,
a dextrous hand is made up of several fingers each of which is composed of several
phalanges requiring position and tactile sensors. LSS exploits many well-known soft-
ware design principles including abstraction, modularity, and separates implementation
from specification. Finally, these features permit the dynamic reconfiguration of sensing
resources for either fault tolerance or for a sort of adaptive sensing in response to the
situation.

In order to solve most recognition and manipulation problems, however, it is nec-
essary to be able to reposition sensors (e.g., aim cameras) and adapt rapidly to changing
conditions. (E.g., if an object is slipping from the grasp of a robot hand, perhaps more
force should be applied.) Thus, in addition to a stream of sensed data flowing from
physical sensors on up through some hierarchy of logical sensors, there may also be
a stream of control commands (or signals) flowing in the reverse direction. We therefore
propose that the logical sensor schema be modified as shown in Figure 2.

Each logical sensor now has a program to interpret the control commands coming
from a level up in the hierarchy and to send commands down to logical sensors lower
in the hierarchy. Moreover. the select function now plays a more sophisticated role
in the logical sensor. Namely. the select function monitors both the sensor data going
up and the command stream to be issued. Given the command (or commands) to be
executed and the sensor data being produced locally. the select function is able to
short circuit the path back to the root logical sensor and to modify the commands to
be issued. Such a function may be viewed as a micro-expert system which knows all
about the interface represented by the logical sensor in which it is located. Thus, a
logical sensor acquires some of its meaning now not simply as a sensor/algorithm
combination, but also as an interface between two layers of sensing and analysis.

Another requirement on the logical sensor is that it now also acts as a “logical

Henderson, F

()

Figure 2. Lc

controller.” I
commands b
depend on w
exampls -up
range \. r:
from a given
camera and 2
region must t
Viewed in
knowledge re
transfer and
network. Fin:
of the specific
properties are
For exampi
comprise the :
robot hand. 1
high level cor
level right on
the configurat

pe
or

ng
ng

to

nd
1s.
on

1a
eat
ted
cal
le,
:ral
Sft-
ion
ing
the

iec-
'ing
1ore

) be
fore

ing
wer
role
sing
> be
e to
Is to
s all
s, a
ithm

zical

-

Henderson, Hansen, and Bhanu: Distributed Sensing and Control 391

Control Commands

Logical
Sensor Name y
Selector
Control
Command
interpreter
Program 1 N Program n
Logical Sensor Logical S (o] ds to
inputs Inputs Logical Sensors

Figure 2. Logical sensor specification with control.

controller.” If the control command received at a particular sensor requires that control
commands be sent to the source input logical sensors, then those commands will
depend on which alternate subnet is currently selected by the selector function. For
example. suppose range data can be obtained from a stereo camera system, a laser
range finder system, or a robot hand with tactile sensing. Then to obtain range data
from a given region in space requires aiming and focusing two cameras, or aiming a
camera and a laser. or positioning a robot arm. The high level command to scan a
region must then be broken down into the appropriate lower level commands.

Viewed in this way. it is possible that the selector function can learn some of the
knowledge required to successfully administer its task. Also, it becomes possible to
transfer and coordinate logical sensors at the same relative level and position in a
network. Finally, it is possible for some very high level system (which has knowledge
of the specification of a given selector) to modify the selector. We believe that these
properties are crucial for successful sensor system schemes.

For example, consider Figure 3. Shown here are some of the logical sensors which
comprise the specification of a sensor and control scheme for the UTAH/MIT dextrous
robot hand. The robot hand has four fingers each with 4 degrees of freedom.® The
high level commands for hand control are interpreted as a set of commands to a lower-

level right on down to the control of the joint positions of each finger which define
the configuration of the robot hand.

392

Journal of Robotic Systems—1985

Curt

Sensing Control Hand Sensor

Abduct

Sensing Control Finger Sensor

Joint Angles

Figure 3. Part of a robot hand specification.

The hierarchical robot control system described by Albus* is a precursor to the

scheme proposed here. However, the two differ in several ways:

® Dataflow networks define the organizational hierarchy of logical sensors.

| sensor combines the features of the sensory processing, world model,
and task decomposition modules of the computational hierarchy of Albus.

® Logical sensors permit dynamic reconfiguration due to either high-level reasons
(an alternate subnetwork is chosen due to some relevant feature, e.g., its speed)
or report of failure from some lower-level sensor.

® Any language can be chosen to define the control interface between two logical

$ensors.
e Some form of production system is used to select the control activity as well as

the alternate subnetwork.

® Each logica

Thus, Albus’ system can be specified using a restricted logical sensor system with

control.

Henders

IV.AD

With
analysis
t(‘cr
give the
position
capabilit
definitio

The tc
vector cc
The only
logical s:
a red ob;
enough r

The re
area of ¢

Figure 4.

-1985

r td mne

3.

1 model,
us.

. reasons
s speed)

o logical

s well as

tem with

Henderson, Hansen, and Bhanu: Distributed Sensing and Control 393

IV. A DETAILED EXAMPLE

With logical sensor specifications
analysis functions (e.g., edge detect
to describe logical sensors for very
give the complete description of a 1

» it is possible to develop either general image
ors, texture analyzers, etc.) as logical sensors or
specific objects or shapes. In this example, we

ogical sensor which, when invoked, returns the
position of a fire extinguisher in a room. Any firefighting robot could use such a

capability. Figure 4 gives a graphical version of the logical sensors involved in the
definition of the “fire extinguisher finder” logical sensor.

The top level logical sensor, “fire extinguisher finder,” returns a characteristic output
vector comprised of the direction of the camera and the centroid of the fire extinguisher.
The only control parameter for this logical sensor is the direction of the camera. This
logical sensor produces its result by processing the output of two other logical sensors:
a red object detector, and a feature detector. A fire extinguisher is assumed present if
enough red blobs are adjacent to a feature.

The red object detector, “red,” has a characteristic output vector of the centroid and
area of any reasonably large red object. The control parameters consist of a camera

Fire (xyd direction
Extinguisher
Finder

tet ¢
tet p

direction direction
(xy p) threshold ——— (xy area)
Red

min area

Feature

IGG_E
red p

direction direction
(xyL) tilter xyt) tilter
Camera Camera

cam ct cam c1
cam pt cam p1

Figure 4. Logical sensor network for the fire extinguisher finder.

\

e G

394 Journail of Robotic Systems—1985 Henderson.

Table I. Ou

S e——

X mean

279/

267
278

Table II. ©

X mean

l

281
269
269

Figure 5. Camera output to “feature.” 93
93

direction an.
“feature,” ac
(or bands) o
that it is a t
camera and
Finally, b
from “camer
camera and
a red filter. -
Figrr Ss
6sho_ ai
o The output
i “feature” arc
Figure 6. Camera output to “red.” finder” is gi
i in Figure 7.
(fire extinguisher finder ((fef_p fef_c (red featpre))) to feature 2.
(x 0..511 y0..479 direction 0..360 likelihood 0.0..100.0)) no fire exting

for a logical

5 (feature ((fe_p fe_c (camera)))
v (x 0..511 y0..479 likelihood 0.0..100.0))

(red ((red_p red_c (camera)))
(x 0..511 y0..479 area integer)) Table III. C

(camera ((cam_pl cam_cl ())) X mean

(x 0..512 y0..480 intensity 0..255))

269

l

Figure 7. The s-expressions for the logical sensors.

1985 Henderson. Hansen, and Bhanu: Distributed Sensing and Control 395

Table I. Output vectors from “red.”

X mean y mean Area

Control Parameters
279 199 218 direction: 15°
267 206 59 min arca: 30 pixels
278 240 34

Table II. Output vectors from “feature.”

X mean v mean likelihood Control Parameters
281 187 95.8% direction: 15°
269 213 98.8% likelihood: 94.3%
269 220 94.3%

93 432 94.7%
93 443 94.3%

direction and a threshold for the minimal size of the object. The feature detector,
“feature,” actually is a general purpose logical sensor which detects horizontal lines
(or bands) of a certain breadth. It returns the centroid of the band and the likelihood
that it is a band of the right kind. It takes as control parameters a direction for the
camera and a threshold for the minimum acceptable likelihood.

Finally, both “red” and “feature” use a logical sensor called “camera.” The result
from “camera™ is a 2D image, while the control parameters are direction to aim the
camera and a filter color to use (red. blue, green. and none). “Red™ always requires
a red filter, while “feature™ requests none.

Figure 5 shows an image from “camera” which was returned to “feature™ and Figure
6 shows an image from “camera” (in the same direction) which was returned to “red.”
The output vectors from “red” are given in Table I, and the output vectors from
“feature” are given in Table II. Finally. the output vector from “fire extinguisher
finder” is given in Table I1I. The s-expressions for all these logical sensors are given
in Figure 7. A fire extinguisher is detected since the three red blobs are all adjacent
to feature 2. and this constitutes enough evidence. On other images of the room where

no fire extinguisher was present. none was detected by the logical sensor. The template
for a logical sensor s-expression is:

Table III. Output vectors from “fire extinguisher finder.”

X mean y mean Direction Control Parameter:

269

213 15°

direction: 15°

396 Journal of Robotic Systems—1985

(logical sensor name ((computation—unit control—unit (input sources))) (charac-
teristic output vector)),

where the characteristic output vector is a sequence of variable/type pairs.

V. CONCLUSIONS AND FUTURE RESEARCH

We have presented a framework for the specification of sensing and control systems.
Moreover, the methodology lends itself nicely to distributed processing. The method
permits the specification of fault tolerance (both software and hardware) and dynamic
reconfiguration of the sensing system. The incorporation of control now permits closed
loop operation and adaptation to changing conditions. :

We are currently exploring several aspects of LSS. In the present version of LSS,
we treat the control interface as a separate function of the logical sensor. Each control
command interpreter is designed using standard parser tools (e.g., lex and yacc under
UNIX). We must determine the relation between the type language and the physical
nature of the control at a given level in the hierarchy.

We must also determine the exact role and content of the select function. How
should its local expertise be represented? (Another interesting side problem is how
learning can be achieved.) The major problem is to give only the select function
knowledge relevant to its interface. Much of the work has been done. however, in
that the select function depends directly on: (1) the sensed data coming in from the
alternate subnetwork currently selected, (2) the result of the acceptance test. and (3)
the commands being interpreted by the control part of the logical sensor.

Finally, we must apply the methodology to some interesting and hard problems. In
particular, we intend to develop and test a specification for the UTAH/MIT Dextrous
Hand. This will also give us a chance to try out the method on a distributed multi-
processor system as the Hand is controlled by four (ultimately six) M68000s. We will
develop the controllers bottom-up, starting with the finger controllers. These will then
be integrated with a hand controller, and finally, this will be integrated with an arm
controller. The construction of the Hand is already complete, and tactile sensors are
currently being installed. We will first develop the logical sensors for the Hand off-
line, then try it out as the hardware is available.

References _ :
1. T.C.Henderson and E. Shilcrat. “Logical Sensor Systems.” J. Robotic Syst.. 1(2), 169-193
(1984).

2. R. Bajscy. GRASP:NEWS Quarterly Progress Report, Technical Report Vol. 2, No. 2,
The University of Pennsylvania, School of Engineering and Applied Science. 2nd quarter,
1984.

3. S. Jacobsen, D. F. Knutti. K. Biggers. E. K. Iverson, and J. E. Wood, “An Electropneu-
matic Actuation System for the Utah/MIT Dextrous Hand.” in Proceedings of the Fifth
CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators. Udine,
Italy, June, 1984. .

4. J. Albus, Brains. Behavior and Robotics. BYTE Books. Peterborough, New Hampshire,
1981.

N

-~ Imprc
Accui

S. FC i

Jet Propul.
California :

M. Mirmirz
California ¢

The absolute i
the nominal |
estimate the |
bination of rey
model which. -
measurements
ORy bvzty
Releir ¢35,
—20Y o5
DRBAE L :
SOMBEMEC

INTR%’“JC'
One\.. e
locations in t;
tioning accur:
and absolute.
positions duri:
for any point
robot manufa
absolute posit
issued a target
to: a reference
improve the ai
this technique
calibration cot

Journal of Rob
© 1985 by Jot

