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Abstract

One of the fundamental weaknesses of current computer
vision systems to be used in practical outdoor applications
is their inability to adapt the segmentation process as real-
world changes occur in the image. We present the first
closed loop image segmentation system which incorporates
a genetic algorithm to adapt the segmentation process to
changes in image characteristics caused by variable
environmental conditions such as time of day, time of year,
clouds, etc. The segmentation problem is formulated as an
optimization problem and the genetic algorithm efficiently
searches the hyperspace of segmentation* parameter
combinations to determine the parameter set which
maximizes the segmentation quality criteria. The goals of
our adaptive image segmentation system are to provide
“ continuous adaptation to normal environmental variations,
to exhibit machine learning capabilities, and to provide
robust performance when interacting with a dynamic
environment. We present experimental results which
demonstrate that genetic algorithm can be successfully used
to adapt the segmentation performance automatically in
outdoor color imagery.

1. INTRODUCTION

Image segmentation is typically the first, and most difficult
task of any automated image understanding process. All
subsequent interpretation tasksincluding object detection,
feature extraction, object recognition, and classification rely
heavily on the quality of the segmentation process. Despite
the large number of segmentation techniques presently
available [3,6], no general methods have been found that
perform adequately across a diverse set of imagery. Only
after many modifications to its control parameter set can any
current segmentation technique be used to process the
diversity of images found in real world applications. When
presented with a new image, selecting the appropriate set of
algorithm parameters is the key to effectively segmenting
the image. The image segmentation problem can be
characterized by several factors which make the parameter
selection process very difficult. First, most segmentation
techniques contain numerous control parameters which must
be adjusted to obtain optimal performance. The size of the
parameter search space in these systems can be prohibitively
large, unless it is traversed in a highly efficient manner.

Second, the parameters within most segmentation
algorithms typically interact in a complex, non-linear
fashion, which makes it difficult or impossible to model the
parameters' behavior in an algorithmic or rule-based fashion.
Third, since variations between images cause changes in the
segmentation results, the objective function that represents
segmentation quality varies from image to image. The
search technique used 1o optimize the objective function
must be able to-adapt to these variations. Finally, the
definition of the objective function itself can be subject to
debate because there are no universally accepted measures of
image segmentation quality.

Hence, we must apply a technique that can efficiently search
the complex space of parameter combinations and locate the
values which yield optimal results. The approach should
not be dependent on the particular application domain nor
should it have to rely on detailed knowledge pertinent to the
selected segmentation algorithm. The key elements of our
adaptive image segmentation system are: (1) A closed-loop
feedback control technique that consists of a genetic learning
component, an image segmentation component, and a
segmented image evaluation component; (2) A genetic
learning system that optimizes segmentation performance of
each image and accumulates segmentation experience over
time to reduce the effort needed to optimize the segmentation
quality of succeeding images; (3) Image characteristics and
external image variables are represented and manipulated
using both numeric and symbolic forms within the genetic
knowledge structure, only the segmentation parameters are
represented and manipulated in binary strings; (4) Image
segmentation performance is evaluated using five measures
of segmentation quality that measure global characteristics
of the entire image as well as local features of individual
object regions; (5) The adaptive segmentation system is not
dependent on any specific segmentation algorithm or type of
sensor. The performance of the adaptive algorithm will be
limited by the capabilities of the segmentation algorithm,
but the results will be optimal for a given image based on
our evaluation criteria.

To date, no segmentation algorithm has been developed
which can automatically generate an "ideal" segmentation
result in one pass (or in an open loop manner) over a range
of scenarios encountered in practical outdoor applications.
While there are adaptive threshold selection techniques



[12,14] for segmentation, these techniques do not
accomplish any learning from experience to improve the
performance of the system. Any technique, no matter how
"sophisticated" it may be, will eventually yield poor
performance if it can not adapt to the variations in outdoor
scenes. Therefore, in this paper we attempt to address this
fundamental bottleneck in developing "useful" computer
vision systems for practical scenarios by developing a
closed-loop system that incorporates a genetic algorithm and
automatically adapts the segmentation algorithm's
performance by changing its control parameters and will be
valid across a wide diversity of image characteristics and
application scenarios.

2. ADAPTIVE IMAGE SEGMENTATION
SYSTEM

2.1 SEGMENTATION AS A SEARCH
PROBLEM

Fig. 1 shows an outdoor image and the typical segmentation
quality surface (discussed in Section 2.2.4) associated with
the image in which only two segmentation parameters
[8,13] are being varied. Because of the large number of
potential parameter combinations and the subtle interaction
of the algorithm parameters, the objective function is
complex, multimodal, and presents problems for many
commonly used search and optimization techniques. The
drawbacks to some of these methodologies for the
segmentation optimization problem are summarized by Lee
[9].

Genetic algorithms [1,2,4,5,7] which are designed to
efficiently locate an approximate global maximum in a
search space show great promise in solving the parameter
selection problem encountered in the image segmentation
task. Since they use simple recombinations of existing
high quality individuals and a method of measuring current
performance, they do not require complex surface
descriptions, domain specific knowledge, or measures of
goal distance. Moreover, due to the generality of the genetic
process, they are independent of the segmentation technique
used, requiring only a measure-of performance (which we
refer to as segmentation quality) for any given parameter
combination.

2.2 ADAPTIVE IMAGE SEGMENTATION

Adaptive image segmentation requires the ability to modify
control parameters in order to respond to changes that occur
in the image as a result of varying environmental
conditions. The block diagram of our approach is shown in
Fig. 2. After acquiring an input image, the system analyzes
the image characteristics and passes this information, in
conjunction with the observed external variables, to the
genetic learning component. Using this data, the genetic
learning system selects an appropriate parameter
combination, which is passed to the image segmentation
process. After the image has been segmented, the results are
evaluated and an appropriate reward is generated and passed
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back to the genetic algorithm. This process continues until
a segmentation result of acceptable quality is produced. The
details of each component in this procedure will be described
in the following subsections.

2.2.1 Image Characteristics

We compute twelve first order image properties for each
color component (red, green, and blue) of the image. These
features include mean, variance, skewness, kurtosis, energy,
entropy, X intensity centroid, y intensity centroid, maximum
peak height, maximum peak location, interval set score, and
interval set size. Since we use a black/white version of the
image to compute edge information and object contrast
during the evaluation process, we also compute the twelve
features for the Y (luminance component) image as well.
Combining the image characteristic data from these four
components yields a list of 48 elements. In addition, we
utilize two external variables, time of day and weather
conditions. The external variables are represented
symbolically in the list structure (e.g., time = 9am, 10am,
etc. and weather conditions = sunny, cloudy, hazy, etc). The
distances between these values are computed symbolically
when measuring image similarity. The two external
variables are added to the list to create an image characteristic
list of 50 elements. A system consisting of knowledge
structures is used to store the image characteristics and the
associated segmentation parameters that are generated by the
genetic learning system.

2.2.2 Genetic Learning System

Fig. 3 shows a simple example of our genetic learning
system. The image characteristics for a new image are
compared with the individuals in the global population to
obtain the initial seed for the local population. The global
population represents the accumulated segmentation
experience for all images that the system has processed
whereas the local population contains the set of
segmentation parameters processed by the genetic algorithm
during the optimization of the current image. To obtain the
initial local population (seed population) for a new image
from the global population, a normalized Euclidean feature
distance is computed from the new image to every member
of the global population and this distance is used along with
the fitness of each individual in the global population for
selecting the closest individuals. Although we have limited
the seed population to 3 in this example, our experiments
utilize a seed population of 10 individuals. The global
population holds 100 knowledge structures in order to
maintain a diverse collection of segmentation experience.
The parameter sets in the seed population are used to
segment the image and the results are evaluated to generate a
fitness for each individual. The fitness value (leftmost value
in the list) varies from 0.0 to 1.0 and measures the quality
of the segmentation parameter set. Note that only the
fitness value and the action portion (segmentation
parameters) of the knowledge structure are subject to genetic
adaptation; the conditions (image characteristics) remain
fixed for the life of the structure. If the fitness values are




364 Bhanu, Lee, and Ming

not acceptable, the individuals are recombined and the
process repeats. Each pass through the loop (segmentation-
evaluation-recombination), is known as a generation. The
cycle continues until the maximum fitness achieved at the
end of a generation exceeds some threshold. The global
population is updated using the high quality members of the
local population from the current image and the system is
then ready to process another image.

2.2.3 Segmentation Algorithm

Since we are working with color imagery in our
experiments, we have selected the well known Phoenix
segmentation algorithm developed at Carnegie Mellon
University [8,10,13]. Phoenix, which was the subject of
several PhD dissertations, has been widely used, refined, and
documented. The algorithm, which is based on a recursive
region-splitting approach, has been extensively tested on
color imagery. Phoenix [8] contains fourteen different
control parameters which are used to control the thresholds
and termination conditions used within the algorithm. There
are 10 33 conceivable parameter combinations using these
fourteen values. Of the fourteen values, we have selected
two of the most critical parameters that affect the overall
results of the segmentation process, maxmin and hsmooth.
Maxmin specifies the lowest acceptable peak-to-valley-
height ratio used when deciding whether or not-to split a
large region into two or more smaller parts. Hsmooth
controls the width of the window used to smooth the
histogram of each image region during segmentation. The
use of only two parameters for the initial tests aids in the
visualization of the optimization process since we can plot
the associated segmentation quality corresponding to each
parameter combination using a 3D plotting technique.
Future research will incorporate a larger number of
modifiable parameters.

2.2.4 Segmentation Evaluation

There are a large number of segmentation quality measures
that have been suggested, although none have achieved
widespread acceptance as a universal measure of
segmentation quality. In order to overcome the drawbacks of
using only a single quality measure,' we have incorporated an
evaluation technique that uses five different quality measures
to determine the overall fitness for a particular parameter set.
The five segmentation quality measures are:

(1) Edge-Border Coincidence: Measures the overlap of the
region borders in the image acquired from the segmentation
algorithm relative to an edge image.

(2) Boundary Consistency: Similar to edge-border
coincidence, except that region borders which do not exactly
overlap edges can be matched with each other. Also, region
borders which do not match with any edges are used to
penalize the segmentation quality [9].

(3) Pixel Classification: This measure is based on the
number of object pixels classified as background pixels and
the number of background pixels classified as object pixels.

(4) Object Overiap: Measures the area of intersection
between the object region in the ground truth image and the
segmented image.

(5) Object Contrast: Measures the contrast between the
object and the background in the segmented image, relative
to the object contrast in the ground truth image.

The maximum and minimum values for each of the five
segmentation quality measures are 1.0 and 0.0, respectively.
The first two quality measures are global measures since
they evaluate the segmentation quality of the whole image
with respect to edge information. Conversely, the last three
quality measures are local measures since they only evaluate
the segmentation quality for the object regions of interest in
the image. When an object is broken up into smaller parts
during the segmentation process, only the largest region
which overlaps the actual object in the image is used in
computing the local quality measures. The three local
measures require the availability of object ground truth
information in order to correctly evaluate segmentation
quality. Since we desire good object regions as well as high
quality overall segmentafion results, we have combined
global and local quality measures (with equal weighting) to
obtain a combined segmentation quality measure that
maximizes overall performance of the system. Fig. 4 shows
the surfaces defined for the five individual quality measures

that are used to create the combined quality measure surface
shown in Fig 1.

3. EXPERIMENTAL RESULTS

An initial database of outdoor imagery was collected to
demonstrate the system's ability to adapt to real world
conditions and produce the best segmentation result based on
our evaluation criteria. The database consists of twenty
frames that were collected approximately every 15 minutes
over a 5 hour period (1:30 pm to 6:30 pm) using a JVC
GXF700U color video camera. A representative subset of
these images is shown in Fig. 5. This database will be used
to describe the experimental results. Weather conditions in
our image database varied from bright sun to overcast skies.
Varying light level is the most prominent change
throughout the image sequence, although the environmental
conditions also created varying object highlights, moving
shadows, and many subtle contrast changes between the
objects in the image. The car in the image is the object of
interest. The auto-iris mechanism in the camera was
functioning, which causes a similar appearance in the
background foliage throughout the image sequence. Even
with the auto-iris capability built into the camera, there is
still a wide variation in image characteristics across the
image sequence. This variation requires the use of an
adaptive segmentation approach to compensate for these
changes.

To precisely evaluate the effectiveness of the adaptive image
segmentation system, we exhaustively defined the
segmentation quality surfaces for each frame. The



segmentation quality surfaces were defined for preselected
ranges of maxmin and hsmooth parameters Maxmin
values, which affect segmentation performance in a non-
linear fashion, were sampled exponentially over a range of
values from 100 to 471. Values near 100 were spaced closer
together than values at the upper end of the range. Hsmooth
values were sampled linearly using numbers between 1 and
63. By selecting 32 discrete values (5 bits of resolution) for
each of these parameter ranges, the search space contained
1024 different parameter combinations.

3.1 BASIC EXPERIMENTS

The first set of experiments with the adaptive segmentation
system was divided into two separate phases: 1) a training
phase where the optimization capabilities of the genetic
algorithm were measured; and 2) a testing phase where we
evaluated the reduction in effort achieved by utilizing
previous segmentation experience. The image data was
separated into two halves, 10 images (1,3,...,19) for training
and 10 images (2,4,...,20) for testing. During the training
phase, seed populations were selected using random
locations on the combined segmentation quality surface for
each image. The genetic system was then invoked using the
sced population for each image and the convergence rate of
the process was measured. Each training image was
processed 100 times, each with a different collection of
random starting points. These results were combined to
compute the average number of generations needed to
optimize each surface. The genetic component used a local
population size of 10, a crossover rate of 0.8, and mutation
rate of 0.01. A crossover rate of 0.8 indicates that, on
average, 8 out of 10 members of the population will be
selected for recombination during each generation. The
mutation rate of 0.01 implies that on average, 1 out of 100
bits is mutated during the crossover operation to insure
diversity in the local population.

The stopping criteria for the genetic process contains three
tests.  First, since the global maximum for each
segmentation quality surface was known a priori (recall that
the entire surface was precomputed), the first stopping
criteria was the location of a parameter combination with
95% segmentation quality or higher. In experiments where
the entire surface is not precomputed, this stopping criteria
would be discarded. Second, the process terminates if 3
consecutive generations produce a decrease in the average
population fitness for the local population. Third, if 5
consecutive generations fail to produce a new maximum
value for the average population fitness, the genetic process
terminates. If any one of these three conditions is met, the
processing of the current image is stopped and the maximum
segmentation quality currently in the local population is

Fig. 6 shows the combined segmentation quality surfaces for
the images shown in Fig. 5. Note that due to the

complexity of these surfaces, most commonly-used search
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techniques [9] would not be effective at optimizing the
segmentation quality.

At the end of training phase, the final local population from
each of the training images (1,3....,19) was combined to
create a global population of 100 individuals. From this
global population, the 10 initial seed members of each local
population for the testing images (2,4,...,20) were selected.
The testing was performed in a parallel fashion; the final
local population for each of the testing images was not
placed back into the global population for these tests. The
alternative approach to testing, which processes each frame
in the outdoor imagery database in a sequential manner and
integrates the results into the global population, has been
discussed in detail in [9].

For testing phase since the fitness of each seed population is
based on previous segmentation experience, the genetic
process is able to converge to the global maximum much
faster during the testing phase. During the training
experiments, the maximum number of generations was 13,
the minimum number was 5, and the average number of
generations was 9. By combining the information
accumulated during training in the global population, the
average number of generations was reduced from 9 during
training to 3 during testing. This represents a considerable
improvement in the adaptive system's efficiency. On
average, the adaptive segmentation system visits
approximately 2.5% of the search space (i.e., ~ 2.5
generations) for the experiments described here.

Since there are no other known adaptive segmentation
techniques in the computer vision field to compare our
system with, we measured the performance of the adaptive
image segmentation system relative to the set of default
Phoenix segmentation parameters [8,13] and a traditional
optimization approach. The default parameters have been
suggested after extensive amounts of testing by various
researchers who developed the Phoenix algorithm [8]. The
parameters for traditional approach are obtained by manually
optimizing the segmentation algorithm on the first image in
the database and then utilizing that parameter set for the
remainder of the experiments.- This approach to
segmentation quality optimization is currently standard
practice in state-of-the-art computer vision systems. Fig. 7
presents the comparison of these three approaches. The
average segmentation quality for the adaptive segmentation
technique was 95.8% (average of 100 experiments). In
contrast, the performance of the default parameters was only
55.6% while the traditional approach provided 63.2%
accuracy. As the figure shows, the performance of both of
these alternative approaches was highly erratic throughout
the sequence. Fig. 8 illustrates the quality of the
segmentation results associated with the adaptive system,
the default parameters, and the traditional approach. Each
result corresponds to the average segmentation performance
produced by each technique for the first frame in the
database. By comparing the extracted car region in each of
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these images, as well as the overall segmentation of the
entire image, it is clear that the adaptive segmentation
results are superior to the other methods.

3.2 COMPARISON OF THE ADPATIVE
SYSTEM WITH RANDOM SEARCH

Several tests were performed to compare the optimization
capabilities of the adaptive segmentation system with a
simple random walk through the search space. This
experiment used only the training images (1,3,...,19) from
the outdoor image database so that the adaptive system
would not benefit from the reuse of segmentation experience
from one image to the next. The intent of this restriction
was to measure the efficiency of the genetic algorithm in
optimizing a complex surface. In addition, the stopping
criteria for the adaptive system was simplified so that when
a surface point with 95% segmentation quality or better was
located, the optimization process would terminate. The
random walk algorithm searched the segmentation quality
surface by visiting points randomly and used the same 95%
stopping criteria. Finally, in order to insure correctness of
the results, each segmentation quality surface was optimized
by each technique 100 times and the results are averaged to
create the performance figures.

Fig. 9 presents a comparison of the efficiency for the two
techniques described above. The bars represent the total
number of points visited on the surface using each technique
for each of the images and the average number of points
visited for each approach. As the average values show, the
adaptive technique is far superior to the random walk
approach. In addition, the average number of points visited
by the adaptive approach is ~ 6.9% of the total number of
points on the surface, compared to the earlier experiments
where we processed ~ 2.5% of the surface, since we have not
reused any segmentation experience gained from processing
earlier images. Fig. 10 contrasts the segmentation quality
achieved by the two techniques. Since the adaptive
segmentation technique insures the achievement of a near
global maximum for each image, we modified the random
walk approach so that it would terminate after the same
number of visited- locations required by the adaptive
technique. The maximum segmentation quality achieved by
the random approach was then compared with the adaptive
system. On the average, the adaptive system achieved
99.3% segmentation quality after the number of
segmentations shown in Fig. 9. In comparison, the random
walk achieved only 81.4% of the maximum quality for the
same number of segmentations for each image.

3.3 THE EFFECTIVENESS OF THE
REPRODUCTION AND CROSSOVER
OPERATORS

A number of tests were performed to demonstrate the
effectiveness of the reproduction and crossover operators in
the adaptive image segmentation system. The optimization
capability of the pure genetic algorithm was compared with
two variations of the genetic algorithm. The first variation

of the pure genetic algorithm was implemented without a
reproduction operator. Instead of reproducing individuals
according to their fitness values, the algorithm selected the
individuals at random for further genetic operator action with
the restriction that any individual be selected only once. The
second variation of the genetic algorithm simply skipped a
crossover operator. To ensure that this approach generates
about the same number of offsprings as the pure genetic
algorithm, the mutation rate of this approach was increased
to the crossover rate (0.8) of the genetic process. The
stopping criteria for each technique is to locate a surface
point with 95% or higher segmentation quality. In order to
ensure correctness of the results each image was tested by
each technique 100 times and the results were averaged to
create the performance figures. Fig. 11 presents the
comparison of the optimization capability for three
techniques. As the histograms show, the pure genetic
algorithm results are much better than the results of the
other two approaches for both the training and testing
experiments. This demonstrates that the reproduction and
crossover operators are critical for the success of genetic
algorithms. — )

4. CONCLUSIONS

We have shown the ability of the adaptive image
segmentation system using genetic algorithm to provide
high quality (> 95%) segmentation results in a minimal
number of segmentation cycles. The performance
improvement provided by the adaptive system was
consistently greater than ~33% over the traditional approach
or the default segmentation parameters [8,13]. Using
outdoor data, for the first time, we have shown that learning
from experience can be used to improve the performance of
the segmentation process. There are many more
experiments that we have performed when the segmentation
quality is a vector valued function [11] and optimization
technique is either a pure genetic algorithm or a combination
of genetic algorithm and hill climbing [9]. Although the
segmentation and interpretation processes are interlinked, we
have investigated how much the segmentation performance
can be improved without complicating the adaptive
segmentation process with the effects of recognition system
performance. There are many ways in which adaptive image
segmentation system described here can be used in practical
computer vision systems. These research topics are
currently under investigation.
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