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ABSTRACT

Building a hierarchical vision model of an object with multiple representations requires two
steps: (1) decomposing the object into parts/subparts and obtaining appropriate representations,
and (2) constructing relational links between decomposed parts/subparts obtained in step (1).
In this paper, we describe volume-based decomposition and surface-based decomposition of
3-D objects into parts, where the objects are designed by a B-spline based geometric modeler
called Alpha_1. Multiple-representation descriptions can be derived for each of these subparts
using various techniques such as polygonal approximation, concave/convex edge detection,
curvature extrema and surface normals. For example, subparts of a hammer can be described
by two generalized cylinders or one generalized cylinder and one polyhedron. Several exam-
ples are presented.

1. INTRODUCTION

New developments in the integration of Computer-Aided Design and Manufacturing
(CAD/CAM) allow both part design and manufacturing planning to take place concurrently.
Certain new manufacturing processes, such as solid freeform fabrication, can even produce
parts directly from 3-D CAD models. Computer vision can be applied in many automatic
manufacturing tasks, such as inspection, assembly, robotics, etc. Most existing vision systems
rely on models generated in an ad hoc manner and have no explicit relation to the CAD
design, based on which the product was produced.

A CAD-based vision system, (see Figure 1), provides hierarchical vision models with multiple
representations that are directly derived from the CAD database. The systematic approach,
through decomposition and representation transformation, can automatically generate vision
models for parts designed using CAD systems.! Part recognization strategies can also be stu-
died and preplanned during the early stages of the design/manufacturing cycles, even before
any actual part is manufactured. Multiple representation allows different matching strategies
to be applied for the same object, or even for different parts of the same object.

2. RECOGNITION BY PARTS

The psychological theory of Recognition-By-Components (RBC), proposed by Biederman3
provides a principal account of the perceptual organization and the pattern recognition.
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Objects are recognized not by the concepts of the whole body but the object’s components. If (
some of the parts of an object can be readily identified in their specified arrangement, the
object identification will be fast and accurate. According to the studies by Tversky and
Hemenway,9 parts are the basic level of human concepts not only because smaller parts are
easier to deal with, but also because different parts are to be handled differently. They pro-
posed that part configuration underlies the various empirical operations of perception, behavior
and communication that converge at the basic level. When describing or comprehending some
body of knowledge or set of phenomena, humans often begin by decomposing the thing to be
understood into separate parts. Through parts, humans use structure to comprehend, infer, and
predict functions. This makes parts the most informative level.

Another importance of parts in early human conceptual development was given by Mervis and
Greco.% Good examples help learning more rapidly and more accurately because they have
more of the perceptually salient and functionally significant parts; these are also the parts most
frequently shared by category members. On the contrary, poor examples that are less likely to
share these attributes sometimes can even confuse the learning process.

3. OBJECT DECOMPOSITION

Division of objects into regular primitives (spheres, cubes, tetrahedra, etc.) is used in CSG
(Constructive Solid Geometry) systems and in applications that use CSG representation. This
is useful in CAD/CAM applications because of the analogy between set operations and
mechanical manufacturing. However, this decomposition contains primitives that do not exist
in the visual scene; thus, it is not suitable for computer vision applications.

Phillips et al. 8 decomposed complex objects like rocks into compact subparts. They used
the convex enclosure to approximate the convex hull of an object, and computed the enclosure
deficiency as a measure of the compactness of objects. They decomposed non-compact object
recursively by a shrinking method until each subobject is sufficiently compact. By approxi-
mating each subpart with ellipsoid, they could compute properties of the object. However,
this method will not work for object like torus, which has high enclosure deficiency but can-
not be decomposed by shrinking. In fact, such an object is likely to be perceived as either a
single object or an object with a big hole.

Nevatia and Binford’ decomposed objects into generalized cylinders based on their axes and
cross sections. They segmented an object into parts that can be described by "smooth" gen-
eralized cylinders, where axis directions and cross-section functions change continuously.
First, they used a projection technique to determine local cones with axis direction pointing In
a number of equally-spaced directions (typically 8) of an object. Second, they refined each
local axis by a iterative axis/cross-section modification and merged consecutive cones by an
extension method until a discontinuity or jump occurred. Third, they chose the longest of
most elongated axis of each subpart. This segmentation is not expected to be perfect, in the
sense in which human will segment it. Of course, it is not unique either, although the number
of alternatives is small.
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Marr’ examined various types of joints between two generalized cylinders - side-to-end and
end-to-end. He used segmented 2-D contours and assumed that the surface inside the
enclosed contour is continuous. 2-D contours were decomposed by connecting high concavity
corners. The result of this decomposition is similar to what human does. However, the
heuristic rules used in connecting those strong segmentation points may not give a good
decomposition in more complex cases.

Hoffman and Richards* proposed a minima rule for partitioning surfaces based on the generic
intersection of surfaces - surfaces intersect transversally. The minima rule is to divide a sur-
face into parts at loci of negative minima of each principal curvature along its associated fam-
ily of lines of curvature. It will work only if the concave discontinuities form a closed con-
tour. However, in this case the decomposition is not unique and different partitions are all
reasonable.

4. OUR APPROACH
4.1 Introduction

The CAD system used in this work is the Alpha 1 solid modeling system, 10 developed at the
University of Utah. Alpha_1 models the geometry of solid objects by representing their boun-
daries using NURBS (NonUniform Rational B-spline Surfaces). NURBS not only allow
efficient representation for complex sculptured objects, but also give exact representation for
simple primitives, such as sphere, cone, torus, etc. Mathematical properties, such as locality,
continuity and variation diminishing, make NURBS a good design tool.

Using Alpha_1, objects can be designed with various geometric operators, such as extrude,
bend, stretch, warp, etc., or combinations of them using boolean operations, set union,
difference, intersection, etc. Trimmed NURBS, regions of a surface patch cut away are used
to represent the results of boolean operations. The ability to perform set operations on sculp-
tured surfaces, possibly nonclosed, combines the advantages of both CSG solid modeling and
boundary representation modeling. Alpha_ 1 also provides high quality graphics and feature-
based mechanical design and manufacturing, as well as a testbed for many advanced research
ideas.

In this work, models are decomposed along their concave edges. It is similar to the minima
rule by Hoffman and Richards and is a 3-D extension of Marr’s method. B-spline models are
approximated by polyhedra. Edge detection using surface normal curvature, approximated by
surface normal vectors, marks every possible edge as convex or concave and sharp or
rounded. Finally, surfaces are separated by enclosing them with concave edges.

4.2 Polygonal Approximation
For systems that create polyhedral CAD models, their models can be adopted directly in the

vision analysis. However, in Alpha 1 B-spline surfaces are used as the only underlying struc-
ture. Every surface, curved or planar, is described as tensor product B-splines. It is therefore,
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required to approximate the surface by polygons in order to obtain a polyhedral description.

Subdivisions are first applied to curved surfaces in order to obtain flat patches, within a given
tolerance. Polygonal approximations of flat patches then result in a polyhedral approximation
of the B-spline CAD model. Two steps are needed to have a valid polyhedral model: First,
the original CAD model should be valid and meet a set of geometrical and topological condi-
tions. Second, the subdivision and polygonal approximation procedures should preserve the
validation conditions. To satisfy these conditions, constraints are added to the Alpha_1 CAD
designs to make sure that adjacent patches have compatible, not necessarily the same,
parametrization along the common boundaries. The compatibility condition is maintained
easily by constructing adjacent patches from direct derivations (refinements, concatenations,
extractions, etc.) of the same B-spline curve along the adjacent common boundaries, Also,
adjacency information on surface patches contains not only the adjacent patches and their
adjacent sides but also the portion of the boundaries along which they are matched. For par-
tially or multiple adjacent patches, more than one adjacency information is asserted on each
side. This information is propagated to the subdivided patches whenever a subdivision occurs.

A global approach to the polygonal approximation is used such that all the required subdivi-
sions are first performed and then polygons are built for every small subpatch. Each polygon
contains not only the subpatch’s four corers but also the adjacent corners of all neighboring
patches. Therefore, the adjacency information on the subpatch can be mapped onto each side
of the approximated polygon thereby maintaining the topological validity of the resulting
polyhedron. '

Figure 2(b) shows a polyhedral approximation for the airplane CAD model in Figure 2(a).
Figure 3(a) shows a B-spline CAD model for a teapot. Its polyhedral approximation is shown
in Figure 3(b). Features can also be extracted from this polyhedral representation. For exam-
ple, Figure 4 shows the results of edge detection on the airplane and the teapot models by
thresholding the changes of the surface normal vectors along adjacent faces. Local features of
edges (such as line segments, circles, ellipses, etc.) can also be extracted from these results.?

4.3 Edge Detection

In general, edges can be defined as the contours of discontinuity of image/model properties.
Similarly, regions can be defined as the areas of continuity of properties. For example, in 2D
image analysis, edge pixels are characterized by having large intensity gradients compared to
their neighbors. Regions are the collection of pixels whose intensity are either close to each
other, or changing gradually. Edges can also be defined by the boundaries of regions, a_nd
regions as the interior of edge contours. However, edges extracted as pixels of high intensity
gradient may not always form closed contours. Sometimes, zero crossings are used to form
closed regions.

For 3D polyhedral objects, the property that we use is the surface normal. We define edges to
be the discontinuity, or sharp directional changes, of surface normal. For curved objects, this
is equivalent to the points of high surface curvature. For example, Figure 5 shows edgc
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detection on surface points sampling at various resolutions for the Renault piece by threshold-
ing the surface principal curvatures. The rightmost figure in Figure 5(a) shows the range data
acquired from a laser range finder with 0.12x0.08 inch spacing. The other two are sampled
from the CAD model with 0.2x0.2 and 0.1x0.1 spacing respectively. Figure 6 shows Gaus-
sian curvature and the principal curvatures of the teapot CAD model. Figure 7 shows the
zero crossings of Gaussian curvature. It is noted that the zero crossings not only give the
edges of high curvature and step edges, but also the edges corresponding to points of
inflection. Points of inflection can further segment faces into concave, convex, or saddle
regions.

4.4 Decomposition

Regions, usually called faces in 3D, are the connected area where surface normals are either
constant (flat faces) or change slowly (curved faces). Region growing on 3D surface is simi-
lar to 2D region growing problem. From a polyhedral approximation of the CAD model,
edges are detected and marked on each side of a face. To form a region bounded by the
detected edges, we do a depth-first traversal starting from an unvisited subdivision patch. For
each neighboring patch, if the neighbor is not visited and the shared boundary between them
is not marked as an edge, we mark the neighbor as visited and it is included in the same
region as the current patch. Otherwise, the growing is stopped and we go back to the next
neighbor. When the traversal ends and back to the starting patch, we have collected all the
patches of the region containing the staring patch. We repeat the region growing process
from another unvisited patch until all patches are visited and all regions are found.

4.4.1 Volume-Based Decomposition

5 To decompose a 3D object into solid parts, models are decomposed along the concave edges.
This method is similar to the minima rule by Hoffman and Richards, and is a 3D extension of
Marr’s method (see section 3). As stated above, edges are detected by using surface curva-
tures, or are obtained by using surface normals. Concave edges are those with negative Gaus-
sian curvature. Surface normal can also be used to detect whether an edge is concave or con-
vex. For true polyhedral objects, where edges and faces are all linear order, the latter will be
used.

Volume-based decomposition involves identifying the concave edges along which the decom-
position occurs. If we connect two points, each from the interior of one of the two adjacent
faces, the line segment between these two points should all fall outside the object if the edge
between the faces is concave, and inside the object if the edge is convex. In other words, if a
point from facel is outside the tangent plane of face2, the edge between facel and face2 is a
concave edge, provided facel is convex. For general cases, concave or curved faces, the
selected point must be close to the edge, preferably somewhere in the middle, but not on the
edge.

Figure 8 shows a simplified model of a hammer and the result of edge detection on the
polyhedral approximation of it. The solid lines are the convex edges, and the dashed line is a
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concave edge. Figure 9 shows two subparts of the hammer from the volume-based decompo-
sition. Decomposition of an airplane model (Figure 2(b)) is shown in Figure 10 and general- (
ized cylinder representation is shown in Figure 11.

4.4.2 Surface-Based Decomposition

The decomposition of objects into solid parts shows interesting results and can be useful in
applications such as assembly. For computer vision applications, since the only thing we see
is the surface of objects, surface-based decomposition is useful and necessary, in addition to
volume-based decomposition.

To decompose an object into faces, we simply include the convex edges in the region growing
process. Figure 12 shows the result of decomposing the hammer model into faces. If we
include all zero crossings of Gaussian curvature, the decomposed faces can also be labeled as
flat, convex, concave, or saddle. By using the two principal surface curvatures, surface can be
decomposed further into cylindrical, spherical patches, etc.

4.5 Vision Model Having Multiple Representations

A CAD system may use a representation scheme, such as NURBS or CSG tree, that is good
for modeling but does not, in general, contain all the features that are important for computer
vision applications. A systematic approach to building vision models is to construct features
from  the CAD database and incorporate those in the vision models that are crucial for object
recognition and manipulation. (

Most existing vision systems use only one representation in their models. However, there is
no single representation or a matching technique based on a single representation that can
efficiently and reliably represent different classes of 3D objects for object recognition. The
CAD-based approach allows the construction of models employing several representations;
thus, is able to handle a wider class of objects. Moreover, it allows different parts of the
same object to have different representations.

Multiple-representations description can be derived for each of the subparts using various
techniques described by Bhanu and Ho.! For example, subparts of the hammer can be
described as two GCs or one GC and one polyhedron (see Figure 13).

S. CONCLUSIONS

In this paper we have presented approaches for building hierarchical vision models of objects
with multiple representations. From a computational point of view, hierarchical representation
simplifies the complexity of the problem. Representations of a 3-D object using hierarchical
structures based on the decomposition of the object’s surface and/or volume are helpful in
many practical situations. For computer vision applications, such as object recognition, it pro-
vides a solution for the recognition of partially occluded objects. This is important since self
occlusion may occur even for a single object, specially if the object is concave. Psychological

.
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studies have demonstrated the importance of object parts in human visual recognition. We are
using multiple object representations in our current work for object recognition.
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Figure 2. Airplane model
(a) B-spline model of an airplane
(b) Polyhedral approximation of (a)
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(a) @

Figure 4. Extraction of features from the
polyhedral approximation
(a) Edge detection on an airplane model
(b) Edge detection on a teapot model

Figure 3. Polyhedral representation for a teapot
(a) B-spline model for a teapot
(b) Polyhedral approximation of (a)
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(a)

(b)

Figure 5. Surface_points and extrema of principal curvatures for Renault piece
(a? Sampling of surface points at various resolutions (from left to
right: 0.2 x 0.2, 0.1 x 0.1, and 0.12 x 0.08 inch spacing),

(b) ?d?e points as the extrema of principal curvatures for figures
in (a).

(a)

Figure 7. Zero crossings of Gaussian
curvature on a teapot model

Figure 6. Surface curvatures of B-spline CAD models
(a) Gaussian curvature of teapot model
(b) The extrema of principal curvatures
of a teapot model

C
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® (a)
Figure 8. A hammer model and edge detection results

(a) A simplified hammer model
(b) Edge detection results on (a)

(b)

Figure 11, Generalized cylinder r
Oon subparts of an
(a)

epresentation
airplane

Cross sections of GCs of an airplane

(b) Axis of generalized cylinder in (a)
Figure 10. Decomposition of an airplane
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(a)

®)
: . . Figure 13. Multiple representations of a hammer
Figure 12. Surface decomposition into (a) Two generalized cylinders
faces on a hammer model

representation
(b) One generalized cylinder
and one polyhedron
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