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provided excellent programming supporl and many ideas. In
addition, D. McKeown, §. Shafer, and D. Smith have provided
usefu) comments and criticism.
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Representation and Shape Matching of 3-D Objects
BIR BHANU

Abstract—A three-dimensional scene analysis system for the shape
matching of real world 3-D objects is presented. Various issues related
to representation and modeling of 3-D objects are addressed. A new
method for the approximation of 3-D objects by a set of planar faces is
discussed. The major advantage of this method is that it is applicable
to a complete object and not restricted to single range view which was
the limitation of the previous work in 3-D scene analysis. The method
is a sequential region growing algorithm. It is not applied to range images,
but rather to a set of 3-D points. The 3-D model of an object is cbtained
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by combining the object points from a sequence of range data images
corresponding to various views of the object, applying the necessary
transformations and then approximating the surface by polygons. A
stochastic Jabeling technique is used to do the shape matching of 3-D
objects, The technique matches the faces of an unknown view against
the faces of the model. It explicitly maximizes a criterion function
based on the ambiguity and inconsistency of classification. It is hier-
archical and uses results obtained at low levels to spced up and improve
the accuracy of results at higher levels. The objective here is to mztch
the individual views of the object taken from any vantage point. Details
of the algorithm are presented and the results are shown on several un-
known views of a complicated autemobile casting. The resuits of par-
tial shape recognition are used to determine the orientation of the
object in 3-D space. :

Index Terms-Face matching, hierarchical relaxation, optimization,
planar approximation, range data analysis, region growing, stochastic
labeling, surface representation, 3-D object modeling, 3-D scene analysis,
3-D shape matching.

I. INTRODUCTION

In the development of robots with vision capability, repre-
seftation, and shape recognition of 3-D objects are of crucial
importance. It is well known that the recognition of even
simplé objects is not easy, if the object is allowed to rotate and
have arbitrary view in 3-D space. Recognition of real objects
is required in the process of automatic selection, inspection,
manipulation, and assembly of industrial parts, for example,
parts going over a conveyor belt, picking the parts from a bin,
automation of assembly line operations, etc. Motivated by
such practical applications, in this paper we consider the rep-
resentation, modeling and shape matching aspects of 3-D
scene analysis. Our interest is to match individual views of a
3.D object (taken from any arbitrary viewing angle) against
the 3-D model. A method based on a laser triangulation to
acquire 3-D data will be described. The problems related with
3-D data acquisition and geometric processing will be addressed.
A technique for representing a 3-D object by a set of planar
convex faces will be presented. These faces are determined by

-sequentially choosing three very close noncollinear points and
investigating the set of points lying in the plane of these points.
Two simple tests, one for convexity and the other for narrow-
ness ensure that the set of points is an object face. This set of
points is approximated by polygons. The method is used to
generate a 3-D modél of an object by combining the object
points from a sequence of range images. A hierarchical sto-
chastic labeling technique is used for shape matching. The
technique explicitly maximizes a criterion function based on
the ambiguity and inconsistency of classification. We have used
a similar technique to solve the *segment matching” problem
in two dimensions [1], [2]. Here we extend this technique to
solve the “face matching” problem, which is defined as the
recognition of a partial 3-D shape as an approximate match to
a part of a larger 3-D shape. The results of matching are used
to determine the orientation of the object in three-space. Ex-
amples are presented using a complex avtomobile part.

Il. THREE-DIMENSIONAL SCENE ANALYSIS SYSTEM
AND DATA ACQUISITION

Fig. 1 shows the schematic diagram of the 3-D scene analysis
system implemented in this work. First we acquire 3-D data
using a laser ranging system shown in Fig. 2. The acquisition
system is based on the principle of active stereoscopy. A laser
emits a beam of ruby red light which is reflected by a mirror
which rotates and sweeps the beam along the x-axis to produce
one scan line. The beam is reflected from the object, and the
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tig. 1. The schematic diagram of 3-D scene analysis system.

bonk of detectors

Fig. 2. Laser ranging system.

z-distance is calculated from the location of the maximum re-
sponse in each bank of detectors. The platform on which the
object rests can be raised or lowered (this is the y-axis) and can
also be rotated (around the y-axis). The sampling distances
used here are 3.0 mm in the x-axis, 2.0 mm in the y-axis, and
an accuracy of 0.5 mm in the z-distance is achieved. Objécts
of sizes up to 750 X 750 X 600 mm can be digitized using this
system. Further detalls about the 3-D sensor can be found in
£3].

The data so obtained are in the observer centered coordinate
system (the one in which the observer or camera receives the
image). While creating a 3-D model of the object, object cen-
tered representation (a system centered about the object which
allows all points on the surface of the object to be referred
with respect to this system) is required. This is computed by
marking the zero position for x- and y-axis and obtaining a ref-
erence value for z-axis on the platform in Fig. 2. The actual
position or orientation of the object on the platform does not
matter when acquiring the data related to an unknown view of
an object. As an example Fig. 3 shows a complicated casting
of an automobile piece.” Notice that this object does not con-
tain any major horizontal or vertical surface. Inorder to create
a 3-D model of the object, a range data image was produced
for every 30° rotation of the object around the y-axis in the

Xx-z plane, Finally, top and bottom views of the object were
taken. These two views were put in correspondence with the
other views by having three control pomts in each of these
views which were also visible in the 0° view (requiring six con-
trol points in the 0° vxew) of the object and computing the
transformations, The 14 views obtained using the range data
acquisition system are shown as gray scale images in Fig. 4.
In this figure the lighter points are farther away from the ob-
server and the darker ones are closer. After thresholding the
background points, each individual view shown m Fig. 4 had
approxlmately 2000 points except for the 90° and 270°
views which had about 900 points, The surface points for the
complete object were obtamed by following in sequence the
views starting from the 30° view and ending with the top view
and computing the distance between the transformed point
and the points which are already in the list (in the beginning
just the 0° view points). If the minimum difference is less
than a certain threshold related to the sampling distance, we
discéard this point; otherwise the point is added to the list. For
the sampling distances as mentioned above, using a distance
threshold of 3.87 mm, the complete object has 8314 points
which are stored as a list. From the set of 3-D points we obtain
a higher level representation of surface and finally the unknown

Fig. 3. Automobile piece analyzed.

scene is matched against the model to obtain the description
of the scene.

HI. REFRESENTATION AND MODELING OF 3-D OBJECTS

Representation: A direct model of a 3-D object asa 3-D array
can easily exhaust the memory capacity of a system (for ex-
ample a 3-D array of size 128 will requu‘e 128% =2 097 152
bits of memory). Moreover, this array is sparse. Therefore, we
are interested in a suitable representation, not for storage pur-
poses only, but for recognition and description as well. Rep-
resentation of a 3-D object by means of oct-trees may make
space array -(triply subscripted binary array) operations more
economical in terms of memory space [4].

A simple approach to analyzing 3-D objects is to model them
as polyhedra. This requires a description of the object in terms
of vertices, edges, and faces. Modeling 3-D objects in this man-
ner results in substantial compression of the data, In orderto
handle curved and more complex objects, other representations
and models have been investigated [5]~[7]. Binford [5] pro-
posed the concept of a generalized cylinder (or cone) to repre-
sent curved 3-D objects. These are defined by a 3-D space curve,
known as the axis, and cross section of arbitrary shapes and
sizes along the axis. There are an infinite number of possible
generalized cones representing a single object. More constraints
are needed to get a unique description. Although generalized
cones or volume representations imply some surface descrip-
tion, they fail to describe the junctions or surface peculiarities
[8]. Also one detects surfaces first from partial views, and only
after several different views of the object we have enough data
to obtain volume properties. Hence the need to find a suitable
surface representation, It is possible to represent arbitrary
shapes with generalized cones by making them arbitrarily com-
plex, but their computation is difficult. The generalized cone
primitives wsed in {6] are not sufficient to represent the com-
plicated casting, as has been used in this work. Badler and
Bajesy [7) present a good discussion of the relative merits of
surface and volume representation.

Methods for segmentation of range data can be classified as

“region” or “edge” based just as in the segmentation of inten-

sity images. Many researchers adopted a method which is most

suitable for the input device. For example, Duda er al. [9]
describe a sequential procedure for determining planar surfaces
in a scene from registered range and intensity data. The ver-
tical and horizontal surfaces are obtained directly from the
range image by a histogram analysis. Slanted surfaces are as-
sumed to have constant intensity and are obtained from the
reflectance image. Milgram and Bjorklund [10] find planar
surfaces in a range image by fitting a least squares plane in the
small neighborhood of each pixel. Underwood and Coates
[11] describe a system for inferring 3-D surface description for
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Fig. 4. The 14 range data views of the automobile piece shown as gray scale images. The lighter points are away from the
observer and the darker ones are closer.

planar convex objects from a sequence of reflectance images,
but the faces are determined from edge information. Ishii and
Nagata [12] obtained the contour of an object by controlling
a laser spot. Agin [13] fitted quadratic curves to the images
of sheets of a laser beam. Shirai [14] and co-workers have
used region and edge based methods to represent polyhedrons
and simple curved objects. Popplestone et al. [15] dealt with
polyhedrons and cylinders, Inokichi and Nevatiz [16] and
Zucker and Hummel [17] presented techniques for obtaining
surface edges. The drawback of these techniques is that the
edge responses must be grouped, thinned, and linked in order
to produce a reasonable object description in termsof coherent
regions, On the other hand, once the line segments are found,
the theory of 3-D line semantics can be directly applied. It is
possible to extract planar surfaces from single view range data
.images by extending the iterative endpoint fit method from
‘two dimensions to three [1], [18]). This may work well since
the range z can be considered as a function of two spatial co-
ordinates x and y. All the above past technigues except [18]
use one range image only. Combining results from several views
is a2 major problem.

Qur approach to the analysis of a 3-D range data image is to
first extract the relevant 3-D object as sets of 3-D points and
then work directly on these sets without regard to the original
image, This approach frees one from a particular image when

a complete description (3-D model) of the surface of a 3-D ob-
ject is desired, To obtain a 3-D model of the object, a repre-
sentation should be complete, that is, it should sample the en-
tire surface of the object, and allow for matching of individual
views taken from any arb1trary viewing angle. An object is
thus defined by 2 finite number of selected points in three-
space. However, only the geometrical position of each point is
known; no topological information is available.

Mode[ing: Representation and models are” intimately con-
nected. Since most of the work in scene analysis has been the
interpretation of a 2-D intensity image as a 3-D scene, 2-D
models have beer commonly used in the analysis with con-
straints on the configuration of 3-D objects by making use of
the a priori information about the objects. Such an approach
has some inherent probléms in that the image of a 3-D object
changes with the perspective, it is sensitive to shadows, time of

- day, weather conditions, and specularity; when several objects

occlude each other only parts of some objects are visible in the
image and the occluding objects need to be separated from each
'other. The direct measurement of range simplifies many of
these problems considerably.

McKee and Aggarwal [19] recognize partial views of 3-D
curved objects like cup or hammer by matching the edge descrip-
tion with the stored model. Their method requires good input
of the surface boundaries. Chien and Chang [20] take asinput
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Fig. 5. Two step process to approximate surface by polygons.

a list of vertices in the 2-D line drawing of a 3-D scene of curved
objects. The curved edges of a body are represented piecewise
linearly and the curved surfaces are represented as a list of
vertices with various restrictions. Recognition is accomplished
by a model in the form of a tree. Fischler and Elschlager {21]
decompose a human face into subparts and construct the
model with intensity arrays of subparts; and their configura-
tion. Recognition is performed by matching an input picture
to the intensity arrays placed at thé best position. Model of
subparts can be easily generated, but the matching is sensitive
to the scale and shading. Perkins [22] uses 2-I) models to
recognize nonoverlapping industrial parts on a flat surface.
These models can handle some occlusion, but oblique viewing
angle problem requires 3-D models.

A tradeoff-is involved between representatson and modchng
2-D models make the representation easier at the expense of 2
complex modeling task. 3-D models are rhore general, but the
representation must take care of mapping it to view-domain,
They are very powerful for 3-D shape analysis. Horn [23}
uses powerful 3-D surface models of terrains for registration of
aerial images. Hierarchical models which involve hoth 2-D and
3-D models have been used [24]. In this work we generate a
3-D model of the object in terms of planar faces approximated
by polygons, The control structure used in shape matching is
hierarchical and described in the next section.

Algorithm for Surface Approximation by Polygons: Repre-
senting a 3-D object as a set of planar faces approximated by
polygons is a two-step process (Fig. 5). In the first step we find
the set of points that belong to various faces of the object using
a three point seed algorithm [1], [25} and in the second step,
approximate the face points obtained in step 1 by polygons.

The three-point seed method for the extraction of planar
faces from range data is a model fitting method. Ii can be viewed
as a special case of the Random Sample Consensus {(RANSAC)
paradigm [26]. It is a sequential region growing algorithm. It

© 15 not apphed directly to range images, but rather to a set of

points. It is not restricted to single view range data image, but
applicable to a complete object and does not require the order-
ing of points. It finds the convex faces of the object, but the
information exists to merge convex parts of nonconvex faces.
Although the algorithm is applied to a set of 3-D points, it is
not directly related to how these points are obtained. The
method is ultimately tied to the sampling distance between
points on the object.

The 3-Point Seed Method: In a wellsampled 3-D object, any
three points lying within the sampling distance of each other
(called a 3-point seed) form a plane (called the seed plane)
which: a) coincides with that of the object face containing the
points, or b) cuts any object face containing any of the three
points. A seed plane satisfying a) results in a plane from which
a face should be extracted, while a seed plane satisfying b)
should be rejected. Two simple conditions thet suffice to de-
termine if a plane falls into category b} are: convexity and nar-
rowness. For a given set of points 8, the convexity condition
requires that for any two points x and y of §, the midpoint of
the straight line segment from x to y also lies in S [27]. The
characteristic of the set of points obtained after applying the
convexity condition is such that when b) occurs, its points all
lie essentially on the line passing through two most distant
points in the set. Narrowness condition makes a check to de-
termine if it does not happen. The algorithm involves the fol-
Yowing steps {11, [25].

1) Fiom the list of surface points select three points which
are noncollinear and near relative to sampling distances.

2) Obtain the equation of the plane passing through the three
points chosen in step 1.

3) Find the set of points P which are very close to this plane.

4) Apply the convexity condition to the set P to obtain a
reduced convex set P'. This separates faces lying in the
same plane.

5) Check the set P’ obtained in step 4 for narrowness,

6) If the face is obtained correctly (i.e., convexity and nar-
rowness conditions are satisfied), remove the set of points
belonging to this face from the list and proceed to step |
with the reduced number of points in the list.

After the surface points belonging to a face have been ob-
tained, all the points which have been previously associated
with various faces are checked for the possible inclusion in the
present face, ~This provides the points which belong to more
than one face. Thisinformation in turn provides the knowledge
about the neighbors of a face and relations among them. The
method is applied in stages; the largest faces (in terms of the
number of points in the face) are found first, then smaller faces
on down to some minimum size. The application of the
method in stages is necessary in order to limit the fragmenta-
tion of large faces near their extremes. The method requires
four thresholds: seed point selection threshold, point to plane

" threshold, convexity threshold, and narrowness threshold.

These thresholds are tied to the sampling distances. The peculi-
arities of the object to be modeled can be accounted for by
the proper choice of these thresholds and the tradeoff involved
between the number of faces and the quality of representation
can be balanced. After the surface points have been associated
with various planar faces some edge points and vertices will be
known, however, an independent step is required to obtain

_polygonal faces. The polygonal approximation of a face is

obtained by finding the (x, y, z) coordinates of the boundary
points of the face and detecting the points of high curvature
{27].

The overall complexity of the 3-point seed aIgonthm is O(n?
iog n). Considering isotropic neighborhood of 26 points in
3-D, there are O(n) 3-point seeds. (Note that in a plane cach
object point can be grouped in 12 ways with its 8 nearest neigh-
bors to produce a seed.) Since in practice the complexity is
more dependent on the number of faces than the number of
points and the points which have been associated with a face
are no longer considered except for finding the points common
in different faces, the number of 3-point seeds considered is of
the order of number of faces. For each 3-point seed considered,
the largest cost is in the convexity test. A straightforward im-
plementation of this test as described in the above isof or?).
However, it can be simplified by using a k-d tree [28]). (A kd
tree structure will also aid in the selection of 3-point seed.)

A k<« tree is a binary tree of k-dimensional keys (here k = 3)

which is organized such that at each subdivision step, the data
are split at the median along the axis having greatest spread in
vector element values along that axis. The data can be organized
in a tree structure in O(n log #) time and it allows the deter-
mination of m-nearest neighbors of a given query in O(log n).
Using this tree convexity test can be performed in On* logn).
This is because for each point in the convex set {in the begin-
ning just the 3-point seed), we have to find midpoint of each
of the points in the test set and check if there is a point in the
convex set whichi is near to the midpoint. Since the number of
3-point seeds is proportional to the number of faces, the total
complexity of the 3-point seed method is O(n? log n)

An alternate approach to finding planar faces could be a
“clustering” type approach [1] which may involve the follow-
ing steps. 1) Find the reasonable planes. 2) Select the individual
faces using connectivity. 3) Consider left over and boundary
points etc. This approach has the advantage in that all the faces
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Fig. 6. Faces found in the view shown in Fig. 4(a). There are 22 faces
in this view and they are labeled in the order they are found using the
algorithm described. The rejected points and the points common to

two or more faces are shown in brown and white color, respectively.

TABLE |

LisT OF FACES 1N THE (° ViEw[Fi0. 4(2)]. 11,12, AND T3 ARETHE INDEXES,

IN THE LIST OF POINTS FOR THIS VIEW, WHICH MAKE UP A FaCE

Fig. 7. Faces found in the 90 view [Fig. 4(d}]. There are 14 facesin
this view and they are labeled in the order they are found using the
algorithm described. The rejected points and the points common to
two or more faces are shown in brown and white color, respectively.

TABLE 11
LiST oF FACES IN THE 90° VIEw [FiG. 4(d)]. 71, J2, AND I3 ARE THE

FACE IS 12 13 No. of Points INDEXES, IN THE LIST OF POINTS FOR THIS Vigw, wHICE MAKE Up A FACE
FACE 11 12 13 No. of Points
1 2 3 1 103
2 6% 89 90 8% - -
3 140 151 170 176 1 1 3 14 8z
8 565 625 626 93 2 132 855 A6 88
5 573 574 6334 an 3 §T4 695 718 11
6 T97T 798 856 84 y 153 159 177 60
ki 904 960 961 105 5 284 303 32% 62
& 782 839 897 64 6 54 61 15 - 72
9 816 817 875 70 T 385 366 408 B3
1¢ 1310 1350 1391 83 8 734 767 758 13
11 1718 1719 1751 67 9 152 153 17¢ 38
12 328 329 367 52 1¢ 227 228 284 B2
13 338 376 371 60 11 216 317 3318 28
14 597 657 E58 43 12 .3 399 400 32
15 1139 1193 120 50 13 531 555 576 37
16 o172 1758 1759 kg 14 818 819 8as 58
17 38 kg 50 35 .
18 83 11 105 30
19 1165 1168 1213 23
20 14309 1843 1043 36 . ‘
21 1589 1590 1621 24 P : : . :
22 1766 167 1799 31 Similarly, Fig. 7 shows the faces obtained in the 90" view and

{convex or nonconvex) are found at the same time. However,
the connectivity used in step 2) will require an ordering of
points and if the object does not contain major horizontal or
vertical surfaces, step 1) based on Hough transform or obtain-
ing the histogram of z distance or some other local features
may be quite expensive.

Surface Approximation Results: The 3-point seed method
was applied to the 14 individual views shown in Fig. 4 and to
the complete object. Fig. 6 shows the faces found for 0° view.
In this figure various faces are shown in different colors. The
rejected points and the points common to two or more faces
(edge points) are shown in brown and white color, respectively.
They are lzbeled in the order they are found using the 3-point
seed algorithm. The points that could not make up a face
having at least 20 points were rejected. The area of rejected
points fall either on jump points resulting from large z-distance
change with correspondingly little x or y change, or they occur
in éxtremely uneven parts of the surface of the object. A re-
jected point lies inside some of the faces because it has been
missed in the process of data acquisition. Also some of the
rows have been shifted because of the continuous nature of
the data. Table I gives the properties of faces in the 0° view.

Table 1I lists the properties of these faces Table 11T shows the
neighbors of a face in the 0° and 90° views. These neighbors
are arranged in the descending order of the number of points
that they possess. Note that a face may have no neighbors,
because a face that could not possess more than a certain min-
imum number of points was rejected. Different faces have dif-
ferent numbers of neighbors. For example, face 1 in 0° view
has face 12 and face 17 as neighbors, and face 11 in 90° view
has no neighbors. The method was applied to the complete
object to get the 3-D model. In the model 85 faces were found.
The number of faces found, and their d:strlbutlon fits well with
the results from the md1v1dual views,

Iv. SHAPE MATCHING OF 3-D OBJECTS

In 3-D scene analysis we have a model for 3-D objects and a
method for matching unknown objects with the model, Mil-
gram and Bjorklund [10] mention preliminary efforts of 3-D
matching by using a guided search procedure. The number of
flat sutfaces in their study is usually smail. Fourier descriptors
and moments have been used for the recognition of 3-D shapes
[291-[31]. However, moments or Fourier descriptors are glo-
bal features and cannot solve the important class of problems
which require the partial recognition of the shape, because the
descriptors of the entire shape do not bear any simple relation-
ship with the descriptors of a part of a shape. Although Wallace
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TABLE I11
NEIGHBORS OF A FACE 1x 0° AND 90° VIEWS, THEY ARE ARRANGED N THE
DesCENDING ORDER BY SizE. {a) O° View [ Fig. 4(a)]. (b) 9* VIEW

[FiG. 4(d)).
i

FACE FACE
NUMBER FEIGHBORS NUMBER NEIGHBORS

1 12 17 o 1 3 g 0

2 3 13 18 2 T 13 )] .
3 2 9 0 3 W B 0 !
4 5 0 0 5 12 0 0 ;
5 a9 0 s 0 0 o ;
6 15 o0 ¢ 3 1 109 :
7 16 8 13 7 2 10 o

[ T 10 © 8 3 1% 0

9 3 5 o 9 1 & 10

10 T 8 21 10 6 7 9

" 16 21 ¢ L 9 9o 0

12 117 0 12 8 0 o

13 7T 2 8 13 2 o o

1k 19 0 ] 14 3 8 [

15 6§ 20 o0

1% 1 2z 21

17 112 o

18 2 13 0

19 AL} 0 ]

20 15 0 o

21 1w 11 1%

22 16 0 9

() (b)
- 1 st stage of 2 nd stage of
Face C;m;putmuon gradient gradient I -
Description ?eulgfees relaxation [ | relaxation
! Algorithm Algorithm :

Fig. 8. Block diagram of the 3-D shape matching algorithm.

P T TNNTE

et al. [29] consider shape analysis of 3-D objects using local
shape descriptors, their techniques need major modifications
inorder to handle the partial shape recognition prablem. Fur-
thermore like Dudani ef al. [31] these authors are not dealing
with the 3-D data, but rather with projections of a 3-D object.
Since the image of a 3-D object changes with the viewing angle,
they have a large library of three-dimensional projections cor-
responding to a single object. For example, Dudani et al. [31]
in the identification of six different aircraft use a training sam-
ple set of over 3000 projected images. Oshima and Shirai [32]
use range information for the recognition of blocks and simple
machine parts by matching the feature and relation based de-
scription of the scene with the stored model. The Hough trans-
form technique of Ballard and Sabbah [33] to detect the pres-
ence of a 3-D object is based on the fact that afl the planar
regions be adjacent to each other in the object representation.
However, in practice it may not be always feasible, For the
complex automobile part used here and the simple parts used
by Oshima and Shirai [32], there are faces which are not sur-
rounded by other faces. '

Representation and modeling are closely related and the con-
trol structures normally depend on the choice of representation.
Control structures are defined as the strategy of utilizing the
available knowledge to efficiently obtain the goal descriptions.
In 3-D scene analysis work bottom up, top down, and 2 mix-
ture of these two have been used [24]. The hierarchical con-
trol structure is a popular choice since it eliminates unnecessary
search during the recognition process. Qur approach for 3-D
shape matching uses planar faces as primitives and matches an
unknown view with the structural 3-D model. Since our rep-
resentation and modeling are based on the prominent actual
physical faces of the object, consistency of the segmentation
process is assured. This is of importance in shape matching.
The control structure of the 3-D shape matching algorithm is
hierarchical in the sense that at higher levels of hierarchy more

contextual information is used to accomplish the partial shape
matching task. '

Shape Matching Algorithm. Fig. 8 shows a block diagram of
the two stage hierarchical stochastic labeling technique for the
shape matching of 3-D objects. Shape matching is performed
by maiching the face description of an unknown view with the
stored model using the available contextual information. The
same set of descriptors is used for the description of both the
faces of the model and an unknown view.

LetT:(Ter'Z" $TN)andO=(01s021'.'s0L-—l)be
the face representation of an unknown view and the model re-
spectively, where T; and O; are planar faces,i=1,--*, N and
j=1,++-,L- 1, The elements of the unknown view will be re-
ferred to as units and elements of the model as classes. We
want to identify an unknown view within the model. We are
therefore, trying to label each of the faces of an unknown view
Ti i=1,--+, N} either as a face O; G=1, - 1) orasnot
belongmg to the model O (label OL = ml) Each face T of an
unknown view therefore has L possible labels.

To each of the units T;, we assign a probability p; (I), I =
1, -, L (using a technique described subsequentiy)} that the
unit belongs to class Ok This is’ convement represented as
a probablllty vector p;— [pg (1),+-+, p; (L] The set of all
vectors By (i=1,--+,N)iscalled a stochastlc labelmg of the set
of units. Umts are related to one another through their neigh-
bors. The set of units related to 7; is denoted by ¥;. Inorder
to compare the local structure of T and O, the world model is
specified by the compatibility functions €, and C,, wluch are
defined over a subset §; C(NX 1)? and S, S (N X L)} for
the first and second stage of the hierarchy, respectively. For
simplicity, we shall denote compatibility functions C, (T}, Ok,
7}': Ol)» Tf € Vl and C2 (Tf’ Ok: Ti| » 0“ ’ le » 0’2)' Til ’ Tl'2 €
Vias Cy (i, k,f,Dand Cy (i, k,iy, 1 ,i3,11), respectively. Cy
and C, take values between 0 and }, C; (T}, O, T}, Op) and

Cy (Ti, Ok, Tyy , Oty Tiys Op)) measure the resemblance of the
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set {T;, T;} with the set {Og, O}} and {T}, Ty, T;,} with the
set {Og, Oy, Oy, }, respectively. We also define a compatibil-
ity vector §; = [q; (1), "=, g; (L)] T for all the units at each of
the stages of hierarchy. Intuitively, this tells us what #; should
be given p; at the related units and the compatibility function.
Mathematically,

) Q(f) k)
g (k)= ————, j=L,2, k=1,L (N
L. .,
> ef? o
I=1
where, at the first stage,
(1) L o
Qi (k)= z z: Cl (I,k,],l)pf(l)
jeV; I=1
i=1,°N,
k=1L (2)
and at the second stage,
L
P wy= S GGk iy, iz, lDR ()P, ()
ll' 12=l
i=1,"-,N,
k=1,---,L and i1,i €V, (3)

As discusséd in [11, [2], two global criteria that measure the
consistency and ambiguity of the labeling over the set of units
are given by

, N .
SD= 3 g g, j=1,2. @
i=1

The maximization of (4) results in a reduced inconsistency and
ambigujty. Inconsistency is defined as the error between 7
and Eg’? ). Intuitively, this means the discrepancy between what
every unit “thinks” about its own labeling (5;) and what its
neighbors “think” about it (c}'?)). Ambiguity is measured by
the quadratic entropy and results from the fact that initial
labeling ﬁgo) is ambiguous (ﬁ§°) are not vectors). Note that
each term J, -é’}’) is maximum for p;= (}’,(’) (maximum
consistency) and §; = c}'f.’) = unit vector (maximum unambigu-
ity). The problem of labeling the units T; is equivalent to an
optimization problem: given an initial labelingﬁ',(o),i =1,-"-N,
find a local maximum of the criteria J) (=1, 2) closest to
the original labeling ﬁfo) subject to the constraints that ﬁi’s are
probability vectors. Since C, is a better measure than C, of
the local match between T and O, we are actually interested in
finding local maximum of the criterion J) On the other
hand, maximizing J*/ is easier from the computational stand-
point. We therefore use the following hierarchical approach:
starting with an initial labeling 5}0), we look for a local max-
imum 51 of the criterion J(!).  This labeling is less ambiguous
than 5}0) in the sense that many labels have been dropped
(their probabilities p;(k) are equal to zero). We then use the
Jabeling ;'J’E‘) as an initial labeling to find a local maximum of
the critetion J(2). The computational saving comes from the
fact that the values C; corresponding to probabilities p;, ({;)
or py, {1;) equal to zero are not computed. The problem of
maximizing (4) is efficiently solved using the gradient projec-
tion method [1].

Initial Assignment of Probabilities: The initial probabilities
are computed using the features of a face. The features set
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consists of area, perimeter, length of the maximum, minimum
and average radius vectors from the centroid of a face, number
of vertices in the polygonal approximation of the boundary of
a face, angle between the maximum and minimum radius vec-
tors, and ratio of areafperimeter? of a face. Let P be the number
of features used. W¢ measure the quality of correspondence
between the faces T; and O as

P
M(T, Ox)= 3 lftp_foplwp (5)

r=1
where

ftp = pth feature value for the face of an unknown view
fop = pth feature value for the face of the mode]
Wp = weight factor for the pth feature,

Weights of the features are used to account for their impor-
tance and range of values. The initial probabilities are chosen
proportional to 1/(1 + M (T;, Ox)) and normalized so that they
sum to 1.

Computation of Compatibilities: The compatibility function
determines the degree by which two or three neighboring units
are compatible with each other. At the first stage the compu-
tation of €y (i, k, j, !) involves binary relations and at the
second stage C, (i, k, iy ,1; i, 13) involves a subset of ternary
relations, The compatibility of a face of an unknown view
with a face in the model is obtained by finding transformations,
applying them and computing the error in feature values, At
the first stage, we find two transformations TR1 and TR2 such
that’

TR}I: T,—-*Ok and TR2: Ti"O;.

Now TR1 is applied to Tj giving matching error 4 (TRI(T,-),
Op) and TR2 is applied to 7; giving matching error M(TR2
(T;), Op), where matching error is given by

r
M(TR(Tp), 00)= 3 |fep - fop | Wp (6)

p=t

. where f,'p = pth feature value for the transformed unit, and
other guantities are similar to those defined in (5). Features
used in computing (6) are (x, y,z) centroid, area, crientation,
and rotation, :

The average of these two errors is obtained and

1

¢ ki
1 + average error

At the second stage instead of finding two transformations,
we find three transformations and the average error will be the
average of six error terms and the compatibility

1

Cl(isksil:llsIZ:IZ)'_' .
1 + average error

The transformations used in computing C, and C, are based
on:

1) scale, the ratio of area of two faces;

2) translation, difference in the centroidal coordinates of
the two faces;

3) orientation, difference in the orientation of two faces so
that they are in the same plane;

4) rotation, to obtain maximum area of intercept, once the
two faces are in the same plane; it is found with an ac-
curacy of 45°.

The problem of defining p; (nil), €, and C; when some of
the faces in the unknown view are matched to the nil class is
solved as follows [1]. p; (nil) is assigned a small constant value,
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TABLE IV
LABELS AT DIFFERENT I TERATIONS FOR THE FacEs Suown v FiG. 6.
ExAMPLE 1.
FACE FIRST STAGE SECOND STAGE
NUMBER ITERATION NUMBER ITERATION NUMBER
[i] 1 3 1 3 . 6
1 BE(.10) 86(.22) 1(.37) 1(.41) 1(1.0) 1(1.0)
2 B6{ .10} 86(.13) 20.19) 2(.28) 2{.48) 201.0)
3 3(.35) 3{.80) 3(t.0) 3(1.0) 3(1.0) 3(1.0)
L] 86(.10) 86(.22) 86(.29) 86(.33) 86(.36) 4(1.0)
5 86(.10)  86(.21) 5{.33) 5(.42) 5(.61) 5(1.0)
6 86(.10) 86(.24) 6(.36) 6(.46) 6(1.0) 6(1.0)
7 T(.11) 7{.62) 7(1.0) 7(1.0) 7(1.0) 7(1.0)
8 21(.19) 21{.80) 21(1.0) 21(1.0) 21(1.0) 21(1.0)
9 B6(.10) 22(.38) 22(1.0) 22(1.0) 22(1.0}) 22(1.0)
19 248(.18)  258(.60) 24(1.0) 28(1.0)  24(%.0)}  24(1.0)
1 25(.14)  25(.37) 25(.53) 25(.69) 25(1.0}  25(%.0)
12 B6(.10) 86(.26) 86(.33) 86(.h1) 86(.78) 86(1.0)
13 86(.10) 33{.61) 33(1.0) 33(1.0) 33(1.0) 33(1.0)
1h B6(.10) . 86(.35) 86(.35) 86(.34) 33(.58) B6(1.0)
15 B6(.10) 86(.33) 86(.40) 86€( .52} B6(1.0) 86(1.0)
16 86(.10) 53(.18) 53(.36) 53{.52) 53(1.0) 53{1.0)
17 86(.10) 86( .31) B86( .5%) 45(.53) 85(1.0) 45(1.0)
18 46(.10) 86¢(.22) §6(.53) 36{.67) 46(1.0) k6{1.0)
1% 86(.,10) 86{.27) 86(.30) 86(.27) 67(.39) 50(1.0)
20 86¢.10) 86{.32) 86(.35) 86(.34) 35(.59) 35(1.0)
21 86(.10) 861 .16) 56(.34) 50(.53) 50{1.0) 50{1.0)
22 B6(.10) 861 .26) 86(.34) 86(.34) T9(.39) T9{(1.0)
Value of -— 1.091 8.094 9.519 13.%63 20.857
Criterion
J(l) J(2J

depending upon the g priori information, between 0.05 to
0.30. Its actual value is not critical, however, it affects the
convergence of probabilities, hence the number of iterations.
Compatibilities involving nil class are assigned as follows:

C, G, k,j,nil)= C, (i, k,iy,nil, iy, nil) = p; (k)
C, G, nil,j,D)=Cy (¢, nil iy, 4y ,i5,12) = pi (ni)
Cy U,k iy, nil,iy,1,)=C, (i, k,i5,13)
Cy G,k iy by i, i) = Cy (i k, iy, ).

Examples and Commients: In testing the shape matching al-
gorithm we consider three unknown views shown in Fig. 4 (a),
(b), and (I) corresponding to 0°, 30°, and 330°, respectively.
Although the model is obtained with these views included, the
model, as previously explained, does not contain all the faces
corresponding to each unknown view. This is due to the pro-
cedure by which the surface points corresponding to the com-
plete object were obtained. Therefore, the use of these un-
known viewsis justified for the evaluation of the shape matching
technique, It is noted that the shape matching algorithm does
not assume that the unknown view was among the set of the
model building views. It can be any arbitrary view. The num-
ber of faces in an unknown view of the automobile piece varied
from 10 to 25 and the number of faces in the model is 85, In
matching, only the best 29 faces of the model are considered,
in order to reduce the cofiplexity of the matching task. The
evaluation of the compatibility vector qg’ ) (=1, 2) requires
the knowledge about the neighbors of a face [see (1)]. The
larger neighbors are given preference over the smaller neighbors,
when a unit has several neighbors and only a subset of them
are considered in the computation of compatibilities. Normally
we have considered the number of neighbors to be 1 in the.
computation of ¢{') and 2 neighbors in the computation of
q$?) for all the units. If a unit has only one neighbor while
computing qu), then compatibility C, is used instead of C,.
If a unit has no neighbors, then this unit is firmly assigned to
the best matched class at the time of computation of initial
probabilities.

Example 1. Fig. 6 shows the faces found in the 0° view

shown in Fig. 4(a). Table III(a) shows the neighbors of the
faces. The neighbors are arranged by size in descending order.
Table IV shows the results of labeling at different iterations.
Only the label with the highest probability of assignment is
shown. Inthe bracket we have indicated this probability. Label
86 is the nil class. One way of checking the results of labeling
is to compute the relative orientation of the object using the
final assignment of units. To compute the orientation, we need
to compute the transformation matrix 7' in

Tx=pb 4]
where
h L L x| X
T=|m, my ms|, x=|»)|. b=|>
ny n; na z' z

and (I,, my, n,), ({2, my, 0y}, and (I3, m3, ny) are the direc-
tion cosines of the x’, y', z, axis (unknown view) relative to
x, ¥,z coordinates (model), respectively.

From the results of matching the transformation matrix T is
obtained by selecting three units, (called a triple of units) which
are not assigned to the nil class, and solving a set of nine linear
equations to evaluate the nine coefficients of the matrix T. The
(x,y,z)and (x', y',2") of any triple are taken as the centroids
of the matched model face and an unknown view face, respec-
tively. From the results shown in Table IV several triple of
units such as (1, 2, 3), (1, 3, 4}, (1, 13, 16), (16, 17,18}, (5,
6, 7), (2, 3, 4), (2, 17, 18) produce the coefficients of the
matrix T very accurately. For example, the triple (5, 6, 7)
solves the matrix T as

1.00000 -0.00305 -0.01102
-0.00534 1.00000 0.005861.
-0,00916 0.00000 1.00000

The arc cos of coefficients (1, 1) or (3, 3) (rotation in the x-z
plane around y axis) give 0° as the relative orientation of the
unknown view with respect to the model. This is in agreement
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Fig. 9. Faces found in the view shown in Fig. 4(b). There are 24 faces
in this view and they are labeled in the order they are found using the
algorithm described. The rejected points and the points common to
two or more faces are shown in brown and white color, respectively.

with the true orientation for this view, Note that the coeffi-
cients (1, 3) and (3, 1) of the transformation matrix should
ideally be equal to zero. Translation can be obtained by finding
the difference in the centroids of the matched faces, The total

computation time for surface approximation, matching and

the determination of orientation for this view is 566.4 s.
Whenever using the local matching results to obtain a global
information such as the determination of orientation,a funda-
mental problem arises in that how we can use the matching re-
sults to come up with a unique answer. ingeneral, it is possible

that the matching results of any three units may not give the

correct direction. cosines as indicated by the values of the co-
efficients of the matrix 7. All the coefficients of the matrix
T should be within 1. So if the labeling of any of the three
selected units happens to be wrong, the direction cosines will
be errorneous. Moreover, since we are interested only in the
approximate matches not the exact matches as they may not
exist and measurement errors are possible, it is quite likely
that some triples do not lead to the valid direction cosines.
Also different triples may lead to slightly different solutions.
There are several approaches to obtain'the solution for this prob-
lem. For example an average of several valid solutions {co-
efficients of T within #1) can be taken or more precisely the
problem could be formulated as a Jeast square problem sub-
ject to the constraints that T is a rotation matrix. For the re-
sults presented in this paper the three units needed for the
computation of the transformation matrix T have been arbi-
trarily chosen provided none of them is assigned to the nil class
and their values are within the interval {-1, 1].

Example 2: Fig. 9 shows the faces found in the 30° view
shown in Fig. 4(b). There are 24 faces in this view and they
are labeled in the order they are found. Table V shows the
neighbors of the faces. Comparing Figs. 6 and 9, it can be seen
how some of the faces of Fig. 9 should be labeled, For example,
faces 11, 7, and 21 in Fig. 9 correspond to faces &, 10, and 21
in Fig. 6, respectively. Similarly the correspondence for some
other faces can be obtained and the matching results can be
verified by using Tables IV and VI. Asin the Example 1, var-
ious triple of units allow us to compute the transformation
matrix T. For example, using the triple {4, 7, 8), matrix Tis
obtained as

0.88383 0.09058 0.46854
-0.20947 1.00000 -0.19653
-0.45183 0.01863 0.86441

w

TABLE V
NEIGHRORS OF THE FACES SHOWN IN FIG. 9. THEY ARE ARRANGED IN THE
DEescexDING ORDER BY SIZE.

FACE
NUMBER NEIGHBORS
1 8 14 0 o
2 ] 16 [*} 0
3 18 15 ] [}
4 5 2 138 0
5 L 18 19 20
6 22 17 21 0
1 11 1] 0 0
8 1 9 17 0
9 8 0 0 °
10 20 0 [ 0
11 T 0 0 0
12 22 23 0 o
13 23 L] 1) #]
14 1 0 o 0
15 3 18 ] ]
16 2 0 o 0
7 13 8 0 0
18 5 L] 3 1%
19 5 ¢ o ]
20 5 10 0 0
21 6 22 0 0
22 6 12 21 0
23 12 13 0 0
24 4] o 0 0

Note that the matrix T is not strictly a rotation matrix. For
example, the coefficients (1, 1) and (3, 3) are not equal and
the magnitude of the coefficients (1, 3) and (3, 1) is not iden-
tical. This is because of the inherent measurement errors and
the exact matches may not exist and we have not explicitly
constrained T to be a rotation matrix. However, the average of
the coefficients (1, 1) and (3, 3) can be taken and we can use
its arc cos to obtain a reasonable estimate of the rotation in-
formation. Following this the relative rotation in the x-z. plane
of about 30° is obtained for the view shown in Fig. 9. The
total computation time for this view is 425.6 s.

Example 3: Fig. 10 shows the faces obtained in the 330°
view shown in Fig. 4(1). There are 24 faces in this view and as
before they are labeled in the order they are found. Neighbors
of the faces are shown in Table VII. Comparing Figs. 6, 9, and
10 one can observe how the face description has changed. Also
it can be inferred how the faces of Fig. 10 should be labeled
with respect to the labeling of the faces in Figs. 62and 9, For
example, face 13 of Fig. 6 and face 11 of Fig. 10 match with
the model face 33. Face 22 of Figs. 9 and 10 match with the
model face 77. A few labels such as for faces 13 and 21 appear
only in this view. Such labels have been verified independently
with the model. Table VIII shows the resuits of the stochastic
labeling. Most of the labels are correct, but a few of them are
wrong because of the higher degree of similarity of the local
structure of the incorrect. match with the model. An example
of such an incorrect label is for the face 18 which matches
with the model face 79. Actually, face 22 of Fig. 6 matches
with the model face 79. As in the previous examples, tripies
of units can be used to compute the transformation matrix T.
For example, using the triple (2, 5, 6}, matrix T'is obtained as

0.82699 -0.02619 -0.58716
-0.14116 1.00000 -0.01034
049117 -0.02597 0.79737

Using the discussion presented above in the Examples 1 and
2, a relative orientation of about 330° in the x-z plane is ob-
tained. The total comutation time for this view is 1022 s.

V. CONCLUSIONS

In this paper we presented representation, modeling and
matching techniques incorporated in a 3-D scene analysis sys-
tem. A geometric technique is used to approximate surfaces
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TABLE VI
LABELS AT DIFFERENT 1TERATIONS FOR THE Faces SHown IN FiG. 9.
EXAMPLE 2.
FACE FIRST STAGE - SECOND STAGE
NUMBER ITERATION NUMBER ITERATION NUMBER
0 1 1 - 7
1 86(.08) 86(.08) B6(.19) 86(.21) 1(.56) 101.0)
2 86(.08) 86(.17) B6(.21) 2(.25} 2(.7T4) 2(1.0)
3 86{.08) 86(.18) 2{.27) E6(.26) 2(1.0) 2(1.0)
[ 86(.08) 86(.16) 5{.21) 5{.32) 5{1.0) 5{(1.03
5 86(.08) 86(.17) 86(.20}) B6(.31) S(.49) 5(1.0}
] B86{.03) 86(.18) B6(.21) B6(,30) B6(1.0}) 86(1.0)
7 86(.08) B6(.17) B6(.20) B6(.25) 24(.57) 24(1.0)
8 86(.08) 86(.16) 20(.20) 20¢.27) 20(.80) 20(1.0)
9 86{(.08) 86(.24) 3h{.34) 34(.39) 33(1.0)  33(1.0)
10 86(.08) 86(.23) 35(.30) 35(.35) 45(1.0}) 85(1.0)
11 86(.08) 86(.22) 34(.,30} 38(.40) 35(.61}) 53{1.0)
12 86(.08) 86(.49) 26(.23) 26(.31) 26(.h9}  53(1.0)
13 86¢.08) 86(.30) 86(.33) 40(.33) s53{1.0} 53(1.0)
14 B6(.08) 86(.24) 86(.31) 64{.81) 86{1.0) ~-B6(1.0})
15 B5(.08) B6(.20) 86(.25) 86(.31) B6(.54) 86(1.0}
156 86(.08) 86(.23) 86¢(.27) 41(.29) 86(1.0) 86(1.0)
17 B6(.0B) B6{.20) B86(.25) 86(.28) 62(.39) 62(1.0)
18 86(.08) 86(.28) 77(.38) 86(.54) 86(1.0) B6(1.0)
19 B6(.08) B6(.16) 86(.20) 65(.25)} 65(1.0) 65(1.0)
20 B6( .0B) 86(.16) BE(.22) B6{.22) 50(.54) 52(1.0)
21 B6(.0B) 86(.17) 70(.22) B6{.26) 86(.36) 50(1.0)
22 B6(.08) 86(.23) 17(.39) 77(.50)  TT{1.0) 77(1.0)
23 B6(.08) 86(.19) 86(.23) 52(.27) 52(.39) S2(%.0)
24 86(1.0) B&(1.0) 86{1.0) B5(1.0) 86(1.0) 86(1.0)
Yalue of -— 1.874 3.647 4.327 12,606 23.017
Criterion ’
g J€2)
TABLE VII

Fig. 10. Faces found in the view shown in Fig. 4(1). There are 24 faces
in this view and they are labeled in the order they are found using the
‘algorithm described. The rejected points and the points commeon to
two or more faces are shown in brown and white color, respectively.

by planar faces. The results of shape matching are good. A
few incorrect assignments result because the structure and de-
scription of a unit with its neighbors matches better with incor-
rect match than the correct match. Also if the object has some
symmetry, it is likely that there wiil be multiple matches. The
results of shape matching depend upon the planar surface ap-
proximation, its consistency and neighborhood information.
An approximation of the surface of an object which includes
planar and curved faces which are contiguous (there are no re-
jected points) and which provides complete neighborhood in-
formation will be desirable since then contextual information
will be more effective. The number of views to obtain a model
depends upon the complexity of the object. The computation

Nmonnons oF THE Faces SHown IN F1G. 10. THEY ARE ARRANGED
IN THE DESCENDING ORDER BY SIZE.

FACE
NUMBER NEIGHBORS
1 ] 16 0 0
2 3 [ 17 15
3 [l 2 12 o
4 3 2 12 13
5 T 20 18 0
6 i 10 11 19
7 6 > 20 18
8 21 23 0 0
g 1 16 [ 0
10 6 22 0 0
11 6 0 0 [V
12 3 ! 0 (i
13 ] 0 0 0
14 24 22 ] [+
15 2 ¥ [ 0
35 1 9 [} 0
17 2 0 ] 0
18 T 5 (] 0
19 6 1} [ 0
20 7 5 21 0
21 8 20 ¢ 0
22 10 24 14 0
23 8 0 1] <]
2K 14 22 0 0

time for surface approximation of an unknown view, matching
and the determination of orientation varied from about 7-20
min. on a PDP-10 (KL-10 processor). Over 95 percent of this
time is spent in the computation of rotation needed in the
compatibility computation. This is because we store only the
boundary of the image of a face. Also we do not store the
compatibility values, and recompute them when the gradient
is required [1]. By storing the images of the faces and the
compatibility values, computat:on time will be much smaller,
It can be further cut in certain situations by assuming that the
object is rigid and it can have only a finite number of stable
positions. The results of labeling allow us to obtain the orienta-

#—M




m

350

TEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, YOL. PAMI-6, NO. 3, MAY 1984

chastic labeling,” Image Processing Inst., Univ. Southern Cali-
fornia, Los Angeles, USCIPI Rep. 1030, Aug. 1981.

B. Bhanu and Q. D. Faugeras, “Shape recognition of 2-D objects,”
in Proc. 2nd Scandinavien Conf. Image Anal., Helsinki, Finland,
June'15-17, 1981, pp. 72-77.

1. D. Boissonnat and F. Germain, “A new approach tothe problem
of acquiring randomly oriented workpieces out of a bin,” in Proc.
7th Int. Joint Conf. Artificial Intell., Vancouver, Canada, Aug.
24-28, 1981.

C. L. Jackins and S. L. Tanimoto, “Oct-trees and their use in rep-
resenting three-dimensional objects,” Cemput. Graphics Image
Processing, vol, 14, pp. 249-270, 1980.

T, Q. Binford, “Visual perception by computer,” in Proc. IEEE
Conf. Syst. Contr., Miami, FL, Dec. 1971.

R. Nevatia and T, Q. Binford, “Description and recognition of
curved objects,” dreificial Intell, vol. 8, pp. 77-98, 1977.

N. Badler and R. Bajcsy, “Three-dimensional representations for
computer graphics and computer vision,” ACM Comput. Graphics,
vol. 12, pp. 153-160, Aug. 1978.

R. Bajcsy, “Three dimensional scene analysis,” in Proc. 5th Int.
Conf. Pattern Recognition, Miami Beach, FL, Dec. 1980, pp.
1064-1074.

R. O. Duda, D. Nitzan, and P. Barrett, “Use of range and reflec-
tance data to find plunar surface regions,” [EEE Trans. Pattern
Anal. Machine intell., vol. PAMI-1, pp. 259-271, July 1979.

{2

(3]

(4]

(5]
6]
17}

{8]

[9]

(17]

(18]

9]

(20]

(2t}

(22]
(23]

i24]

TABLE Vil
LABELS AT DIFFERENT ITERATIONS FOR THE FACES SHOwN 1n FiG 10
Exampeie 3.
FACE FIRST STAGE SECOND STAGE
NUMBER ITERATION MUMBER ITERATION NUMBER
0 R 3 1 % 8
1 B6(.08)  86(.15) 5(.21) 86(.30)  B6{.62) 86(1.0}
2 2(.c8) 2(.18) 2(.30} 2(.46) 2(1.0} 2(1.0)
3 86(.08) 86(.15)  86(.22) 86(.24)  B6{.28) 3(1.0)
b 86(.08)  B6(.13) 5(.20) 5(.25) 5(.50) 5(1.0)
5 B6(.08)  B6(.17) 6(.24) 6(.35) 601.0) 6(1.0)
6 B6(.08)  86(.17} 7¢.32) 7(.41) 7¢1.0) T(1.0)
ki B6(.08) B&(.16) BE(.22) T(.32) 7(1.0) Ti1.0}
8 86(.08)  86(.21)  86(.25) 86(.38) 86(.71) 86(1.0)
9 B6(.08) B6{.18) B6(.22} 86({.50) 86(t.0) B6(1.0)
10 B8f(.D8) 86(.15}) 86(.20}) 24 (.24) 24(.m) 28{1.0;
11 86(.08) 86(.21) 86(.25}) 86(.26) 33{1.0) 33(1.0)
12 86(.08)  B6(.19)  B6(.25) 86(.36)  B86(.61) B6(1.0)}
13 86(.08) 88({.21) 86(.22) B6{.29) 27(.53) 27(1.0})
14 86(.08)  86({.28)  B6(.2T) 86(.39)  86(.59) 3N(1.0)
15 86¢.08)  86(.13)  86(.20) B6{.23) H6(.58)  N6(1.0)
16 86(.08)  86(.23)  34(.30) B6{.36)  34(1.0) 38(1.0}
17 B6(.08)  K6(.13)  46(.27} 86(.33) h6(.73) AE(T1.0)
18 26(.08) 86(.18)  86(.23) 79(.35)  T79(.60) 719(1.0)
19 86(.08) 86(.21) 86(.27) 86(.31) 70(.53) 70(1.0)
20 86(.08)  86(.24)  86(.28) 86(.38) 88(1.0) 86(1.0)
21 B6(.08) 86(.23) B6(.30) 86 .29} 47(.36) T2(1.0)
22 86(.08) 86(.27) T7(.68) 77¢1.0)  T77(1.0) T7(1.0)
23 86(.08) 86{.16) B6(.19) 67(.21)  86(.T1) B6(1.0)
24 86(.08) 86(.31) B6(.36) 86(.81) 36¢1.0} 36{1.0}
Yalue of - .9126 2.759 3.867 9.358 23.50
Criterion
O] P&y
tion of the object in three-space. Translation information can [10] D. L. Milgram and C. M. Bjorklund, “Range image processing:
also be obtained. Normally, we used 3 iterations at the first " Planar surface extraction,” in Proc. Sth Int. Conf, Pattern Rec-
stage and 4 to 8 iterations at the second stage. We found that ognition, Miami Beach, FL, Dec. 1930,PP~31?-919~ )
these two stages of hierarchy are sufficient for matching pur- 1111 8. ﬁ: }-‘“d?“""?,‘i ?TE‘EC.ECO&ngJL? Y(‘;“a(':_l;:"““g 2‘;’{’_‘_
poses, although the method generalizes to include higher levels 1611;1 ‘Fu‘:levieg‘;? s put., vol. - P
! . i - . .
at the expense of mcrgased c0mp1.1tathn. The first stage docs {12] M. ishii and T. Nagata, “Feature extraction of three-dimensional
not resolve ali the ambiguous labelings. The second stage helps objects and visual processing in a hand-eye system using a laser
in correcting these labelings. These matching results could be tracker,” Pattern Recogrition, vol. 8, pp. 229-237, 1976.
useful in controlling a robot manipulator on an assembly line [13] G. J. Agin and T. O. Binford, “Computer description of curved
or inispection stages of the production. The shape matching objects,” in Proe. 3rd Int. Joint Conf. Artificial Intell., 1973,
technique presented here can be extended to handle occlusion pp. 629-640, ) o
of two or more objects by following the algorithm discussed in [14} Y. Shirai, “Recent advances in 3-D scene analysis,” in Proc. 4th
[34]. Int. Joint Conf. Pattern Recognition, Kyoto, Japan, Nov. 1978,
pp. 86-94. .
{15] R. J. Popplestone ez al., “Forming models of plane-and-cylinder
REFERENCES faced bodies,” in Proc. 4th Int, Joint Conf. Artificial Intell.,
w i . . . X Thilisi, U.S.8.R., 1975, pp. 664-668.
(1] B. Bhanu, “Shape matching and image segmentation using sto- [16] S. Inokuchi and R. Nevatia, “Boundary detection-in range pic-

tures,” Proc. Sth Int. Conf. Pattern Recoganition, Miami Beach, FL,
Dec. 1980, pp. 1301-1303. :
S.-W. Zucker and R. A. Hummel, “An optimal three-dimensional
edge operator,” in Proc. IEEE Conf. Pattern Recognition and
Image Processing, 1980, pp. 162-168.

J. D. Boissonnat and O, D. Faugeras, “Triangulation of 3-D ob-
jects,” in Proc. 7th Int. Joint Conf. on Artificial Intell. , Vancouver,
Canada, Aug. 24-28, 1981, pp. 658-660.

J. W. McKee and J. K. Aggarwal, “Finding the edges of the sur-
faces of three-dimensional curved objects by computer,” Patrern
Recognition, vol. 7, pp. 25-52, 1975.

R. T. Chien and Y. H. Chang, “Recognrition of curved objects and
object assemblies,” in Proc. 2nd Int. Joint Conf. Pattern Recogni-
tion, Denmark, Aug: 13-15, 1974, pp. 496-510.

M. A. Fischler and R. A. Elschlager, “The representation and
matching of pictorial structures,” JEEE Trans. Comput., vol. C-
22,pp. 67-92, Jan 1973, .
W. A. Perkins, “A model based vision system for industrial parts,”
IEEE Trans. Comput. ,vol, C-27, pp. 126-143, Feb, 1978.

B.K.P. Horn and B. L. Bachman, “Using synthetic images to
register real images with surfzce models,” in Proc. fmage Under-
standing Workshop, Oct, 1977.

T. Kanade, “Model represcntations and control structures jn image
understanding,™ in Proc. Sth Int. Joint Conf. Artificial Intell.,
1977, pp. 1074-1082.

o

welal

3ris ¥ RGP 4B

T i

YTl s OB AR W Y ¢




e e v SRR AR A Dra MR AR

R

T LA P, S

TN PR e T

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAML:6, NO. 3, MAY 1984 351

{25} T. C.Henaderson and B, Bhana, “Tihiree point seed method for the
extraction of planar faces from range data,” in Proc. IEEE Int.
Conf. Industrial Applications of Machine Vision, Raleigh, NC,
May 3-5, 1982, pp. 181-186.

M. A. Fischler and R. C. Bolles, “*Random consensus: A paradigm
for model fitting with applications in image analysis and auto-
mated cartography,” Commun. Ass. Comput. Mack. ,vol. 24, pp.
381-395, June 1981.

A. Rosenfeld and A. C. Kak, Digital Picture Processing. New
York: Academic, 1976,

1. H. Friedman et al., “An algorithm for finding best matches in
logarithmic expected time,” ACM Trans. Math. Software, vol. 3,
pp. 209-226, Sept, 1977, .

[29] T. P. Wallace, O. R. Mitchell, and K, Fukunaga, “Three-dimen-
sional shape analysis using local shape descriptors,” JEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-3, pp. 310-323, May
1981.

F. A. Sadjadi and E. L. Hall, “Three-dimensional moment invar-
iants,” JEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-2,
pp. 127-136, Mar. 1980.

8. A.Dudaniet al., “Aircraft identification by moment invariants,”
IEEE Trans. Comput., vol. C-26, pp. 39-45, Jan. 1977.

M. Oshima and Y. Shirai, “Object recognition using three-dimen-
sional information,” in Proc. 7th Int. Joint Conf, Artifical Intell.,
Vancouver, Canada, Aug. 24-28, 1981, pp. 601-606.

D. H. Ballard and D. Sabbah, “On shapes,” in Proc. 7th Int. Joint
Conf. Artificial Intell., Vancouver, Canada, Aug. 24-28, 1981,
PP. 607612,

B. Bhanu, “Recognition of occluded objects,” in Proc. 8th Int.
Joint Artificial Intell.  Karlsruhe, West Germany, Aug, 8-12, 1 983.

{26}

127
(28]

[30]

(313
[32]

{33)

{34]

A Syntactic Abproach to 3-D Object Representation
W.CLIN anp K. 8. FU

Abstract-A 3-D object representation scheme which uses surfaces as
ptimitives and grammatical production rules as structural relationship
descriptors is proposed. Possible selections of surface primitives are
discussed. Examples are given to illustrate the object description
method, .

Index Terms—Computer vision, origami world, primitive surface,
syntactic approach, 3-D object representation, 3-D-plex grammar.

I. INTRODUCTION

Computer representation of three-dimensional {3-D) objects
has attracted the attention of researchers of scene 2nalysis and
computer graphics in the past several years [1]-[31], [25]. In
model-based approach of image recognition, a 3-D object
model is constructed in order to match its 2-D perspective
transformation to a specific object in a 2-D picture. The 3-D
object can also be displayed by projection methods for com-
puter graphics applications,

In this paper, we propose a 3-D object description scheme
using surfaces as primitives and grammatical production rules
as structural relationship descriptors. It is well known that the
syntactic approach to pattern recognition provides a capability
for describing a large set of complex patterns by using small
set of simple pattern primitives and grammatical rules [4]. As
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will be seen in Section IlI, one of the most attractive aspects
of this capability is the use of a recursive nature of a grammar,
A grammar {rewriting) rule can be applied any number of time-.
so it is possible to express in a very compact way some basic
structural characteristics of an infinite set of sentences. An-
other important feature of this modeling scheme is that it
unambiguously specifies Kow the surface patches are assembled;
which facilitates surfaces identification in computer vision
applications.

In the next section, we briefly review several different
schemes proposed in the literature of machine vision and
computer-aided design. Then, in Section IIl, possible selec-
tions of surface primitives are discussed. The modeling gram-
mat—-3-D-plex grammar—is described. An algorithm to derive
a sentence from a left parse and a 3-D-plex grammar is pre-
sented, Several examples are given to illustrate the modeling
procedures. Finally, in Section IV, the representation scheme
is evaluated based on general criteria for judging the effective-
ness of a method of structural object representation.

1. DESCRIPTIONS OF 3-D OBIECTS

Depending on the types of “building blocks™ used in the
model construction process, there are three general classes of
representation for 3-D rigid solid: 1) surface or boundary, 2)

‘sweep, and 3) volumetric.

A. Boundary Representations

With these methods, 2 3-D solid object is represented by
segmenting its boundary (or enclosing surfaces) into a finite
number of bounded subsets usually called “faces” or ““patches”
and describing the structural relationships between the seg-
mented faces [5}. '

Designers. involved in ship, automobile, and airplane build-
ing are using computer graphics display to help visualize pro-
totype shape and changes to existing designs [6]. A number
of approaches, Coons patches, bicubic surface patches, Bezier
methods, Hermite methods, and B-splines, for example, have
been devised [7]-[9]. }

Another approach to surface representation is to express the
surfaces- as functions on the “Gaussian sphere” (the distance
from the origin to a point on the surface is a function of the
direction of the point, or of its longitude and latitude if it
were radially projected on a sphere with the center at the
origin). This class of surfaces, although restricted, is useful in
some application areas, such as modeling of human heart {10],
{11]. : '

An inftuential system for using face-based representations
for planar polyhedral objects, is the “winged edge” representa-
tion [12]. Such a representation can be made efficient for
accessing all faces, edges, or vertices; for accessing vertex or
edge parameters; for polyhedron building; and for splitting
edges and faces, _ A

In [26], a set of manipulative operations for boundary
models of solid objects hds been presented to construct a solid
modeling system. They are designed for CAD/CAM environ-
ments rather than computer vision applications. The building
block in the system are a set of “atomic™ functions called the
Euler operators which work on the topology of a boundary
model, that is, on the relative arrangement of its faces, edges,
and vertices. The destructive and the creative operations allow
the system to perform arbitrary modifications necessary for
boundary representation models whose faces are planar
polygons. : o

Since surfaces are what is seen, the boundary representations
are important for computer vision. For certain objects, primar-
ily those constructed from thin sheet-like material, surface
descriptions are natural for representation purposes. However,
for conventional boundary representation schemes, coirect
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