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On  the  Computation of the  Complex  Cepstrum 

BIR BHANU AND JAMES H. MCCLELLAN 

Abstract-A  technique  based on fitting splines to the phase  derivative 
curve is presented  for the efficient  and  reliable  computation of the 
complex  cepstxum.  The  frequency  sampling  and the thresholds  of the 
adaptive  phase  unwrapping  algorithm  are  studied as a function of the 
radii of the zeros of the signal. 

I. INTRODUCTION 
The main computational  burden  in  computing  the  complex 

cepstrum is the  determination of a continuous,  odd,  and peri- 
odic phase function [ l ]  for  the  Fourier  transform of the 
signal. One generally starts  from samples of the phase modulo 
2n  (obtained via an inverse tangent  routine)  and  then  attempts 
to “unwrap”  the phase. Phase unwrapping  algorithms pub- 
lished by  Schafer [ 11 and  Tribolet [2]  are available in  the 
literature. Such  algorithms encounter  problems when  zeros 
of the signal are clustered near  the  unit circle. In such cases 
the use of the  trapezoidal rule for  integrating  the phase deriva- 
tive in Tribolet’s algorithm  results in large truncation  errors 
and  many  step interval adaptations  are  required. In this  paper 
the use of a piecewise polynomial  interpolation  scheme  known 
as cubic splines is presented.  This method gives a more  accurate 
rule of integration [ 3 ]  and can be easily incorporated  into 
Tribolet’s  phase unwrapping algorithm.  A  sensitivity  analysis 
is also presented to  determine  the minimum frequency sampling 
step size when the zeros of the signal are located very close to 
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the  unit circle. Furthermore,  the  selection of the  incremental 
and consistency thresholds of Tribolet’s  adaptive  algorithm 
are  studied. 

11.  PHASE  UNWRAPPING  USING  CUBIC  SPLINES 
The  problem of phase  unwrapping  can  be viewed as fitting 

a  curve to a finite  set  of  known values of the phase derivative 
and  then  performing numerical integration to  obtain  the  un- 
wrapped  phase consistent with the  known principal values of 
the phase.  Consider the  fitting of cubic splines S(o ) ,  having 
continuous first and  second derivatives, to  the phase derivative 
between w = o and o = n a t  N given points. Let the  unwrapped 
phase of the  sequence x [ n ]  be denoted  by arg [ X ( e l W ) ] .  and 
the  first  and  second derivatives of the phase  be arg’[ X(ejW ) ]  
and  arg”[X(elw)], respectively. The values of the phase 
derivative are  known  at discrete points ai( 1 < i < N ) .  A set 
of cubics S ( o )  is passed through  the  points  arg‘[X(eJwi)] 
using a new cubic  in each  interval.  It is required  that  the 
slopes and  curvature  be  the  same  for  the cubics that  join  at 
each  point.  Then  the  estimate of the  unwrapped phase is 
obtained  by  integration [ 51 

ACdi 
S(O) dw = - lard 

2 

AW? _ -  
12 [S 

I 
i. 

where 

Awi = wi+l - wi and S i  = S’(wi) 

with 

Sl  = arg”[X(eiW1)]  and Sh = arg”[X(eiwN)l. 

The phase first  and  second derivatives can  be computed using 
three  Fourier  transforms. These equations  are 
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where 

Note  that  the  first  term  of  (1) is the  trapezoidal  rule  and  the 
second  term is  similar to  the  truncation,term  usually  found  in 
the  trapezoidal rule. The  quantities S i  in  (1)  can be deter- 
mined  either  by efficiently solving ? tridiagonal  set of equa- 
tions [53. or by  computing (3). (Si is an  approximation t o  
arg"[X(e'w')] .) However,  the  DFT  approach is preferred, 
especially  in  those  situations  where  the  zeros of the  sequence 
are  close t o  the  unit circle  and the  second  derivative of phase 
must  be  known  very  accurately. 

111. COMPUTATIONAL  STRATEGIES AND ANALYSIS 
A number of issues  arise  in  connection  with  the use of cubic 

spline  interpolation  within  Tribolet's  adaptive  phase  unwrap- 
ping  algorithm.  These  include  the  sensitivity of the  phase  un- 
wrapping to  zero  location  and  the  amount of computation re- 
quired.  The  cubic  spline  modification  requires  the  first  and 
second  derivatives of the  phase a t  each  DFT  point.  Thus  three 
FFT's are  now  required  instead of two as in Tribolet's  imple- 
mentation [ 21.  This  increase  in  the  amount  of  computation  per 
frequency  point  should  be  offset  by  a  reduction  in  the-number 
of times  that  the  algorithm  must  adapt.  It  has  been  observed 
with  speech signals [ 51 that  the  spline  integration  may  reduce 
the  number  of  times  that  the  algorithm  had  to  adapt  by  about 
20 percent. However, on  the basis of overall  computation 
time  it  does  not  provide  a significant  saving; the  computation 
time  required [ 51 is comparable to  that of Tribolet's  algorithm. 
The  primary  advantage of using this  new  modification is  an 
increase  in  the reliability and  precision  of  the  phase  unwrapping 
technique. 

When the  zeros of the signal are  clustered  near the  unit 
circle, the  accuracy of the  adaptive  integration  becomes 
critical.  Examples  where  Tribolet's  algorithm  fails but  the 
cubic  spline  approach  works  can  be  constructed.  Consider  a 
sixth-order  test signal with  the  following  zeros: ..- 

and 

When an FFT size of 1024 is employed,  the  trapezoidal  rule 
for  integration will not  obtain  the  correct  phase  but  the  spline 
integration will succeed.  (Note:  the  thresholds  of  Tribolet's 
algorithm  were  taken to be B i  = 2 and 6, = 1; see below.) For 
this  test signal, Tribolet's  algorithm [ 21 fails  because the  1024 
point  FFT  does  not resolve the  important  peaks  in  the  phase 
derivative. Fig. l(a) and  (b)  show  the first and  second deriva- 
tives of the  phase  computed  from  a  1024  point  FFT.  The 
spline  integration  succeeds  because  the  integration is  improved 
through  the use of second  derivative  information  and,  in  fact, 
requires no  adaptation  to unwrap  the  phase  of ( 6 ) .  Tribolet's 
algorithm  would  succeed  only if the  FFT size were  increased 
significantly.  The correct  unwrapped  phase is  shown in Fig. 2. 

The  performance of either  integration  technique  can be  ad- 
versely affected  by  rounding errors. The use of double  pre- 
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Fig. 1. (a)  Phase fist derivative  for zero distribution of (6). Note that 
the figure was drawn  based  on 1024 point FFT and  the  sparse FFT 
sampling did not  catch all the  three  spikes  corresponding to three 
zero  pairs. (b) Phase  second  derivative  corresponding to (6). 

Fig. 2. Unwrapped phase after removal of linear  phase  for  the  example 
in (6).  

cision for  calculating  the DFT's  of x [ n ]  , nx [n] , n2x[n] is 
quite  important when adaptation  takes  place  because  the 
phase  derivative will be  changing  quite  rapidly  and  thus  very 
small  errors  in  the DFT's can  lead to  very  large  errors  in the 
integrated  phase. As an aside, it has  been  found  that  Bon- 
zanigo's [ 41 modification of Goertzel's  algorithm  for the com- 
putation of the  DFT  at  a single frequency  off  the  FFT  grid  has 
more  roundoff  noise  than  the  direct  DFT  when  considering 
zeros  close to  the  unit circle [ 5 I . 

The  adaptive  nature  of  Tribolet's  algorithm [ 21 requires two 
thresholds:  the so-called incremental  and  consistency  thresh- 
olds. These  parameters  affect  the  computation  time  and reli- 
ability of the  phase  unwrapping  algorithm.  The  relationship 
among  these  thresholds, the  FFT size, and closeness of the 
zeros to  the  unit circle  can  be  examined for~cases where the 
zeros of the signal are  known.  The  incremental  threshold Oi 
restricts  the  amount by  which  the  phase  may  increase  in  one 
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a 

0.95 

0.99 

0.995 

0.999 

0.9995 

0.9999 

0.99995 

0.99999 

0.999995 

0,999999 

“max 

0.18 

0.035 

0.017 

0.0035 

0.0017 

0.0003S 

0.00017 

0.000035 

0.000017 

0.000003S 

TABLE 1 
SINGLE REAL ZERO AT Z = a, (e, = 0.65) 

, 
I 

3.42 

179.5 3.46 

34.9 

1795195.8 3.49 

369599.1  3.39 

179519.5  3.49 

36959.9 3.39 

17951.9 3.49 

3695.9  3.39 

1795.1 3.49 

369.5 3.38 

i n  FFT,N 

64 

256 

512 

2048 

4096 

32768 

65536 

262144 

524288 

2097152 

Spline integrated 
phase at 

1.836 

1.896 

1.863 

1.919 

1.874 

1.922 

1.876 

1.922 

1.876 
1.922 

Unwrapped  phase 

1.203 

1.273 

1.275 

1.290 

1.283 

1.292 

1.284 

1.292 

1.284 

1.292 
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integration  step;  the consistency threshold Bc requires  the 
integrated phase (modulo 277) to be close to the  known princi- 
pal value of the phase. 

The following experiment was carried out to study  the  inter- 
relationship of B i ,  B c ,  transform  length,  and closeness of zeros 
to the  unit circle. Consider  a signal with  one  real zero at 2 = a. 
As a approaches  the  unit circle the phase derivative contains a 
large spike  at w = 0, where the phase  changes  rapidly. From 
the  analytical expressions for  the  first  and  second derivatives 
of the phase, the behavior of the spline integration can  be 
determined  exactly  near w = 0. Thus a  value for Bc is chosen 
and a maximum  frequency  increment Aw,,, is calculated 
under  the  constraint  that  the  spline  integrated phase give the 
true phase to within the  amount Bc. Table I was constructed 
by  repeating  this process for  many values of the  zero a near 
the  unit circle. 

The  third  column of Table I shows the  product of the maxi- 
mum value of phase  derivative and Awmax, which serves as a 
reasonable estimate of the  incremental  threshold Bi. From  this 
experiment it follows that  the reasonable  value of the  incre- 
mental  threshold to be used in  conjunction  with  the consistency 
threshold of 0.65 is 3.5. The value of Ao,, governs the 
c‘effective’’ DFT size to be  used. This  length is a  combina- 
tion of the initial FFT size and  the  number of adaptations 
permitted.  For a  second-order signal a  similar analysis gave 
the value of B i  = 2 corresponding to Bc = 1 [ 51 . These thresh- 
old values have been  used  successfully in a number of higher 
order examples including  the  example of (6). Further  exten- 
sion of this  work to higher order  examples  has been  considered 
in detail in [ 51, which does not  require  the a priori distribu- 
tion  of zeros. 

IV. CONCLUSION 
The use of cubic spline integration improves the reliability 

of an  adaptive phase  unwrapping  algorithm, especially when 
the  zeros o f  the sequence are  quite close to  the  unit circle. 
Analysis of first- and  second-order examples  shows that,  for 
zeros very close to the unit circle, the  minimum  FFT size 
vanes inversely  with the distance to  the  unit circle. These 
ideas have also been  applied for  the  computation of two- 
dimensional complex  cepstrum  and checking the  stability  of 
one- and two-dimensional recursive digital filters [ 51 . 
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A New ARMA Spectral  Estimator 

STEVEN M. KAY 

Abstract-Recently,  several  researchers  have  proposed  methods for 
estimating  an  autoregressive-moving  average  power  spectral  density 
without the need to determine the moving  average  parameters. How- 
ever,  these  techniques do  not guarantee  a  nonnegative  spectral  estimate 
and  thus  sometimes  lead to invalid  estimates. A simple  procedure is 
proposed  for obtaining a  nonnegative  spectral  estimate  given  an  esti- 
mate of the autoregressive  parameters. 

I. INTRODUCTION 
The  estimation of the  parameters of an autoregressive-moving 

average (ARMA)  process  usually involves a spectral factoriza- 
tion  to  determine  the moving average (MA) parameters [ l  I .  
However, if only  the  spectral  estimate is desired, then several 
techniques  are available which do  not  require a spectral fac- 
torization. These methods are now reviewed [21-[4]. 

If X t  is an ARMA ( p ,  q )  process, then  the  power  spectral 
density is given as 

where 
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