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Abstract

This paper describes an approach for image segmenta-
tion that relies on learning from experience to adapt and
improve the segmentation performance. The adaptive
image segmentation system incorporates a feedback loop
consisting of a machine learning subsystem, an image
‘segmentation algorithm, and an evaluation component
which determines segmentation quality. The machine
learning component is based on genetic adaptation and
uses (separately) a pure genetic algorithm (GA) and a
hybrid of GA and hill climbing (HC). When the learning
subsystem is based on pure genetics, the corresponding
evaluation component is based on a vector of evaluation
criteria. For the hybrid case, the system employs a scalar
evaluation measure which is a weighted combination of
the different criteria. Experimental results for pure ge-
netic and hybrid search methods are presented using a
representative database of outdoor TV imagery.

1 INTRODUCTION

Image segmentation is an important and, perhaps,
the most difficult low-level task. The difficulty arises
when the segmentation performance needs to be adapted
to the changes in image quality. Image quality is af-
fected by variations in environmental conditions, imag-
ing devices, time of day, etc. Despite the large number of
segmentation techniques presently available [4], no gen-

eral methods have been found that perform adequately -

across a diverse set of imagery. When presented with
a new image, selecting the appropriate set of algorithm
parameters is the key to effectively segmenting the image
[2]. However, no segmentation algorithm can automati-
cally generate an ”ideal” segmentation result in one pass
(or in an open loop manner) over a range of scenarios en-
countered in real-world applications. Any technique, no
matter how ”sophisticated” it may be, will eventually
yield poor performance if it can not adapt to the varia-
tions in unstructured scenes.

In reality, there exist several factors which make the
parameter adaptation process very difficult. First, the
number of parameters present in a typical segmentation

algorithm is usually quite large. Second, the parame-
ters mutually interact in a complex, non-linear fashion,
which makes it difficult or impossible to model their be-
havior in an algorithmic or rule-based fashion. Third,
since variations between images cause changes in the seg-
mentation results, the objective function that represents
segmentation quality also varies from image to image.
Finally, the definition of the objective function itself can
be a subject of debate because there is no single, uni-
versally accepted measure of segmentation performance
available with which to uniquely define the quality of the
segmented image.

Consequently, there exists a need to develop an adap-
tive segmentation technique that can efficiently search
the complex space of plausible parameter combinations
and locate the values which yield optimal results. The
approach should not be dependent on the particular ap-
plication domain nor should it have to rely on detailed
knowledge pertinent to the selected segmentation algo-
rithm. While there are adaptive threshold selection tech-
niques for segmentation, these techniques do not accom-
plish any learning from experience to improve the per-
formance of the system over time. In the absence of an

_rigorous theory, the problem of image segmentation is
“bestdescribed im terms of its goal. The criteria for good

—segmentation are (4], (1) the segmented regions should be
uniform and homogeneous with respect to some charac-
teristic, such as gray value or texture, (2) region interiors
should be free of holes and region boundaries should be
smooth and spatially accurate, and (3) adjacent regions
should be differing significantly based on the character-
istic on which they are uniform. If one represents this
criteria set in terms of a function, then the problem of
(good) segmentation is one of optimizing this objective
function by selecting appropriate segmentation parame-
ters.

2 ADAPTIVE SEGMENTATION
ALGORITHM
Adaptive image segmentation requires the ability to

modify control parameters in order to respond to changes
that occur in the image as a result of varying environ-
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Figure 1: Block diagram of the adaptive image segmen-
tation system for multiobjective optimization.

mental conditions. The block diagram of our approach
to adaptive image segmentation is shown in Figure 1.
After acquiring an input image, the system analyzes the
image characteristics and passes this information, in con-
Junction with the observed external variables, to the ma-
chine learning component (GA or GA-HC hybrid). Us-
ing this data, the machine learning system selects an ap-
propriate parameter combination, which is passed to the
image segmentation process. After the image has been
segmented, the results are evaluated and an appropri-
ate reward is generated and passed back to the learning
subsystem. This process continues until a segmentation
result of acceptable quality is produced.

The image segmentation component in our work is
the Phoenix algorithm [5, 6] which has been extensively
tested on color imagery. Phoenix contains seventeen dif-
ferent control parameters [5] fourteen of which are used
to control the thresholds and termination conditions of
the algorithm. There are 1033 conceivable parameter
combinations using these fourteen values. Of the four-
teen values, we have selected two of the most critical
parameters that affect the overall results of the segmen-
tation process: mazmin and hsmooth. From an analysis
of the Phoenix algorithm, we find that incorrect values
in the two main parameters lead to results in which, at
one extreme, the desired object is not extracted from
the background, and at the other extreme, the object is
broken up into many small regions that have little sig-
nificance for higher-level processes. By measuring seg-
mentation performance using appropriate quality crite-
ria, the genetic process attempts to identify a parameter
set that yields results between these two extremes.

2.1 Multi-Objective Segmentation Evaluation

In order to overcome the drawbacks of using only
a single quality measure [7], we have incorporated an
evaluation technique that uses five different quality mea-
sures described below to determine the overall fitness for
a particular parameter set. These are,

1. Edge-Border Coincidence: Measures the overlap of
the region borders in the segmented image with the

edges found in the original image using an edge op-
erator.
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. Boundary Consistency: Similar to edge-border coin-
cidence, except that region borders which do not ex-
actly overlap edges can be matched with each other.
In addition, region borders which do not match with
any edges are used to penalize the segmentation
quality.

. Pizel Classification: This measure is based on the
number of object pixels classified as background pix-
els and the number of background pixels classified as
object pixels.

. Object Overlap: Measures the area of intersection
between the object region in the groundtruth image
and the segmented image.

. Object Contrast: Measures the contrast between the
object and the background in the segmented image
relative to the object contrast in the groundtruth
image.

The maximum and minimum values for each of the
five segmentation quality measures are 1.0 and 0.0, re-
spectively. The first two quality measures, ie., edge-
border coincidence and boundary consistency, are global
measures since they evaluate the segmentation quality of
the whole image with respect to edge information. Con-
versely, the last three quality measures are local measures
since they only evaluate the segmentation quality for the
object regions of interest in the image. When an object
is broken up into smaller parts during the segmentation
process, only the largest region which overlaps the ac-
tual object in the image is used in computing the local
quality measures.

The three local measures require the availability of
groundtruth information in order to correctly evaluate
the segmentation quality. Since groundtruth data may
not always be available, the adaptive segmentation sys-
tem is designed to use three separate methods of evalu-
ating segmentation quality. First, segmentation quality
can be measured using global evaluation method alone.
Second, if groundtruth data is available and we are only
interested in correctly segmenting the object regions in
the image, then the local evaluation method can be used
alone. Finally, if we desire good object regions as well
as high quality overall segmentation results, then the
global and local quality measures together can be used
to obtain a scalar-valued or a vector-valued segmenta-
tion quality measure that maximizes overall performance
of the system. The maximization of the vector-valued
segmentation quality measure is in effect a multiobjec-
tive optimization problem where the global and the local

measures represent the “non-commensurable” criterion
functions.

A multiple objective constrained optimization problem
is of the form

max[fi(x) = z],i = 1,..,k,such that x€ S (1)



where f;(x)’s are the objective functions and 2;’s are
the corresponding optimal criterion values and S is the
feasible region. However, it is only in the trivial case,
that there exists a single point in S which simultane-
ously maximizes all k objectives. A typical approach in
multiobjective (or vector-valued) optimization is to con-
sider the utility of the z;’s. Thus, a point in S is optimal
if it maximizes the decision maker’s utility function. To
be optimal, however, a point must be efficient or Pareto
optimal.

The key concept of Pareto optimality is the “partially
greater than” (p> ) relation between two vectors of the
same dimension. Given two vectors a = (a,, ..., a,) and
b = (by,...,bs), a is said to be partially greater than b
(ap> b) if each element of a is greater than or equal to
the corresponding element of b and at least one element

of a is strictly greater than the corresponding element of
b, i.e.,

(ap> b) < (Vi)(a; > b;) (Fi)(a; > b;).

Under these conditions, we say that a dominates b or b
is inferior to a. If a vector is not dominated by any other
vector, it is said to be nondominated or non-inferior.

A description of the multiobjective optimization ap-

proach for image segmentation using a pure GA is given
below.

. Compute the image statistics.

. Generate an initial population.

. Segment the image using initial parameters.

. Compute the global and local quality measures.

. Examine nondominancy of each individual.

. WHILE not <stopping conditions> DO

a. select subgroups of individuals using each

dimension of the quality measures

6b. generate new population using the crossover
and mutation operators

6c. segment the image using new parameters

6d. compute global and local quality measures

6e. examine nondominancy of each individual
END

7. Update knowledge base using new structures.

D DO W

The stopping criteria for the multiobjective optimiza-
tion system consist of two conditions. First, the process
terminates if an utopian parameter set, i.e., the one for
which both local and global quality measures are above
a predefined threshold of acceptance, is located. The
thresholds for acceptable segmentation is 90% of the best
segmentation. This criterion is useful only when the best
for each segmentation quality surface is known a priori.
Second, the process terminates if both the average local
quality and the average global quality of the populations
decrease for three consecutive generations or fail to im-
prove for five consecutive generations. If either of these
conditions is met, the segmentation of the current im-
age is stopped and the nondominated parameter sets are

represented as the current best estimates of the Pareto-
optimal set.

2.2 Hybrid Search Combining Genetic
Algorithm and Hill Climbing

Genetic algorithms have been proven and shown to
provide robust search performance across a broad spec-
trum of problems [3]. However, hybrid techniques [1]
have the potential for improved performance over sin-
gle optimization techniques since these can exploit the
strengths of the individual approaches in a cooperative
manner. One such hybrid scheme which is the focus of
this paper combines a global search technique (genetic
algorithm) with a specialized local search technique (hill
climbing). Hill climbing (HC) methods are not suitable
for optimization of multimodal objective functions, such
as the segmentation quality surfaces, since they only lead
to local extrema and their applicability depends on the
contour shape of the objective functions. The hybrid
scheme provides performance improvements over the ge-
netic algorithm alone by taking advantage of both the ge-
netic algorithm’s global search ability and the hill climb-
ing’s local convergence ability. In a sense, the genetic
algorithm first finds the hills and the hill climber climbs
them.

The block diagram of the adaptive image segmentation
system using the hybrid optimization scheme is shown in
Figure 2. and the description is given below.

1. Compute the image statistics.

2. Generate an initial population.
3. Segment the image using initial parameters.
4. Compute the segmentation quality measures.
5. WHILE not <stopping conditions> DO
IF <new maximum found>
5HCa. generate all points (i.e., parameters)
adjacent to the current point
5HCDb. segment image using these points
5HCc. compute the quality measures
5HCd. climb to new maximum point if it exists
ELSE
5GAa. select individuals using reproduction
5GAb. generate new population using the
crossover and mutation operators
5GAc. segment the image using new parameters
5GAd. compute segmentation quality measures

END
6. Update knowledge base using new structures.

3 EXPERIMENTAL RESULTS

A database of 20 outdoor images of a static scene,
collected over a 5-hour period, is used by the system.
Figure 3(a) shows one selected frames of the database.
The car in the image is the object of interest for the
pixel classification, object overlap, and object contrast
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Figure 2: Block diagram of the adaptive image segmen-
tation system using the hybrid search scheme.

segmentation quality measures. The ground truth im-
age for the car is obtained by manual segmentation of
Frame 1 (not shown) of the image sequence. The seg-
mentation quality surfaces, both global and local, for
each frame is exhaustively defined for preselected ranges
of maxmin and hsmooth parameters of the Phoenix al-
gorithm. Default values are used for the remaining pa-
rameters. Figures 3(b)-(c) show the global and local
quality surfaces for the frame of Figure 3(a). The ten
odd-numbered images are selected as the training data,
while the remaining even-numbered images are used for
testing. The genetic component uses a long-term pop-
ulation size of 100 individuals, a short-term population
size of 10, a crossover rate of 0.8, and a mutation rate
of 0.01. The stopping criteria is 90% of the global and
local maxima of the global and local quality surfaces of
each image in the database.

Each training image is processed 100 times, each with
a different (randomly selected) seed population. The
search points visited on the quality surface at the vari-
ous generations while processing a training image (Frame
3) during multi-objective optimization are shown in Fig-
ure 4(a), e.g., points at the lower-hand corner of the
graph correspond to global and local segmentation qual-
ity of 0.0. Figure 4(b) displays the utopian point at the
upper right corner, which caused the termination of the
genetic search process after third generation. In this fig-
ure, segmentation performance over 90% is denoted as
100%. Figure 4(c) displays the segmentation result for
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Frame 3. This result was obtained from the individual
in the short-term population with maximum local fitness
(i.e., the best local segmentation quality for the car).
During testing, the seed population is selected from the
long-term population obtained at the end of the train-
ing experiments. Since the fitness values of the testing
seed population are usually high, the GA converged to
the Pareto-optimal set much faster during the testing
experiments than in the training experiments.

The same outdoor imagery database is used for the
hybrid algorithm. Also, the training and testing se-
quences are kept unchanged. Recall that the fitness is
now a scalar, combining the global and local segmenta-
tion quality measures, for each individual of the genetic
population. To provide a visual indication of the per-
formance improvements achieved by the adaptive seg-
mentation system using the hybrid search scheme, the
segmented image results are shown for Frame 3 in Fig-
ure 5. These results are obtained using the individual
from the short-term population that has the maximum
fitness (i.e., correspond to the best segmentation qual-
ity). Each of these segmented images shows a tendency
to obtain more precise boundary representations for each
of the background objects as well as the border of the car.
The hybrid scheme results surpassed the pure GA-based
results in 8 (out of 10) training images when the number
of segmentations required to optimize the segmentation
quality was reduced. On the average, an improvement
of 15.3% in performance was observed with the train-
ing images. However, the hybrid scheme-based testing
results are no better than the pure genetics results, be-
cause the training results supplied the testing seed points
located in highly fit regions of the search space which
could hardly be optimized by the hill climbing process.

4 CONCLUSIONS

The multiobjective optimization demonstrates the
ability of the adaptive image segmentation system to
provide high quality segmentation r in_a minimal
number of generations. The results of the hybrid method
show the performance improvement over the GA alone.

In general, the hybrid scheme performs better than the
pure GA for the frames which require less computational
effort to optimize the segmentation quality, i.e., for the
frames which have simpler segmentation quality surfaces.
-_— tN~———— e
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Figure 4: Segmentation (training) results for Frame 3: -
(a)l global Z\_‘h),ﬁa'(b local segmentation quality of each
individual at™€ach generation, and (c) local segmented
image. The dark squares represent the Wnondorm—
nated points at each generation.

(b) Generation 6
Figure 5: Segmented images corresponding to Frame 3
in the hybrid experiment.




