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ABSTRACT

In the Autonomous Land Vehicle (ALV) application scenario, a
significant amount of positional error is accumnulated in the land
navigation system after traversing long distances. Landmark
recognition can be used to update the land navigation system by
recognizing the observed objects in the scene and associating
them with the specific landmarks in the geographic map
knowledge-base. In this paper we present a novel landmark
recognition technique based on a perception-reasoning-action
and expectation paradigm of an intelligent agent. It uses
extensive map and domain dependent knowledge in a model-
based approach. It performs spatial reasoning by using N-ary
relations in combination with negative and positive evidences.
Since it can predicts the appearance and disappearance of

objects, it reduces the computational complexity and uncertainty

in labeling objects. It provides a flexible and modular
computational framework for abstracting image information and
modeling objects in heterogeneous representations. We present
examples using real ALV images.

I. INTRODUCTION

In order to accomplish missions such as surveillance, search and
rescue and munitions deployment, an Autonomous Land Vehicle
(ALYV) has to travel long distances. This results in a significant
amount of positional error in the land navigation system.
Landmark recognition is used to update the land navigation
system, thus guiding the ALV to remain on its proper course.
Landmarks of interest include telephone poles, storage tanks,
buildings, houses, gates, etc.

Model-based vision has been a popular paradigm in computer
vision since it reduces the problem complexity and no learning is
involved. Binford (6] has given a summary of model-based
vision work. He has described several systems including the
work of Brooks [7] on ACRONYM, Riseman and Hanson's
[12] work on VISIONS, and Nagao and Matsuyama's [14]
work on the analysis of complex aerial photographs. McKeown
et al (13] have used map and domain specific knowledge in the
SPAM rule-based systems for the interpretation of airport scenes
in aerial images. Hwang [10] has also used domain knowledge
to guide interpretation of suburban house scenes in aerial
imagery. He has used test-hypothesize-act sequence to generate
large number of hypotheses which are then integrated into a
consistent interpretation. Bhanu [1-4] has used several
modeling and relaxadon matching techniques for the recognition

of 2-D and 3-D nonoccluded and occluded objects.  As
compared to all the previous related work, as mentioned in the
above, the paradigm of an intelligent agent (like the ALV) which
we have used here is based on the perception-reasoning-action
and expectation cycle. Thus we have an expectation-driven,
knowledge-based landmark recognition system called
PREACTE (Perception-REasoning-ACTion and Expectation),
that utilizes a priori, map and perceptual knowledge, spatal
reasoning and knowledge aggregation methods. In contrast to
the work of Davis (9], explicit knowledge about the map and
landmarks is assumed to be given and it is represented in a
relational network. It is used to generate an Expected Site Model
(ESM) given the ALYV location and its velocity. Landmarks at a
particular map site have their 3-D models stored in
heterogeneous representations. The vision system generates a 2-
D and partial 3-D scenc model from the observed scene. The
ESM hypothesis is verified by matching it to the image model.
The matching problem is solved by using object grouping and
spatial reasoning. Positive as well as negative evidences are
used to verify the existence of each landmark in the scene. The
system also provides feedback control to the low-level processes
to permit adaptation of the feature detection algorithms

parameters to changing illumination and environmental
conditions.

In the following, we present the details of the PREACTE system
and examples of landmark recognidon using real ALV imagery.
It is worth mentioning that PREACTE is a component
subsystem of a much larger system. Other parts of the system
will be referred to but not described.

II. CONCEPTUAL APPROACH

The task of visual landmark recognition in the autonomous
vehicle scenario can be categorized as (a) uninformed and (b)
informed. In the uninformed case, given a map representation,
the vision system attempts to attach specific landmark labels to
segmented image regions of an arbitrary observed scene and
infers the locaton of the vehicle in the map (world). On the
other hand, in the informed case, while the task is the same as
earlier, there is a priori knowledge (with a certain level of
certainty) of the past location of vehicle in the map and its
velocity. It is the informed case that is of interest to the
discussion of this paper. There are a number of assumptions
made in this landmark recognition approach. They include: 1)
a forward looking fixed camera model is given, 2) traversal by
the vehicle is allowed only on defined routes, and 3 ) minor
range variations from a given site does not lead to major changes
in the objects’ appearance in the image and their spatial
distributions.
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Fig. 1 illustrates the overall approach for PREACTE's landmark
recognition task. It is a top-down expectation-driven approach,
whereby an Expected Site Model (ESM) of the map is generated
based on domain-dependent knowledge of the current (or
projected) location of the vehicle in the map and vehicle's
velocity. The ESM contains models of the expected map site
and its landmarks. This expectation provides the hypotheses to
be verified by the content of an image to be acquired after a
computed time t, given the velocity of the vehicle and the
distance between the current site and the predicted one. While
this approach may seem similar to other hypothesis-verification
concepts, it is not only unique by its added expectations but also
in its extensive and explicit domain specific knowledge which
contributes to enhanced performance. Site models introduce
spatial constraints on the locations and distributions of
landmarks, by using a "road" model as a reference. Spatial
constraints greatly reduce the search space while artempting to
find a correspondence between the image regions and a model.
This mapping is usually many-to-one in compiex outdoor
scenes, because of imperfect segmentation.

In the segmented image each region-based feature such as size,
texture, color, etc. provides an independent evidence for the
existence of an expected landmark. Evidence accrual is
accomplished by an extension of a heuristic Bayesian formula
(8], which will be discussed in Section IL3. The heuristic
formula is used to compute the certainty about a map site
location based on the certainty of the previous site and the
¢vidences of each landmark existence at the current site. Similar

formulation was suggested by Lowe [11] for evidential
reasoning for visual recognition.

A. Map/Landmark Knowledge-Base

Extensive map knowledge and land
fundamental top ge and landmarks models are

1 2 the recognition task. Our map representation
relies heavily on declarative and explicit knowledge instead of
procedural ‘methods on relational databases (13]. The map
knowledge is represented in a hierarchical relational network, as

illusrated in Fig. 2. The entire map is divided into 25 sectors (5
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horizontally and 5 vertically). Each sector contains four
quadrants which in turn contain a number of surveyed sites (Fig.
3). All map primitives are represented in a schema structure.
The map dimensions are characterized by their cartographic
coordinates. Schema representation provides an object-oriented
computational environment which supports the inheritance of
different map primitives properties and allows modular and
flexible means for searching and updating the map knowledge
base. The map sites between which the vehicle raverses have
been surveyed and characterized by site numbers. An aerial

photograph with numbered sites is shown in Fig. 3.
Knowledge acquired about these sites includes: approximate <
ladtude, longitude, elevaton >, distance between sites, terrain
descriptions, landmarks labels contained in a site, etc. Such site
information is represented in a SITE schema, with
corresponding slots, as illustrated in Fig. 2. Slots names
include: HAS_LANDMARKS, NEXT_SITE, LOCATION,
SPATIAL_MODEL, etc. A critcal slot is NEXT_SITE which
has an "active" value. By active, it is meant that it is dependent
on a variable (demon) which is the vehicle direction (North,
South, etc.). For different raversal directions from the current
site, the names of the neighboring sites are explicitly declared in
the NEXT-SITE slot, as shown in Fig. 4. The
SPATIAL_MODEL defines the "expectation zone" of the
landmarks (in the image) with respect to the road and with
respect to each others. It also specifies the minimum and
maximum distance of each landmark from the road borderline.
Each landmark is represented as a schema or a collection of
schemas. Each landmark is represented as an instance of a
landmark-class which, in turn, is an instance of an object-class.
For example, T-POLE-17 is an instance of POLE, which is an
instance of MAN_MADE_OBIJECTS. Instances in this case
inherit some properties and declare others.

This declarative and hierarchical representation of the knowledge
allows not only a natural conceptual mapping, but also a flexible
means for pattern matching, data access, tracing of the reasoning
process and maintenance of the knowledge base. The slots and
their values in a LANDMARK schema correspond to the
landmark's attributes such as color, texture, shape, geometric
model, etc. The landmark attributes are characterized
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Fig. 2. Map knowl—edgc mp;sénmﬁon and graphic illustration
of the approach based on the perception-reasoning-action
and expectation paradigm.
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“symbolically, such as color is "black", texture is" smooth", and

shape is "elongated”. Each attribute's value is assigned a
likelihood that characterizes its discriminant strength. For
example, the fact that poles are elongated, place a high likelihood
value ( 0.8) on having an elongated shape. The knowledge
acquisition for modeling each landmark in the knowledge base is
performed by abstracting and characterizing map data through
actual observations and measurements, and observations of
images taken at individual sites. The groundtruth values of each
landmark attribute are obtained from a combination of actual
metrics, and approximations of features extracted from hand
segmented images. Three dimensional geometric models are
represented in the geometric-model slot of a LANDMARK
schema. Different modeling techniques are available for
different landmarks. For example, buildings are represented as
wire-frames, while poles are represented as generalized
cylinders. Thus models are allowed to have heterogeneous
representations. Image description is obtained by projecting the
3-D model on a 2-D plane using perspective transformations.
This hybrid representational framework for object modeling
provides a unique ability to combine different types of object
descriptions (semantic, geometric and relational). This in turn
allows the system to perform more robustly and efficiently, and
recover from a single bad representation.

B. Prediction

Given the a priori knowledge of the vehicle's current location in
the map space and its velocity, it is possible to predict the
upcoming site that will be traversed through the explicit
representation of the map knowledge and the proper control
procedures. The Map/Landmark Reasoner (MLR) provides
such control, by invoking the active values in the NEXT_SITE
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Fig. 3. Acrial photograph of the map.

slot of the current SITE schema, as described earlier. The ESM

is a "provision" by the MLR to make the expected site and its
corresponding landmark schemas as an "active” hypothesis to be
verified. In parallel to predicting the next site, the distance
between the current and the expected site along with the vehicle
velocity are used to predict the (arrival) time at which the
sequence of images should be processed to verify the
hypothesized ESM. Evidence accrual and knowledge
aggregation is dynamically performed between sites to confirm
arrival time at the predicted site [5]. The ESM of SITE-110
shown in Fig. 7 is as follows:

(DEFSCHEMA SITE-110

(SITE 110)

(LOCATION (392961.7 1050742.9))
(INSTANCE - OF SITE)

(STATUS ACTIVE)

(VIEW FRONT)

(HAS-LANDMARKS  (T-POLE-110 G-TANK-10 BLDG-110))
(NEXT-SITE (E 109 0.255) (W 111 0.153))
(SPATIAL-MODEL SM-110)

(TERRAIN-TYPE NIL))

‘((T-POLE-110  G-TANK-110
(T-POLE-110

(SETQ SM-110 BLDG-110)
(LEFT-OF ROAD)
(MIN-L-DIST-ROAD 160)

(MAX-L-DIST-ROAD 200)

(G-TANK-110 (RIGHT-OF ROAD)
(MIN-R-DIST 200)
(MAX-R-DIST  250))

(BLDG-110 (ABOVE G-TANK-110)
(RIGHT-OF ROAD)

(MIN-R-DIST  230)
(MAX-R-DIST  280))))
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Fig. 4. Next-Site slot representation in a SITE schema provides
the expected site and distance to it based on the vehicle
direction.

Predictions are also used by the low-level image processing . A
priori knowledge of the objects’ atributes which will appear in
the image and their relative locations guide the segmentation. A
rule-based system is invoked to interpret the corresponding
information in the ESM, which results in properly adapting the
segmentation parameters based on the landmarks’
distinguishing artributes, such as color , locaton, texture,etc.

C. Image Modeling

An image model for the task of landmark recognition is a
collection of regions-of-interest extracted by a region-based
segmentation method. A region-of-interest for this task is
constrained by an upper and lower bound on its size. This
means that after performing some region splitting and merging,
most of the very small and the very large regions are merged or
discarded from the image. In addition, regions-of-interest do
not include any regions that represent moving objects in the
scene as determined by the moton analysis module. A number
of image features are extracted for each region, such as color,
length, size, perimeter, texture, Minimum Bounding Rectangle
(MBR), ectc., as well as some derived features such as
elongation, linearity, compacmess, etc. All image information is
available in the blackboard (Fig. 1), which is a superset model
of all the results collected from different image understanding
modules. The landmark recognition system operates as a
"knowledge source”. There are other knowledge sources with
other tasks such as object recognition (other than landmarks) and
motion analysis. The blackboard piays the role of a central
knowledge structure among these different knowledge sources.
During the process of extracting regions-of-interest for landmark
recognition there is a risk of ignoring regions in the image that
are part of the actual landmarks. These regions could have been
split to very small regions or merged with very large ones,
which is a natural outcome of the inherently weak segmentaton
methods. Symbolic feature extraction is performed on the
region-based features. So, instead of having area = 1500
(pixels) and intensity = 52, we could have area = large and
intensity = low. The symbolic characterizaton of the features
using "relative” image information provides a better abstraction
of the image and a framework for knowledge-based reasoning.
On one hand, this has the advantage of making the feature space
smaller, therefore easier to manipulate. On the other hand, it
makes it insensitive to feature variations in the image.

Each set of region featres is represented in a schema structure
instead of a feature vector as in pattern recognition. This
schema representation of regions does not have any conceptual
justifications, however it provides a compatible data structure
with the landmark models in the knowledge-base. Most of the
region features have representative attributes in the landmarks
models. This allows symbolic pattern matching to be
performed easily by the high-level vision knowledge sources.
Beyond that, it makes the reasoning process more raceable.

(xc, yc)/

Fig. 5. Road model representation.

A critical region in the image is the road region, which is used as
a reference in the image model. Spatial constraints are applied
on the regions-of-interest to find which regions in the image fall
to the left and to the right of the road. The road is easily
segmented out in similar imaging scenarios, using current state-
of-the-art road segmentation techniques (currently used in the
ALV). This is assuming that it is a "structured” road (i.e.,
asphalt, concrete, etc.) that provides good contrast (not dirt
roads). The road is represented in the model by its vertices and
the approximate straight lines of the left and right borders, as
shown in Fig. 5. For each region, we determine the position of
its centroid and compute the shortest distance from the region to
the road border line. This distance is compared to the constraint
imposed on each landmark by the site spatial model. Thus we
obtain the following top-level structure for the image model:

(<IM-#> <frame-#> <road-region-tag>
<number-of-regions-of-interest>
((<road-vertices>) (<left-border>) (<right-border>))
((<left-regions-list>)  (<right-regions-list>))))

D. Hpypothesis Verification

Given the expected site model (ESM) and the current image
model, the objectives of the matching and verification process
are two fold: (a) to label the regions in the image corresponding
to the expected landmarks, and (b) to determine the certainty
level of the predicted map site location. The process by which
the first objective is accomplished is as follows: 1. find the set
of regions {R) in the image model (M) which satisfy the spatial
constraints SC; imposed by landmark lj in the ESM
SPATIAL_MODEL. This constraint application yields to more
than one corresponding region r;. 2. Compute the evidence
E(l;) that each i in (R} yields, using the FIND_EVIDENCE
algorithm. 3. The rj that results in E(lj) max (provided itis a
positive evidence) is considered as best match candidate for I
(there may be more than one given that their values surpass a
certain threshold) . The second objective is achieved by
aggregating the individual set of evidences (E(lj)max) and the
certainty level about the previous map site location and the

potential error introduced by range and the view angle of the
camera.

The FIND_EVIDENCE algorithm considers that each landmark
] in the ESM has a set of auributes (Ajj, ..., AjK, - Ajnl,
each with a likelihood LHj, as described earlier. Each region rj
in {R} has a set of features [fjl, fjk' . fjn}. Note that
Ajk and fji correspond to the same thing (in the model and the

image), such as color, size, texture, etc. Given these features,
we want to compute the evidence that 1; is present in the image.

_;
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By making the independence assumption among features in a
region and among features occurrence in images, the above
equation can be rewritten as:
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where n is the number of features, P(l;) is the initial probability
of a landmark being found in a given site. For now this is set to
1 for all landmarks. However, P(l;) is actually a function of the
certainty level about the previous map site location, navigational
error and other variables. P(f jk) is the probability of occurrence
of a feature in an image, which is equal to 1/(number of possible
feature values). For example, if texture can take either of the
four values: coarse, smooth, regular or irregular, then P
(texture = smooth) = 1/4. Finally,

H, f fjk=A'\k
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which is best explained through the following example:

Given two regions ry and ry in the image with different sizes
(fjk), SIZE (r1) = SMALL and SIZE (r2) = LARGE. Given a
model of landmark L, with the expected size to be LARGE
(Ajg), with a likelihood (LHjk) of 0.7. The SIZE feature can

take any of the following ordered values: {SMALL, MEDIUM,
LARGE}. If rp is being matched to L, (2.1) yields to 0.7,

because fjx = Ajk. On the other hand, if r | is being matched to

L, then (2.1) yields to (1-0.7)/2. The denominator 2 is used
because LARGE is two unit distances (denoted by d(.)) from
SMALL.We rewrite (2) as:

PU e £) =P * [ [0 &)
k=1

where 1(./.) is the term within the product sign. The value of
I(fjk/1;) can be greater than 1, because the heuristic nature of the
formulation does not reflect a probabilistic set of conditional
events, as formulated in Bayes theory. Moreover, P(/fj;...fjn)

can result in a very large number or a very small posiuve
number.

By taking the logarithm of both sides of (3), introducing Wj as
a normalization factor for each feature, and dividing by the
number of features (n), we have :

z Log[I(fjk/li) * WJ
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n

where Wy is a normalization factor between 0 and 1.

Here we further simplify (4) and introduce the evidence terms E
and e to be the logarithm of P and I*W respectively . So, the
evidence formula can be written as follows:

n
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The values of E(l;) fall between 0 and 1. If E(l;) > 0.6 it means
a "positive” set of evidences. On the other hand, if E(l;) <0.3 it
is interpreted as "negative" evidence. Otherwise, E(l}) is
characterized as "neutral".

An important characteristic of the PREACTE system is that it
utilizes negative as well as positive evidences to verify its
expectations. There are many types of negative evidences that
could be encountered during the hypothesis generation and
verification process. The one that is of particular interest to us is
when there is a negative evidence about a "single" landmark
(E({)max <0.3) in conjuncton with positve evidences about the
other landmarks (average evidence >0.6) and a reasonable level
of certainty about the previous site (Ug.1<5) (discussed later).

This case is interpreted as caused by one or more of the
following: (a) error in the dimension of the expectation zone,
(b) bad segmentation results, and (c) change in the expected
view angle or range.

In such a case, we perform the following steps: 1. enlarge the
expectation zone by a fixed margin, and find the evidences
introduced by the new set of regions, as shown in Fig. 6. 2. If
step 1 fails to produce an admissible set of evidences, then the
expectation zone of the image is resegmented using a new set of
parameters that are strictly object dependent.

Negative
Evidence Area

— New Search
Area

Road

\
Fig. 6. New search area as a result of negative evidences.

Even though landmark recognition is introduced to assist the
autonomous vehicle land navigation system, there is obviously
uncertainty attached to the results of the recognition system. We
compute the uncertainty U at each site locaton in the following
manner:

m

0.5
U=@U_,+x)* ——
s s-1 1;[ EQ),.,

1

where Ug.] is the uncertainty at the previous site, Ug, the initial

uncertainty, is equal to 1, a is the error factor introduced by the
navigation system, it is set to a constant of 0.3 (for experimental
reasons), and E(lj)max is the maximum evidence of 1;. If two or
more regions return evidences greater than .8 then the average is
computed.The value 0.5 is used (as neutral evidence) to stabilize
the function, m is the number of landmarks. The muldplicatve
nature of Ug provides it with the capability of rapidly recovering



its value given a high set of evidences at the current site and a
high level of uncertainty at the previous site.

III. RESULTS

We have implemented a prototype system written in Common
Lisp and ART (Automated Reasoning Tool) on the Symbolics
3670. The image processing software was implemented in C on
the VAX 11/750. The Symbolics hosts all the high-level
(symbolic) processing software, including the blackboard. The
map and landmarks knowledge-base is impiemented as a
hierarchical relational network of schemas, the FIND-
EVIDENCE algorithm is implemented in Lisp. The Map-

Landmark Reasoner is implemented in a rule-based structure.
An inidal implementation of PREACTE was tested on a video
sequence of imagery. Data was collected at 30 frames/second by
a camera installed on top of a vehicle and driven on the road
connecting the sites shown in Fig. 3.

The system was easily capable of predicting the next site and
approximate arrival time at each site. In an experiment where we
started at SITE-109 and traveled west at 10 kph, arrival ime was
predicted to SITE-110, at 245.4 seconds (distance between the
two sites is .426 mile). Fig. 7(a) shows the image taken at
SITE-110, which contains a pole (T-POLE-110) to the left of the

road, a gas tank (G-TANK-110) and a building (BLDG-110) to
the right. Initial segmentation of the image is shown in Fig.
7(b). As a result of region splitting and merging and discarding
small regions, we obtain the image shown in Fig. 7(c).
Rectangular boxes are overlayed over the regions recognized by
PREACTE as landmarks, based on the hypotheses generated in
the ESM of SITE-110 (shown in Section I1.2). The hypothesis
verification results are shown in the "match-evidence" column of
Table I which contains a listing of the regions yielding the
!ughcst evidences and a subset of their features (other features
include compactness, intensity variance, etc.), as represented in
the image model. The spatial constraint specified by the spatial
model (SM-110) yielded to a small number of regions-of-interest
for the POLE hypothesis, as a result of the successful post-
segmentation effort. More regions-of-interest were considered
as candidates for the other landmarks. The road (region 98) in
the image is modeled by its approximate left border (y = -0.8x +
357.0) and its right border (y = 1.3x - 126.7). The T-POLE-
110 hypothesis produced two regions with high evidences.
Since a threshold of 0.8 was used, both regions 30 and 79 are
recognized as T-POLE-110. The lower part of the pole (region
79) is merged with some ground and background regions;
nevertheless it still resulted in a higher evidence than the upper
part (region 30). Currently effort is underway to implement a
region grouping technique based on evidences, proximity, size
and other criteria. The lower part of the tank was broken up into
six small regions because of the illumination and shape factors.
These regions were included in the hypothesis verification and
they produced significantly lower evidences.The uncertainty :

Uj10 = (1+0.3)*((0.5)3/(0.875+0.62+0.70)) =0.43, where
0.875 is the average of 0.92 and 0.83.

IV. CONCLUSIONS

In this paper we have presented concepts and initial results of
our percepuon-reasoning-action and expectation paradigm of our
ongolng research for guiding the ALV by recognizing landmarks
along the sides of the road. In the future, we will extend to a
more general and complex situation where the ALV may be

traveling through terrain and it has to determine precisely where
it is on the map by using landmark recognition.

Fig. 7(a) Image obtained at site 110.

Fig. 7(b) Initial segmentation results.




Fig. 7(c) Segmented image after region splitting, merging
and discarding small regions. Regions highlighted
by rectangles indicate the result of landmark

recognition by PREACTE.
Features Recognition Resuns
Maich- | Landmark
Region Size Color MBR Texture Elongation Shape Location Evidence| Hypothesis
30 Smati (S1) Black (25.3) (99,103, 61, 111) Smooth High (50:4) Lutz.q and (101.2, 82.9) 0.83 |T-POLE-110
ar
79 Small {104) Black (27.3) (104, 105, 112, 132) | lreguiar High (20:1) Long and (104.6, 121.9)| 0.92 -POLE-110
Linear
95 Medium (675) | White (224.5) | (445, 510, 140, 155) | Smooth Low (05:15) | Not convex | (482, 148.3) 0.62 |G-TANK-110
70 Medium (672) | Gray (199.7) (469, 510, 99, 127} ieguiar Low (4128) | Unear (490.2, 115.3)| 0.71  |BLDG-110

Table I. Landmark recognition resulits.
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