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ABSTRACT

In the Honeywell Strategic Computing Computer Vision Program, we are work-
ing on demonstrating knowledge-based robust target recognition and tracking technol-
ogy. The focus of our work has been to use artificial intelligence techniques in com-
puter vision, spatial and temporal reasoning and incorporation of a priori, contextual
and multisensory information for dynamic scene understanding. The topics currently
under investigation are: 1) Landmark and target recognition using multi-source a priori
information, 2) Robust target motion detection and tracking using qualitative reasoning,
3) Interpretation of terrain using symbolic grouping. An integrated system concept for
these topics is presented, along with results on real imagery. Practical applications of
our work involve vision controlled navigation/guidance of the autonomous land vehi-
cle, reconnaissance, surveillance, photo-interpretation, and other military applications
such as search and rescue and targeting missions.

1. INTRODUCTION

The goal of our research in Strategic Computing Computer Vision Program is to
demonstrate that knowledge-based approaches as applied to the real-world computer
vision problems, such as recognition and tracking of targets and interpretation of ter-
rain, can provide significantly enhanced and robust performance. The results from our
research are useful in vision controlled navigation/guidance of Autonomous Land
Vehicle (ALV), reconnaissance, surveillance and other practical military applications.

To achieve our goal, we are engaged in developing new techniques for qualita-
tive motion understanding, scene and object modeling, matching, spatial reasoning for
recognition, reasoning under uncertainty, symbolic grouping for the interpretation of
multi-spectral terrain data, geographic knowledge representation, etc.

Since the knowledge-based techniques, which are being developed here will be a
part of a larger system where real-time considerations are very.crucial, we are using
Real Time Blackboard Architecture (RTBA) software developed at Honeywell.16 1t is
written in LogLisp, a logic programming system.!2 LogLisp is composed of Common
Lisp and extensions to Common Lisp for logic procedure language. Since the black-
board and LogLisp are written in Common Lisp, RTBA can be used on any
hardware/operating system configuration that supports Common Lisp. Currently




implemented systems are symbolics 3670 and DEC Vax 11/780 running BSD 4.3
Unix. RTBA is similar to Local Map Builder (LMB) developed at Carnegie Mellon
University. However, it is directed towards defense applications where the interest is
in building embedded expert systems to achieve real-time performance, to integrate
expert system and host system, to establish reliability and to maintain correct inference
across changing input data.

The research results described in this report are partitioned into three topic areas:
(@) Landmark and Target Recognition, (b) Target Motion Detection and Tracking, and
(c) Interpretation of Terrain. We also discuss the applications of this work to Brilliant
weapons.

2. LANDMARK AND TARGET RECOGNITION

An autonomous land vehicle has to traverse long distances to accomplish mis-
sions such as surveillance, search and rescue and munitions deployment. This results
in the accumulation of significant amount of positional error in the land navigation sys-
tem. Landmark recognition can be used to reduce this error by recognizing the
observed objects in the scene and associating them with the specific landmarks in the
geographic map knowledge base. In the current ALV test sites at Martin Marietta,

Denver, the landmarks of interest include telephone poles, storage tanks, buildings,
houses, gates, etc.

We have developed a new approach, called PREACTE (Perception-REasoning-
ACTion and Expectation), for using knowledge-based landmark recognition for the
purpose of guiding ALV. It is based on the perception-reasoning-action and expecta-
tion paradigm of an intelligent agent. This paradigm is different from the test-
hypothesize-act cycle of Matsuyama and Hwang.!9 PREACTE uses expectations and
allows the prediction of appearance and disappearance of objects in the field-of-view
and therefore, it reduces the computational complexity and uncertainty in labeling
objects. The approach makes use of extensive map and domain dependent knowledge
in a model-based scheme.!’ Our map representation relies heavily on declarative and
explicit knowledge instead of procedural methods on relational databases.20 Davis!3 at
Yale University has worked on the problem of acquiring geographic knowledge by a
mobile robot. In contrast to his work, in our research explicit knowledge about the
map and landmarks is assumed to be given and it is represented in a relational net-
work. It is used to generate an Expected Site Model (ESM) for search delimitation,
given the ALV location and its velocity. Landmarks at a particular map site have their
3-D models stored in heterogeneous representations such as generalized cylinder or
wire-frame.® The landmark recognition vision system for PREACTE generates a 2-D
and partial 3-D scene model from the observed scene. The ESM hypothesis is verified-
by matching it to the image model. The matching problem is solved by using object
grouping and spatial reasoning. Unary, binary and ternary relations are used for spatial
reasoning. Both positive and negative evidences are used in spatial reasoning and
updating the positional uncertainty of ALV in the map. Evidence accumulation is
accomplished by an extension of an efficient heuristic Bayesian formula. A common
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representations provides a flexible and modular computational environment for reason-
ing about image content. The system also provides feedback control to the low-level
processes to permit adaptation of the feature detection algorithms parameters to chang-
ing illumination and environmental conditions. Currently the landmark recognition
scheme assumes that the landmarks are along the sides of the road. In the future we
will extend it to a more general and complex situation where the ALV may be travel-

ing through terrain and it has to determine precisely where it is on the map by using
landmark recognition.

Details of the landmark recognition system PREACTE together with results on
ALV imagery are given in.24

3. TARGET MOTION DETECTION AND TRACKING

Successful operation of an autonomous land vehicle requires continuous interpre-
tation of complex dynamic scenes utilizing multiple sources of visual and a priori
information. Concepts from static scene analysis such as segmentation, feature extrac-
tion, spatial grouping and object recognition must be complemented by processes
which deal with the temporal aspects of visual perception. Since the ALV moves
through a 3-D environment, the resulting camera image is subject to continuous change
and objects in the scene cannot be labeled as stationary or moving by simple 2-D tech-
niques. Extensive work has been done in low-level (pixel based) motion analysis,26
e.g. the computation of optical flow and displacement fields, as well as reconstructive
bottom-up approaches to determine 3-D structure and motion. Although some prob-
lems remain unresolved and researchers have often made unrealistic assumptions such
as orthographic projection, stationary viewer or static environment, the field is well
developed and useful techniques are available.22 However, the integration of motion
information into the higher levels of vision is still in its infancy. The integration
requires techniques for knowledge representation and reasoning about events in space

and time. This capability is crucial to the navigation of an ALV in unstructured
environments.

Dynamic scene understanding can be structured into basically three levels of
processes. While the low and high levels have their equivalents in many other vision
approaches, the important role of intermediate-level processes has not been clearly
identified and defined. Low-level processes are purely two-dimensional, bottom-up
and image-centered, such as feature extraction, feature matching or optical flow com-
putation. High-level processes are three-dimensional and world-centered, attempting
the semantic interpretation of the dynamic proceedings in the environment, using infor-
mation about the structure and motion of 3-D aggregates. Note that long-term obser-
vation and understanding of the behavior of objects form the basis for intelligent
actions, such as navigation, route planning and threat handling. In order to bridge the
representational gap between low and high levels, we introduce processes operating at
an intermediate level, characterized by the transition from image-centered features to
world-centered objects. Unlike at the low and high levels, bottom-up and top-down
strategies combine at the intermediate level and 3-D reasoning is supported by aggre-
gation of physical and perceptual knowledge and expectations. In psychological terms




this stage could be related to unconscious but active visual perception; those tasks that
are performed continuously and automatically by the human visual system.

We have developed a new DRIVE (Dynamic Reasoning from Integrated Visual
Evidence) approach based on a Qualitative Scene Model to solve the motion under-
standing problem. The approach addresses the key problems of the estimation of vehi-
cle motion from visual cues, the detection and tracking of moving objects and the con-
struction and maintenance of a global dynamic reference model. Object recognition,
world knowledge and accumulation of evidence over time are used to disambiguate the
situation and continuously refine the global reference model. The approach departs
from previous work by emphasizing a qualitative line of reasoning !4 and modeling,
where multiple interpretations of the scene are pursued simultaneously in a hypothesis
and test paradigm. Different sources of visual information such as two-dimensional
displacement field, spatial reasoning and semantics are integrated in a rule-based
framework to construct and maintain a vehicle centered three-dimensional model of the
scene. This approach offers significant advantages over "hard" numerical techniques
which have been proposed in the motion understanding literature.l:21:27 These advan-
tages include the tracking of objects in the presence of partial or total occlusion and
use of this information for route planning and threat handling.

In the DRIVE approach a vehicle-centered model of the scene is constructed and
maintained over time, representing the current set of feasible interpretations of the
scene. In contrast to most previous approaches, no attempt is made to obtain an accu-
rate geometric description of the scene. Instead a Qualitative Scene Model is proposed
which holds only a coarse qualitative representation of the three-dimensional environ-
ment. As part of this model, the "stationary world" is represented by a set of image
locations, forming a rigid 3-D configuration which is believed to be stationary. All the
motion-related processes at the intermediate level use this model as a central reference.
The motion of the vehicle, for instance, must be related to the stationary parts of the
environment, even if large parts of the image are in motion. This kind of reasoning
and modeling appears to be sufficient and efficient for the problem at hand.

Details of the qualitative reasoning concept emphasizing the motion aspects of
intermediate-level processes and interfaces to the adjacent levels in the DRIVE system
are presented in.8

4. INTERPRETATION OF TERRAIN

An autonomous land vehicle must be able to navigate not only on the roads, but
also through terrain in order to execute its missions of surveillance, search and rescue
and munitions deployment. To do this the vehicle must categorize the terrain regions

it encounters as to the trafficability of the regions, the land cover of the regions and
region-to-map correspondence.

Predominantly, the segmentation algorithms used for outdoor scene segmentation
are region analysis algorithms 9>23.25 which attempt to identify regions of the scene on
the basis of the homogeneity of the region’s features. Recursive segmentation based
on the analysis of distribution of features is one of the most popular and commonly




used techniques for image segmentation. Many of these techniques make use of an
elaborate peak location and selection procedure which provides threshold values for the
purpose of image segmentation. The computation of peak maxima and minima is
complicated since minor changes must be distinguished from major ones. One of the
shortcomings of these techniques is that small regions in a large image may not show
a distinct peak in the histogram, even if they are distinct from their immediate neigh-
borhood. Therefore, in the application of these techniques, normally the image is par-
titioned artificially into a set of subimages and each subimage is segmented and split
further independently. As a result, a remerging measure may be required to merge
regions that are arbitrarily broken at the subimage boundaries. Very often this merg-
ing step leads to some regions which remain unmerged or overmerged.

Bhanu and Parvin® have presented a simpler and computationally efficient tech-
nique which does not have the above disadvantages and provides good results. It is

based on the generalization of a two-class gradient relaxation algorithm for the seg-
mentation of natural scenes.’

However, since the outdoor scenes in the ALV scenario have immense variabil-
ity, purely region based segmentation algorithms do not perform adequately, because
they fail to integrate constraints derived from the three-dimensional attributes of the
scene and other auxiliary data into the segmentation process such as the information
from a standoff-sensor. Scene variability leads to poorly defined region boundaries
and spurious noise regions in the segmented image and this degrades the performance
of high-level region labeling schemes which operate on these low-level results. Also
the unstructured nature of the outdoor scenes makes their segmentation very difficult
with a single set of rules. Currently very simple segmentation methods are used for
road-following which are severely limited in robustness and flexibility.18

The use of three-dimensional qualities for segmentation is critical for the ALV
scenario because the range varies significantly with respect to scan line of the image
and feature measures which are valid for a specific range may produce unsatisfactory
results at other ranges. Also it is very important that we make use of the spectral pro-
perties of the objects in the world and a priori and contextual information to achieve
robust interpretation of terrain in a flexible manner.

Our approach for terrain interpretation employs a hierarchical region labeling
algorithm for ERIM 12 channel Multi-Spectral Scanner data. The technique called,
HSGM (Hierarchical Symbolic Grouping for Multi-spectral data), is specifically
designed for multi-spectral imagery, but is appropriate for other categories of imagery
as well. For this approach, features used for segmentation vary from macro-scale
features at the first level of the hierarchy to micro-scale features at the lowest level.
Examples of labels at the macro label are sky, forest, field, mountain, road, etc. For
each succeeding level of the hierarchy, the identified regions from the previous stage
are further subdivided, if appropriate, and each region’s labeling is made more precise.
The process continues until the last stage is reached and no further subdivision of
regions from the preceding stage appears to be necessary. Examples of region labels
for this level of the hierarchy are gravel road, snowberry shrub, gambel oak tree, rocky
ledge, etc.



The HSGM approach is distinct from the classical tree classifier approaches used
in the remote sensing literature. The approach operates as follows: For the first stage
of the hierarchy, each of the 12 channels of the Multi-Spectral Scanner data is seg-
mented with a textured region detection scheme. The individual segmentations for the
12 channels are combined by using a edge linking relaxation operator!0 to define a
"plan” region boundary image. Representative features for each region of the "plan”
image are calculated by averaging the feature values for each pixel of the region across
the entire region area. These features are classified with a rule-based classification
scheme which uses contextual as well as spectral cues for region labeling. Then, at
the succeeding stages of the hierarchy, the regions are subdivided by a variety of
region and edge-based segmentation algorithms which are optimized for the specific
category of region under consideration. These segmentation algorithms also employ
spectral, contextual and auxiliary information cues for the specification of region boun-
daries. Examples of the applied constraints for these stages are a priori terrain eleva-
tion data, land cover map information, geological data, time of day and seasonal infor-
mation. HSGM approach possesses several attractive features, the most important of
which is its robustness in the presence of high scene variability. Because the finalized
region classifications are derived with global support, both from neighboring regions
and from other spectral images, the likelihood that a region will be misclassified
because of arbitrary noise is greatly reduced. This approach is also computationally
less expensive than many rule-based region labeling schemes because the application
of auxiliary constraints decreases the branching factor of the search process
significantly.

Details of the HSGM technique with initial results and examples from real ALV
imagery are given in.10

S. BRILLIANT WEAPONS APPLICATIONS

In addition to the ALV applications as discussed in the above, our interest is
also to transfer this technology to other practical military applications. Precision
Guided Weapons (PGWs) are one such application. Conventional technology such as
Automatic Target Recognition (ATR) has come a long way but it needs help.” It is
clear that for the vision technology to succeed in practical brilliant weapons applica-
tion, it must be optimaly suited for such multisensor combinations as millimeter
wave/infrared,24 17 and CO, laser.!> One of our objectives is to transfer the
knowledge-based technology under development here to brilliant weapons relevant
multisensor applications to provide significant improvement in performance in diverse
scenarios, especially in inclement weather and battlefield scenarios. The vision system
performance must demonstrate robustness in hundreds of hours of classified flight test
sensor data in presence of target camouflage, concealment and deception (CCD). We
are using multisensory and a priori information in a knowledge-based framework
within RTBA to achieve the required performance which is beyond what conventional
ATR technology can provide.3
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6. CONCLUSIONS

In this report we have presented a summary of our work completed during the

last seven months. In the future we plan to integrate our PREACTE module for land-
mark and target recognition with DRIVE module for qualitative motion understanding
and HSGM module for terrain interpretation for an end-to-end simulation demonstrat-
ing knowledge-based scene dynamics approach for target motion detection, recognition

and tracking.
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