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Abstract- This paper presents a novel approach for the computation of
displacement fields along contours of moving regions, where distinct
point features are difficult to maintain. The proposed algorithm is sim-
ple and lends itself to parallel implementation. Individual frames of the
image sequence are treated one at a time, and the segmentation and
motion analysis are performed simultaneously. For the first frame an
original segmentation of the image into disjoint regions is assumed to be
given in the form of pixel markings and the properties of these regions.
The analysis of each new frame consists of (a) finding the new segmen-
tation and (b) a set of displacement vectors that link corresponding
points on the original and the new contour. The new region is assumed
to overlap with the original region, such that their intersection is not
empty. After finding this intersection, wavefront region-growing is
applied to obtain the new region. A relaxation-type algorithm is then
used to determine the shortest links between subsequent boundaries to
approximate the displacement field. Experiments on synthetic images
show, that resuits compare favorably with work done by Hildreth®, yet
following a simpler and more realistic approach.

Index Terms- Displacement Fields, Motion Analysis, Region Growing,
Segmentation, Tracking.

INTRODUCTION

Motion Analysis is concerned with the reconstruction of an object’s 3-D
motion parameters from a dynamic scene, given a series of two-
dimensional projections.!:3 From the apparemr motion of a sufficient
number of points on each moving object its actual three-dimensional
rotation and translation components can be determined, assuming that
the objects involved are rigid. Here we address the problem of how to
obtain the apparent motion from s sequence of two-dimensional images.
Two main approaches have been used to compute the Optical Flow Field
or Displacement Field from a given motion sequence of grey-level
images.

The Gradient Method 6 uses spatial and temporal grey-level variations
to estimate the instantaneous velocity at each pixel in the image. It relies
on sufficient object texture, continuous motion and small displacements
between subsequent frames. Since the magnitude of flow can only be
determined in the direction of the spatial gradient (perpendicular to the
tangent of the boundary), the flow vectors cannot be computed locally.
Global smoothing of the flow field has been proposed, which gives rise
to problems at flow discontinuities, such as object boundaries. Paradoxi-
cally, motion estimates should be obtained most easily at exactly those
locations.

The Displacement Method uses the parts of the image, where discon-
tinuities in brightness or motion occur (which give trouble in the gra-
dient method). Significant features such as line segments or dis-
tinguished ("interesting”) points in two consecutive frames are selected
and matched, rendering a field of displacement vectors for the selected
features. Two problems arise during this process: one is the selection
and location of significant image features, especially when the images
are noisy; the other problem is finding an optimal match between them.
This is commonly referred to as the Correspondence Problem.3.9
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We propose a solution which lies between these two methods, one that
combines the implicit matching process of the gradient method and the
locality of the displacement method. One such approach has been sug-
gested by Hildreth 5 , where an approximation of the actual displacement
field of moving closed contours is sought in two steps: first the displace-
ment vectors perpendicular to the original contour are determined, and
second the resulting flow fields along the contour are smoothed. Experi-
ments indicate, that the approximations are close to the motion per-
ceived by the human visual system. The problems arising from this
approach are twofold.

First, since the perpendicular components of the flow vectors are
obtained using the Gradient Method mentioned above, the resultant vec-
tors will be susceptible to errors in direction as well as in length.
Estimating the perpendicular direction is done by determining the direc-
tion of the edge encountered. This is difficult due to noise and limited
spatial resolution. Estimation of vector magnitude from the brightness
gradients is inherently unreliable in cases of missing or too fine texture
and/or displacement that exceeds the range of approximately linear gra-
dient.

Second, the final result of this approach gives at best an approximation
to the motion that humans would perceive, including some forms of illu-
sionary motion. This is an important aspect for understanding human
vision, but it is not the prime goal of quantitative motion analysis as
pursued here.

The method proposed here is region-based and makes use of the fact,
that (assuming sufficient sampling in time) corresponding regions in two
subsequent frames will overlap, thus giving the initial cue for correspon-
dence. In contrast to finding comresponding boundary segments, the
direction of search is implicitly given by the assumption of overiapping
regions. The intersection of the old and the new region serves as the
seed 7 for a region-growing process, which renders a segmentation for
the new image frame. Region-growing is done layer-by-layer very much
like a wavefront to keep the overall region consistent. By propagating
shortest-distance information an approximate mapping between the two
boundaries is obtained. This mapping between boundary points is
smoothed and subsequently rotated until a region-correspondence with
minimum deformation is found. Experiments show that the final results
approximate the actual displacement fields closely, even for extreme dis-
placements.

This approach goes beyond pure motion analysis as it provides a
dynamic segmentation scheme as well. Each frame is segmented by
region-growing, using the previous segmentation as a starting point,
while displacement data are computed simultaneously. This is an impor-
tant benefit in Dynamic Scene Analysis and Understanding, where both
segmentation and motion estimates are essential.

APPROACH

The input assumed to be given is a sequence of digitized images,
representing a time-varying scene. The time interval between consecu-
tive images is furthermore assumed to be sufficiently small, such that the
condition of overlapping regions is met. This of course depends upon the
granularity of the segmentation used and thus also upon the region pro-



perties that govern the segmentation process. An initial segmentation is
supposed to be given, which is constantly updated while frames are pro-
cessed successively as part of this dynamic segmensation scheme. At this
point no attention is paid to the problem of how this initial segmentation
is obtained. This could either be accomplished using well deveioped seg-
mentation techniques, or it could become an integral part of the pro-
posed algorithm.

During dynamic segmentation it might well occur, that certain regions
vanish due to occlusion or when they move out of sight. Similarly new
regions are created when objects move into the field of view. The case
of occlusion does not pose a problem, since we can assume the shape of
a region will not change dramatically between two frames, and the van-
ishing of a region is easily detected. Newly created regions can be han-
dled by the same process that provides the initial segmentation. Here
we concentrate on the problem, how an established segmentation is car-
ried over from one frame to the next while extracting motion data at the
same time.

The suggested approach of approximating displacement vector fields
consist of the the following steps:
(1) Update the given segmentation by growing each individual region
onto its corresponding region in the next frame.
(2) For every region in the scene compute a set of displacement vec-
tors which links the boundary points of the original region to
corresponding points on the boundary of this region in the next frame.
This again is done in two steps:
(a) Get an initial estimate for the displacement vectors by establish-
ing a tentative correspondence between the two contours. Here the
closest neighbors on the opposing boundaries are selected.
(b) Improve the initial match by looking for an optimal correspon-
dence that implies minimal deformation of the region between the
two instances of time.

Segmentation and finding the closest neighbors are accomplished simul-
taneously in one computational step, using a purely local technique. The
result is the new segmentation and a relation in the form of pairs of cou-
pled boundary points. The algorithm lends itself naturally to pipelined
and VLSI implementations, making real-time operation feasible. The
optimal comrespondence is found by rotating one of the boundaries until
the minimum deformation is observed. The sum of differences between
corresponding diameters is used as the measure for deformation. Details
are given in the remainder of this section.

Wavefront Region Growing

This first step of the algorithm operates on a given segmentation for the
current frame and finds the new segmentation for the following frame.
In addition to that, a tentative correspondence between the contour
points of the two related regions is determined. Both tasks are accom-
plished simultaneously in a relaxation-type fashion, where the image is
scanned iteratively and one new layer is added to each region during

each iteration. The growing region as well as the displacement data pro-
pagate similar to a wavefront during this process.

Seed. First the intersection between the old and the new region is
determined, which is non-empty since we assume that regions overlap in
successive frames:

find_intersection:
given:
S1 ... a segmentation into disjoint regions at time t
12 ... the input frame at time t+1

for all image points (x,y) do
if I2(x,y) is consistent with Region[S1(x,y)] then
mark S1(x,y) as new
end_if
end_for
Region Growing. The intersection serves as the seed to grow onto the
new region by acquiring points that are consistent with the properties of
the region.

Starting with the intersection, one new layer of consistent image points
is added to the current region during each iteration. The region-growing
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process stops when no points could be added during an iteration. At this
point the new segment covers the comesponding image region in the
new frame completely. During each iteration the following update is per-
formed:
add_layer:
Jor all image points Xdo
if X is marked new then
for all 8 neighbors N do

if N is consistent with Region[S1(X)] then
m:;k’fRegion[SI(N)] := Region[S1(X)]
e .

end_for
end_if
end_for

Displacement Propagation. During the region-growing process, dis-
placement data are propagated into the newly created parts of the region,
such that each point in this region holds information about the location
of the closest point in the original intersection. When rudtiple points
grow into the same image location, the closest-neighbor data from all
the sourcing points will determine the closest neighbor of this new point
(Figure 1).
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Figure 1. Propagation of displacement data. The shortest distance to the
original intersection is determined for every point, from the displace-
ments of its 8 neighbors. Assume that the shortest displacement for point
X is to be found. For its neighbors N2..N6 the shortest displacements are
already known, while N0, N1, N7 have no displacement values assigned

yet. The shortest path from the intersection to X will thus go through
N2, N3... or N6.

In areas where the intersection can grow onto the new region, region
growing and displacement propagation are done simultaneously. In
areas of the original region, which are not part of the intersection, dis-
placement data are propagated backwards, until the original boundary is
reached (Figure 2).

NEW REGION

ORIGINAL
REGION

PROPAGATION

Figure 2. Propagation of displacement data. From the intersection of the
original region and the new region, displacement data are propagated
forward where the region can grow, and backward onto the original
region.



The entire image can be viewed as a connected graph, where each
node corresponds to a pixel which is connected to all the neighboring
points that are members of the same region. Each node in the graph
holds information about the closest point on the original intersection.
Those nodes lying on the intersection are initialized as referring to them-
selves, their displacement from the intersection is zero. The problem
can thus be stated as finding the shortest distance from one node (on the
intersection) to all other nodes of the graph. This is well known in graph
theory as the Shortest Path Problem (Dijkstra algorithm? ), which can be
applied here immediately. The only difference from this classical prob-
lem is that, due to the region-growing process, new neighborhoods (and
thus links in the graph) are established successively. The graph
becomes stable when no further changes in the nodes can be made. As a
consequence the entire image must be scanned and displacement data
propagated until all displacements have settled (relaxed) to stable values.
Although this might appear computationally expensive on a conventional
(serial) computer, this technique is well suited for pipelining and VLSI
implementation, where high regularity of computation is an important
requirement.

propagate_displacement:
for all image points X do
for all 8 neighbors N of X do

if disp (N) + dist (N,X) < disp (X) then
;d:lsgi(fx) 1= disp (N) + dist (N,X)

end_for
end_for

where .
disp (X) ... displacement of X from the closest point on the inter-
section
dist (N,X) ... distance between points N and X.

Result. After the process of region-growing and displacement propaga-
tion has terminated, the boundary points of the union of the old and the
new region carry pointers to the closest points on the intersection. From
this information a correspondence relation C is computed, consisting of
pairs of boundary points:

Correspondence Relation C:
C = { X,Y) | X=(x,,y) € Bl, Y=(x,;y,) € B2 }

where
B1 ... original region boundary B2 ... new region boundary.

This relation represents a mapping of the original boundary onto the
new boundary of the region. Notice that one point in the original boun-
dary may have several cofresponding points on the new boundary and
vice versa, while some points on either boundary are not linked to any
other points at all. The finite spatial resolution exaggerates this fact,
since corner points on a jagged boundary are likely to be closer to other
objects than their neighbors. Smoothing (see below) is applied to greatly
reduce this effect and obtain a more uniform distribution of linked boun-
dary points. Still this Shortest-Distance Approximation is "well-
behaved”, in the sense that the displacement vectors do not cross over, a
fact that will be useful in the following section.

Optimal Correspondence

Given the tentative correspondences between the old and the new
region boundaries as described in the previous section, we try to obtain
a more realistic set of point-to-point relations. In general, the initial
approximation by selecting the nearest neighbor on the opposite contour
is not a good estimate for the actual displacement vectors. For instance,
displacement caused by translation in the direction of the boundary is
not detected, because the estimated displacement vectors are zero at
these points. This has been termed the Aperture Problem in motion
analysis.

A better correspondence relation is obtained by smoothing to remove
the effects of finite spatial resolution and to distribute matched points
more uniformly along the boundaries. The smoothed correspondence is
then modified by rotating the new boundary in order to find an optimal
correspondence. An error function is used, which indicates the amount
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of deformation applied to the region under the given boundary mapping.
Smoothing. The Closest Neighbor Approximation is computed, follow-
ing the steps covered in the previous section. As mentioned earlier, indi-
vidual points in this relation may have several corresponding points on
the other boundary, while other points in the neighborhood may not be
matched at all. The first step tries to remove these clusters by spreading
out the points uniformly along the boundary. The approach is similar to
techniques used for histogram equalization.4 )

A local smoothing technique is applied, which iteratively traverses the
cormrespondence relation and dissolves clusters of boundary points on
both sides of the relation. The smoothed relation is available after a few
iterations, in fact only fwo iterations were applied in the actual experi-
ments. The following outline of the smoothing algorithm provides
separate steps for smoothing each side of the correspondence relation for
the sake of clarity. The two steps could easily be done in parailel. The
results of the smoothing algorithm applied to an initial approximation is
shown in Figure 3.

(a) )

Figure 3. Smoothing of the Correspondence Relation in two steps: After
equalizing the density of endpoints on the new boundary (a). After
equalizing the density of endpoints on both boundaries (b).

The displacement field between the old (outlined) and the new (dashed)
boundary is shown for an ellipse undergoing rotation. First the relation
is smoothed by spreading points on the new boundary (Figure 3.a), then
the original boundary is smoothed (Figure 3.b).

Error Function. The error function should be an indicator on how good
the present set of point-to-point correspondences represents the actual set
of displacement vectors. Since the actual displacement vectors are unk-
nown, we cannot expect to find an objective error function task without
applying additional restrictions. Previous approaches 5 have used the
constraint of "smoothness of flow" either as a global restriction or along
boundaries. As mentioned earlier, global smoothness of flow cannot cope
with motion discontinuities which occur at object boundaries. Also a
smooth vector field along a region boundary is not a good approximation
in general, such as in the case of pure rotation (Figure 5).

The error function that we apply is supposed to quantify the amount of
deformation that the region would undergo with a given set of point-to-
point comrespondences. The correspondence that results in the least
deformation of the region is chosen as the closest approximation to the
real situation. The measure of deformation is based on the differences
of diameters across the region. If no deformation has occurred, then the
distance between one point-pair on the old region should be the same as
the distance between the corresponding point-pair on the new region.
Pairs are selected such that their points lie approximately opposite to
each other on the regions’ boundaries. For all point-pairs that correspond
on the old and the new boundary, the resulting diameters are compared.

The sum of the squares of their differences is taken as the error meas-
ure:

Given:
B1,B2 ... two ordered sets of boundary points with approximately
equal number of elements
C ... a mapping B1 - B2: C = { (P,P) | PeB1, QeB2 }



A

-

the error function is defined as

ELC)= Y [d@PP)-dQQH P
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opposite (P,P*)

The diameter d is defined as
dP.P) = [ (x5 - xp)z -05- SIS I

To obtain a quantitative estimate of the goodness of fit for the selected
carrespondence, this error measure is normalized as shown in Table I.
Minimal deformation as an indicator for the optimal correspondence will
produce satisfactory results as long as there are no dramatic changes in
the shape of a region between two frames.

Modification Rules. After defining the criterion to guide the search for
an optimal comrespondence mapping we define rules to select candidate
mappings out of the many different mappings possible. It turns out that
the search space of suitable mappings can be reduced considerably by
making use of the implicit order of the set of boundary points. The ini-
tial shortest-distance approximation has the property, that dispiacement
vectors do not crossover, which means that the order of pairs of points
on one boundary (for instance clockwise) will be the same for the
carresponding points on the other boundary. We term this property of a
mapping between two closed boundaries as radial:

Given:
B1,B2 ... two ordered sets of boundary points representing two
closed boundaries.

A mapping C: Bl — B2 is called radial, iff

Jor all PQ:),(PpQ)(PQp) € C : ordered (PyPyPy) — ordered
(QitQﬁQl) »
where ordered (P,P;,P,) means, that points P;, Pj, p lie on boundary B
in (clockwise) order.
This condition must hold for the optimal mapping as well, so we never
need to investigate permutations of the initial mapping. Among all the
other remaining possible mappings we select those that can be found by
a cyclic shift. This means that the maximum number of mappings to be
considered equals the number of boundary points.
The optimization problem can thus be stated as:
Given:
B1,B2 ... two ordered sets of boundary points with approximately
equal number of elements
C, - a radial mapping B1 — B2

Find a radial mapping C ot B1 — B2, such that
E¢(C°“) is a minimum for all radial mappings C’: B1 — B2

This means that we only have to rotate the correspondence relation
until the mapping of minimal deformation is found. In practice it is
sufficient to restrict the amount of cyclic shifting to a limited neighbor-
hood of the original estimate. A shift of +1/4 the length of the boundary
(as used in the experiments) will include the optimal solution in most
practical cases. For each cyclic displacement the deformation error of
the comresponding mapping is ‘evaluated. From all the inspected map-
pings the one that results in the minimal deformation is selected. The
associated set of displacement vectors is taken as an estimate for the
actual displacement field. Results of this algorithm obtained from sim-
ple (elliptical) moving regions are given in the following section.

RESULTS

The selection of the type of objects and motion used was influenced by
the work of other researchers in the Motion Analysis community. Thus
all experiments were conducted with ellipses undergoing translation and
rotation in 2-D space. This allows some comparison with results
obtained by Hildreth.5
Experiments

_Using elliptical regions, four different types of image motion were
Investigated: translation only, rotation only, translation and rotation, and
extreme rotation.
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Table I lists the number of rotation steps and the resulting (normalized)
deformation error for the various cases of motion. As expected, the
number of region-growing iterations (waves) depends directly upon the
amount of displacement. Thus the (2-D) velocity of image features
determines the necessary amount of computation. For our experiments
(1) and (2) the corresponding results from Hildreth’ are included in Fig-
ures 4.d and 5.d . Quantitative results are given in Table II. The
definitions for the error measures used in the tables and the graphic
results for experiments (3) and (4) can be found elsewherel9

Experiment 1 (Figure 4): In this case of pure transiation, the shortest-
displacement approximation for an ellipse is symmetric, in contrast to
the field of perpendicular displacement components. The smoothed
approximation is the correspondence of minimum deformation, no rota-
tion of the boundary is necessary. This is due to the symmetric shape of
the regions. Compared to the corresponding result from HildrethS ®59
our approximation shown in Figure 4.c is inferior. One reason is that in
the case of pure transiation, the smoothest displacement field obtained

‘by Hildreth is always the correct solution. The type of motion is of

course not known a priori. The second reason is that the target points
on the new boundary are not distributed uniformly. An improved
smoothing-step could remedy this problem.

Experiment 2 (Figure 5): In this case of pure rotation the initial
approximation differs significantly from the actal displacement field.
The final rotated result, however, represents a good estimate of the real
sitnation. The quality of this approximation can be seen from the low
error values for pure rotation in Table II. Extreme smoothing of the
vector field around the boundary will nor render the optimal result and

thus the corresponding approximation by Hildreth® ®52 fails to come

close to the real situation.
» (@ %
% K\wﬁ@w

Figure 4. Pure Translation: (a) Acwal displacement vectors. (b)
Shortest-distance approximation. (c) Final approximation. (d) The result
obtained by Hildreth .
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Figure 5. Pure Rotation: (a) Actual displacement vectors. (b) Shortest-
distance approximation. (c) Final approximation. (d) The result obtained
by Hildreth 3.



Figure 6. Translation and Rotation (a-c) , Extreme Rotation (60°) (d-f) :
(ad) Actal displacement vectors. (b,e) Shortest-distance approxima-
tion. (cf) Final approximation.

Experiment 3 (Figure 6.ac): Here translation and rotation were both
applied. The initial approximation is already very good at points of
small displacement, whereas areas of large displacement are not
estimated well. This means that some areas along the boundary require
rotation, while other areas do not. Since rotation is applied uniformly to
the entire boundary, no perfect fit can be expected. Again an improved
smoothing process will help to get a better estimate.

Experiment 4 (Figure 6.d-f): This setup was originally chosen to
demonstrate the limits of the approach in the presence of extremely wide
rotation (60°). Of course in this case it applies even more - the
smoothest displacement field> would not yield a valid approximation.
From the error values listed in Table II it can be seen that our technique
yields close estimates for the displacement fields over a wide range of
rotations.

CONCLUSION

A novel, region-oriented approach for estimating the displacement
fields of moving objects has been devised and implemented, performing
segmentation and two-dimensional motion analysis simultaneously.
Corresponding regions in successive image frames are supposed to over-
lap, such that connectivity information is carried over from one frame to
the next. Region-growing and wavefront propagation of displacement
data is used to obtain a new segmentation and a motion estimate simul-
taneously. Both processes can be realized in a "relaxation-type" fashion,
where each iteration is done in parallel, lending itself to pipelined and
VLSI implementations. From an initial shortest distance approximation,
the solution is improved by rotating the mapping between contours until
the comrespondence of least deformation is found. Experiments con-
ducted on elliptical regions show, that for the case of pure rotation
almost perfect estimates are obtained. In the presence of translatory
motion, the results depend crucially on how uniformly the points on the
new boundary can be distributed. More work must be done to investi-
gate the effects of object-shape, especially non-convex objects, and arbi-
trary 3-D motion on the quality of the results.

The results can be used in a reconstructive approach to obtain actual
3-D motion parameters. Apart from its application in motion analysis
wavefront region growing could be useful for image segmentation in its
own right.
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TABLE 1: Amount of Computation and Deformation Error

Trans.  Trans. No.of Boundary Deformation

Fig. | nX inY Rot. | Waves* Rotation® Ermror

4.0 0.0 0° 4 0 0.014

0.0 40 0° 4 0 0.010

8.0 0.0 0° 8 0 0.025

4 8.0 -8.0 0° 10 0 0.030

16.0 0.0 0° 16 0 0.049

0.0 0.0 5° 2 2 0.005

0.0 0.0 10° 4 5 0.006

5 0.0 0.0 15° 6 7 0.007

0.0 0.0 30° 12 16 0.011

6 0.0 0.0 60° 21 40 0.017

6 8.0 -8.0 15° 11 8 0.031

TABLE 2: Errors of the Estimated Displacement Fields
Trans. Trans. Orient. Error Magnit. Error | Total
in X inY Rot. ms avg ms avg Error
40 0.0 0° 0.111 52.0° | 0.661 43.6% | 0.896
0.0 4.0 0° 0.646 25.7° | 0.296 8.8% | 0.526
8.0 0.0 0° 1.143  57.3° | 0.651 43.4% | 0.850
8.0 8.0 0° 0.727 37.1° | 0416 17.3% | 0.645
16.0 0.0 0° 1058 53.1° | 0.643 41.4% | 0.809
0.0 0.0 5° 0225 7.7° | 0.224 5.0% | 0.302
0.0 0.0 10° 0.105 4.1° | 0.203 4.1% | 0.226
0.0 0.0 15° 0.114 4.8° | 0.195 3.8% | 0.219
0.0 0.0 30° 0.105 46° | 0.172 3.0% | 0.196
0.0 0.0 60° 0.124 5.5° | 0.143 2.1% | 0.189
8.0 8.0 15° 0.864 33.0° | 0.633 40.0% | 1.220
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