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Abstract

Automatic recognition, inspection, manipulation and assembly of objects will be a common denominator in most of tomorrow's highly
automated factories. These tasks will be handled by intelligent computer controlled robots with muttisensor capabilities which contribute to desired
flexibility and adaptability. The control of a robot in such a multisensor environment becomes of crucial importance as the complexity of the
problem grows exponentially with the number of sensors, tasks, commands and objects.

In this paper we present an approach which uses CAD (Computer-Aided Design) based geometric and functional models of objects together
with action oriented neuroschemas to recognize and manipulate objects by a robot in a muttisensor environment. The hierarchical robot control
system is being implemented on a BBN Butterfly muiti processor.

Index terms: CAD, Hierarchical Control, Hypothesis Generation and Verification, Parallel Processing, Schemas

Introduction

Factories of the future will make extensive use of automatic recognition, inspection, manipulation and assembly of objects, which calls for
intelligent computer controlled robots. These tasks are complex to control and the complexity increases rapidly as the tasks get more involved. In
addition, growth in the number of sensors and the types of sensors a robot is equipped with also contributes to increasing complexity resulting in
many times more data to process than in a single sensor system. Consequently, a control system needs to be flexible, adaptable, and able to
learn from past experience.

Many of the tasks in automated factories need to be done in real time. Therefore, it is natural to bring parallel processing into the picture
enabling considerable speedup in the execution of tasks compared to sequential processing on a conventional processor. For example, low level
image processing, involving large amounts of data, is possible to accomplish in real time. Furthermore, the control can also experience speedup
by running independent parts in parallel.

Knowledge about the intelligent aspects of a control system can be drawn from the neurosciences where studies of the brain and the nervous
system indicate how basic building blocks are organized and how they are capable of distributed processing. Using this knowledge we present an
approach to robot control called a hierarchical control system which uses action oriented schemas. Such schemas are termed neuroschemas
because of their similarity to neurons', which are the basic building blocks of the brain, and schemas®3:4 which are a basic kind of representation.
These neuroschemas are the basic building blocks of the control system.

The purpose of the control system is to achieve high level goals, specified by a user, through planning and action. The goals which can be
achieved depend upon the system's knowledge base, and are restricted by existing programs which are compiled into the system. Currently, the
system's knowledge is sufficient to locate and recognize polyhedral three-dimensional objects in range images. The system also has the
capability to leam by experience and by user interface.

In addition to the robot control system, we also present a new approach to three-dimensional object recognition. it uses CAD based geometric
models of the objects together with a feature indexec hypothesis strategy to recognize 3-D objects in range images.

Most of the earlier work using feature indexed hypotheses for recognition has been limited to two-dimensional objects®€. Three-dimensional
cases are much more complex. One needs to consider the three-dimensional model acquisition and complicated orientation problems. Models of
the objects can be in the form of pictures from different viewing angles. However, it is expensive and not practical to store more than a thousand
pictures taken from different viewing angles’. CAD based geometric models provide a good solution. The key to recognizing three-dimensional
objects using feature indexed hypotheses is to find the correct transformation matrix for the model. Using this matrix, the model can be
transformed to the location in the range image which corresponds to the position of the object being matched. The teature indexed hypotheses
‘method is then used to determine if the model and the object actually match.

An early version of the control system and the 3-D recognition aigorithm is implemented on a VAX 11/780 and the control system is currently
being transported to a BBN Butterfly parallel processor with a 19 node configuration.



Aspects of robot control

To make an "intelligent” control system, it is natural to borrow ideas from the most intelligent system we know, the human brain and the
nervous system. Studies of the brain indicate some important and basic factors of our intelligence®, which are also important for a robot control
system:

1. The brain is made ot basic building blocks, called neurons.

2. The brain is structured in a hierarchical manner.

3. The brain operates in parallel.

Basic building blocks (neurons) gather, process, and produce information which is used to make intelligent decisions about tasks to be done.
Even though there are many categories of neurons, like motor neurons and sensory neurons, almost all of them have the same general structure:
many dendrites carry the input to the cell body where the information is processed. A single axon carries the output to other neurons in the
nervous system. All the dendrites and axons are organized in a complex network which probably is the key to our intelligence, since it provides
the necessary links between parts of our brain®®,

It is believed that the neurons, with their complex network of interconnections, are organized in a hierarchical fashion8. Main "commands" are
issued at the top, and are split into subgoals as they propagate down the hierarchy. Neurons receive their "commands” from neurons at a higher
level and also accept feedback from the neurons at lower levels.

In addition to the hierarchical organization, it is clear that the brain makes extensive use of parallelism in carrying out its tasks89-10.11 when
an action is initiated, many neurons are involved in receiving input, processing it and propagating the result. It is known that the brain is quite slow
compared to digital computers, being able to carry out only about 100 serial time steps per second®!!. Since normal reaction time for a human
being is approximately 0.5 to 1.0 seconds, and the tasks which the brain is carrying out during this time often requires a substantially higher
number of computations than 100, it must be concluded that parallelism is essential for our ability to react as fast as we do.

In developing an intelligent control system for robots, it is desirable to include the three important aspects of the brain already discussed.
Using knowledge about the neurons in the brain, and ideas from schemas®34, the neuroschemas have emerged as the basic building biocks o ‘
the control system. These are organized in a hierarchical manner for each goal the system can achieve. Hence, three of the main aspects of the
brain have their analogs in the robot control system: basic building blocks, hierarchical organization, and parallel processing.

The basic building blocks of the robot control system

Figure 1 shows the three main parts included in the control system: the hierarchical control structure, the global knowledge base, and the
global data base. The hierarchical control system receives all its input from the user or from muttisensors, and achieves goals according to the
information found in the knowledge base. In case the information does not already reside in the knowledge base and a new experience is gained,
the knowledge base is updated with this new information. The data base is important for recognition of objects because all models known to the
system are stored here. It can also be updated.

The hierarchical control structure

The purpose of the robot control system is to achieve a main goal issued by the user. To achieve such a goal, the system uses a structure in
the form of a tree organized as a hierarchy which controls how the goal will be obtained. This tree, which exists while the main goal is being
obtained, is an analog to the short term memory in the human brain'213. Figure 2 shows an example on how the tree grows both in the serial
version and the parallel version, respectively. The G's in Figure 2 denote Goal, the S's Subgoal, and the P's denote the processor on which the
goal is being controlled/processed. The rectangular boxes denote that a (sub)goal is active. If the boxes are filled, it means the goais have been
achieved. The oval boxes denote (sub)goals to be obtained. The root of the tree is created when a main goal is given to the system. The control
flows in a top-down manner, like the backward chaining in a production system'2,

The basic unit in the control structure is the neuroschema. Each node in the trees in Figure 2 is controlled by a neuroshcema. They can only
be activated by other neuroschemas, which are already active, so the system is therefore action oriented and goal driven. In addition to activate
new neuroschemas, the parent neuroschemas provide decision making (using probability measures) at their respective nodes in the hierarchy,
thus deriving a sequence of steps. This planning is based upon previous experience, and achieves a goal with least risk and cost.

The neuroschema consists of three sections: an Activation Section, an Event Section, and a Learning Section. Each neuroschema is actually
a procedure, as shown in Figure 3 (encoded in the C-language), simulating the general functions of a neuron by receiving input, processing it, and
producing output. Depending on the input received, different processes are activated by the neuroschema to produce an output. A neuron can
take on any number of inputs and produces an output. The same is true for the neuroschema. In addition, any type of input and output can flow

through it, making it flexible. The neuroschema makes use of the knowiedge it has been activated with to determine how to process both the input
and the output.

The Activation Section checks the status of the goal - if it has been achieved or not - and indicates the result. This section thereby functions
similar to the electric potentials which can be measured in a neuron when it is active or inactive.
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The Event Section determines how the goal is to be achieved. This corresponds to the function a neuron carries out on its input to
produce its output. The neuroschema, which is activated with a goal, obtains this goal by achieving its subgoals. The subgoals are obtained by
either activating a new neuroschema at the level below in the hierarchy, or if the subgoal is a program it is executed. One particular goal can
sometimes be obtained by achieving either one of several different alternative subgoais (Sg) (an OR-branch: achieve one subgoal OR the other).
Using statistics about previous successes in obtaining different goals, the goal with the highest probability (P) is chosen. Success (S) means that
the (sub)goal has been obtained with satisfactory output. Failure indicates that the (sub)goal was not achieved. The probability values are
calculated as follows:

P(S)= 05 M
it is an unbiased value if the (sub)goal has never been achieved before. If it has been achieved before, but never with this particular input
Succasses
P(SISg) = —5=— (2

Here, the numerator is the number of times the subgoal has been achieved with any kind of input, and the denominator is the total number of
trials (failures + successes). If the subgoal has been achieved with exactly this input (I) before
_ Successes (©)
P(S/Sgnl) = i
In this case, the numerator is the total number of successes, so far, for obtaining the subgoal with exactly this input. The denominator is the
total number of trials made with this input. To enable calculation of these probabilities, the control system records the number of trials, successes
and failures. For every trial, the number of successes and failures are updated and stored in the knowledge base.

The Learning Section is activated when no information about how to obtain the goal can be found in the knowledge base, indicated by the

Activation Section. It is also activated if none of the alternative subgoals of the main goal can be obtained. In both cases the Leaming Section
has to obtain the necessary information from the user.

The structure of the neuroschema resembles the schema of Iberall and Lyon, and Overton23:4. In contrast to their schemas, however, which
have preconstructed plans for achieving a goal, the neuroschema is a control environment which can be activated with any plans for goal
achievement from the knowledge base. Another difference is found in the approach to learning, which in the case of schemas, is accomplished by
instantiating schemas which better fit a new situation. When our system is leaming, a new neuroschema is not instantiated; instead, new

information (in the form of probability measures and alternative subgoals) about how to achieve the goal is used to update the knowledge bass,
and it is used to achieve the goal next time.

The knowledge base

The knowledge base is the world mode! of the control system and can be viewed as an analog to the long term memory>'2 of the human
brain. Short term memory'2, in contrast, uses information found in fong term memory to obtain a goal and then disappears. The knowledge base
includes programs, core system goals and any knowledge obtained as a result of learning. Basically, we are using a world model where
knowledge about how to obtain a goal is stored as procedures (procedural knowledge). Also, with each goal in the knowledge base, an indication
of how probable it is to obtain this goal, is stored.

The programs are a part of the knowledge base. They are the core of the system, enabling it to take actions on the environment. These
actions takes place at the lowest level of any branch of the control hierarchy. At the moment, programs for recognizing polyhedral objects exist in
the knowledge base. However, there is no limitation on the number or kind of programs which it can consist of. Figure 4 shows the structure
where the programs are shown as goais with no subgoals.

Goals which are contained in the knowledge base are usually not programs. Instead, they contain information about how to further divide
themselves into subgoals (see Figure 4). At the lowest level in the hierarchy, however, the goals are programs which result in action. When the
system is started up, there exist some predefined goals, which together with the programs constitute the knowledge base. Figure 5 shows an
example, where one subgoal is further divided into new subgoals and some subgoals are programs.

The data base is described in a later section.

Control of multisensors

Intelligent robots in automated environments are required to be equipped with many sensors of multiple types. TV Cameras, range finders,
tactile, force , and torque sensors are important in tasks such as recognition, assembly, inspection, and manipulation of objects!4. Integration of
multisensors in a robot control system is concerned with both control of the sensors and efficient and effective utilization of diverse information
from multiple sensors to achieve the goal.

One of the key advantages with the control system we have presented is that there is no limit on the number or type of programs being
incorporated into the system. This implies that any number and type of sensors can be controlled. In our work, a muttisensor environment consist
of two types of sensors: a TV camera providing intensity data, and a laser range finder providing range data. The objective is to recognize 3-D



objects and manipulate them. Sensor fusion will enable more accurate recognition, since the data obtained from the two types of sensors
complement each other.

Parallelism

Our robot control system (serial version) is being transported from a VAX 11/780 to a BBN Butterfly Paratlel Processor (parallel version). ltis a
muttiple instruction, multiple data (MIMD) machine, and is connected to a host machine which in our case is a VAX 11/780.

Each processor runs one copy of the Chrysalis operating system . This operating system is written in C and supports communication and
synchronization between processes running on different processors. This is done by means of dual queues which pass messages between these
processes, and an event mechanism (similar to signais in UNIX). Chrysalis does not provide automatic resource allocation, load balancing or
process migration, however'!. Each user-developed program has to set up the data, create all necessary processes, and decide on which
node(s) they will run. In contrast to Chrysalis, the Uniform System approach to programming the Butterfly provides the user with easier resource
management. The Uniform System is built on top of Chrysalis and consists of several subroutines which take care of, for example, allocation of
memory and processors, and generation of new tasks (processes). The user does not allocate memory space or processors explicitly, since the
Uniform System takes care of distribution of tasks on processors and provides special memory allocation routines. The Uniform System is
especially suitable for homogeneous problems often found in low level computer vision.

Parallelism in the system can be divided into two categories according to the complexity invoived. First, there is the most compiex task of
implementing the actual control and high level programs, which involves running different programs on different processors, requiring
communication and synchronization between various processes. This is done using Chrysalis. Second, it is the relatively simpler task of
implementing low level computer vision programs with inherent parallelism and no complex control aspects, making the Uniform System the best
programming approach.

The first, and more complex category of hierarchical control uses the hierarchically organized tree, described earlier (see Figure 2), to decide if
subgoals can be started up in parallel. This includes situations where ditferent atternative subgoals can achieve the same goal with approximately
the same probability of success. In addition, subgoals can be started up in parallel when all needed inputs are provided, and any use of end

effectors will not result in conflicts. High level programs are also started up in parallel it all the inputs are available and no confict with end
effectors will arise.

One of the advantages of using muttiple processors to execute alternative ways of achieving goals simultaneously is to prevent time delay due
to an alternative’s failure to obtain the goal. If one of the afternatives fails, or the results are not satisfactory, the resuit of another can be used
instead. If the alternatives were not executed in parallel and the first alternative failed, it would take longer to achieve a goal; the next alternative
would be executed only after the first had failed.

When the hierarchical control allows parallelism, the parent neuroschema has to check if there are any processors available on which to start
up "child processes” (new neuroschemas). If this is the case, the parent also has to set up all the necessary data on the respective processors
before it can initiate any chiid processes. Parent and child will communicate using a dual queue, on which messages are posted. When a child is
done, a special message informs the parent'3. If no processor is available, the child process must be started up on the same processor as the
parent is running on. Moreover, it there is only one way of obtaining a goal, the child is started up on the same processor node as the parent is
running on, since there is no alternative which can be started up in parallel. In the last case, when there is only one way of achieving the goal, the
child’s work can be distributed on several processors, however.

The second category of parallelism in the system involves programs with inherent parallelism such as low level image processing programs.
These programs deal with image data which requires extensive and time consuming processing, but are usually of a much simpler type than the
control programs. One example is edge detection. In this case, the data (the image) can be split into several "chunks” and put onto the available
processors, which all run the same edge detection program on their part of the image'3 (a homogeneous problem). There is no complex control
aspects, like starting up ditferent programs on different processors and taking care of dual queues for message passing between the processes.

The two above mentioned categories of parallelism in the system could use as many parallel processors as there are possible processes.
However, there is a limit on the number of processors: 19 in our case. Therefore, the question of processor utilization arises. There has to be a
balance between the number of processors the two categories are allowed to occupy. Obviously, the most time consuming processes should use
the maximum number of processors, thus reducing the number of "bottle necks” in the system. Since the low level image analysis will be the most
expensive part with regard to execution time, it is preferable that these processes occupy most of the processors on the Butterfly, so as to prevent
unecessary serial execution. The total execution time for achieving a goal will then be minimized. If the hierarchical control program occupies just
a few nodes, it will not hurt the overall performance significantly, since even the serial version of the control does not take much execution time.

The 3-D object recognition algorithm

This section describes a new algorithm to recognize three-dimensional objects in range images using feature indexed hypotheses. The
models used in object recognition are obtained from Computer Aided Design (CAD). Most of the earlier work using feature indexed hypotheses
for recognition has been limited to two-dimensional objects>6. Three-dimensional cases are much more complex. One needs to consider the
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three-dimensional model acquisition and complicated orientation problems. The key to recognizing three-dimensional objects using feature
indexed hypotheses is to find the correct transformation matrix for the model. Using this matrix the model can be transformed to the location in the
range image which corresponds to the position of the object being matched. The feature indexed hypotheses method will theh be used to
determine if the model and the object actually match. The basic principle of the feature indexed hypotheses5 consists of the following:

1. Selecting pertinent features
2. Building a data base

3. Generating hypotheses

4. Verifying hypotheses

The pertinent features

The first step of the feature indexed hypothesis method is to select the pertinent features which are the most important features for recognition.
The main criterion when selecting is that the pertinent features should be invariant to the object orientation. In an intensity image, the pertinent
features of two-dimensional objects could be regions, corners or boundaries®-6. However, these types of features are not suitable for three-
dimensional object recognition using intensity based methods. The intensity sensor (TV camera) projects a three-dimensional scene onto a
two-dimensional image plane, and thus the shapes of regions, corners or boundaries are totally dependent on the orientation of a given object.
The depth information used to represent three-dimensional objects is also lost. Therefore, to use intensity data only, for three-dimensional object
recognition, is more difficult. With the advent of devices that can directly sense and provide the coordinates of points in space, researchers have
been pursuing the integration of multisensors to provide three-dimensional information for recognition. A specialized ranging device, 100A White
Laser Scanner, is used in our Robotics Laboratory to sense and provide the depth information. The 100A White Laser Scanner is a sophisticated
laser scanning device that provides a contour map (range image) of the objects being measured by using Canesian coordinates (X, Y, and Z).

Three-dimensional Cartesian coordinates of points in space are provided directly by this ranging sensor without complex perspective projection
problems 8,

In the current implementation, we concentrate on polyhedral object recognition using range data. The vertex and its three angles (Figure 6 )
are selected to be the types of features which are invariant to the object orientation. Magee et al.'7 select the length between two vertices as the

type of feature, but the length will not be corect when objects are occluded. In this paper, the algorithm to extract features for polyhedral objects
occurs in four steps:

1. Apply a gradient edge operator'® to the range image to extract edges (see Fig. 7).
2. Perform Hough transform on the thinned edges to get line equations.
3. Compute the intersections of these line equations. Let the intersections be the feature vertices.

4. Calculate the three angles (8, 8,, 8,) of the feature vertices. Junctions of regions in segmented images tend to be trihedrai'2. (84, 6, 63)
are sorted in descending order.

These low level algorithms can be efficiently implemented on the BBN Butterfly parallel processor, thus reducing computation time.

The data base

The data base shows which objects match each of the selected features. It contains the three angles (8,, 6,, 8,) of all the vertices in an
object, matched model numbers, the vertex coordinate V and three neighbor vertex coordinates (V,, V,, V,) (see Figure 6-(a)). For each model
there may be several instances of one feature (identical features). They will appear as one feature only, in the feature table. Since this reduces
the number of features it also reduces computation time. The data base will be searched when generating hypotheses.

Table 1 shows one example of the data base which contains three objects: Poly_1, Poly_2 and Poly_3 (see Figure 8). Poly_1 has five feature
types: (136, 102, 94), (90, 78, 43), (139, 90, 90),(90, 90, 41) and (90, 90, 90). Features (136, 102, 94) and (90, 78, 43) have one match. Features
(139, 90, 90) and (90, 90, 41) have five matches respectively ( 1 from Poly_1, 4 from Poly_2). Feature (30, 90, 90) has 11 matches ( 4 from
Poly_1, 7 from Poly_3). Poly_2 has two feature types: (139, 90, 90) and (90, 90, 41). Poly_3 has four feature types: (180, 111, 69) with one
match, (135, 111, 75) with one match, (159, 159, 29) with one match and (90, 90, 90) with nine matches.

Hypothesis generation
After the features are extracted, using the algorithm described in the "Pertinent Features” section, each feature of the unknown object (image)

is compared with those of the data base. The model of an object will be considered as the possible indentity of the unknown object if the feature
information fits the model. The features are compared using angle difference measures. :

s
AngleDift= z’ -8 (4)
=

Here, (8,, 0, 85) is the feature in the image, and (6', 5, 8'5) is the selected feature in the model base. If the AngleDiff is less than a
threshold , the hypotheses is generated. An example feature, and its matches in the possible model base, are shown in Figure 9. In the Figure 9
example, the feature type is (139, 90, 90). This feature matches six times in the data base. Four of the matches of the feature are shown in



Figure 9-(a). Two of the matches for the feature are shown in Figure 8-(b).

The hypothesis verification

The features which represent many identical matches could match several possible models when the AngleDiff is small enough to be
considered as a match. The purpose of the hypothesis verification is to find which of the models is the real identity. The technique of verifying the
hypotheses is that the image is translated and rotated to the same location and orientation as the possible matching models by applying a
homogeneous transformation to the image. Homogeneous transformation consists of a homogeneous translation matrix and a homogeneous
rotation matrix. An identity will be found if all edges of the image object fit the corresponding edges in the possible model. We choose the feature
vertex coordinate (A,B,C) in the image as the transiation position. A translation by (A,B,C) and a rotation by the nine unknowns (a,b,c,d.e f.g.h,i)
have these respective homogeneous matrices:

1 0 0 O a b c O
01 0 0 d e £ 0
0o 0 10 g h i 0
A B C 1 0 0 0 1

For solving the nine unknowns, we first need to find three non-colinear points in the image, which correspond to three points in the model.
Recall the pertinent features where each feature consists of the vertex V and its three neighboring vertices V4, V,, and V, (thereby detining the
three edges). Primed vertices refer to vertices in the model and unprimed vertices refer to vertices in the image. The vertex set (V, V') is the first
set of corresponding points to be found when feature matching is done. In the real word, at least one of the three edges (VV;, 1 <= i <= 3) are not
occluded, and one of these edges VV; (choose the longest one if more than one) should then be equal to one of the three edges in the model
(V'V’i, 1 <=j <= 3). The vertex set (V;, V') is the second set of corresponding points. The criterion for choosing the third set of corresponding
points is to: first, select the edge which has the largest 8 angle between VV; and itseff (say VV,, k <> i, 1 <= k <= 3), second, find the
corresponding edge in the model with the same angle between it and V‘V‘j, third, compute the point x' in the model by requiring VV, = x'V'. To
illustrate the rotation matrix solution procedure, consider Figure 11. (V,V') is the first set of corresponding points since the features are matched.
VV, is the largest edge in the image and VV, = V'V',, so (V,,V',) is the second set of corresponding points. 8, is the largest angle, so we find x’
on V'V, by requiring x'V' = VV,. When we process this information, 8,, 8,, 8; could be equal. The lengths, VVy, VV,, VV; could also be equal.
Therefore, all possible combinations of corresponding points must be computed in tum. The correct rotation matrix is found by checking that the
three edges fit those of the model. Figure 10 shows an example of a rejected hypothesis. Some of the edges in the image (Poly_1) do not fit any
of the edges in the possible model (Poly_2).

Conclusion

We have presented our ongoing work in developing a hierarchical robot control system based on three important aspects of the human brain:
basic building blocks (neuroschemas), hierarchical organization, and parallel processing. The system consists of three basic parts which inciude
the knowledge base, the data base, and the hierarchical control structure. The hierarchical control uses the information in the knowledge base
and the models in the database to achieve any goals given to the system. Currently, these goals involve a method for three-dimensional object
recognition. The main aspects of this method are the CAD-based geometric models for objects, and feature indexed hypotheses for recognition of
these objects.

In the near future we will complete the implementation on the Butterfly parallel processor and obtain resuits for speedup when comparing
parallel versus serial processing. We will also study processor utilization and process synchronization. We will continue expanding the scope of
the tasks which the control system can handle, including recognition of more complex 3-D objects and their assembly.

Acknowledgements

This work was supported in part by NSF Grants DCR-8506393, DMC-8502115, ECS-8307483 and MCS-8221750
References

1. E.R. Lewis, “The Elements of Single Neurons: A Review", |EEE Transactions on Systems, Man, and Cybemetics, Vol. SMC-13, No. 5,
September/October 1983, pp 702-710.

2. M.AA. Arbib, T. Iberall and D. Lyons, "Coordinated Contro! Programs for Movements of the Hand", University of Massachusetts, COINS
Technical Report 83-25, August 1983.

3. T. Iberail and D. Lyons, "Towards Perceptual Robotics”, University of Massachusetts, COINS Technical Report 84-17, August 1984.

4. K.J. Overton, "The Acquisition, Processing, and use of Tactile Sensor Data in Robot Control", University of Massachusetts, COINS Technical
Report 84-08, May 1984.

5. R.C. Bolles and R.A. Cain, "Recognizing and Locating Partially Visibie Objects: The Local-Feature-Focus Method", The International Journal of
Robotics Research, Vol. 1, No. 3, Fall 1982, pp 57-82.

6. T.F. Knoll and R.C. Jain, "Recognizing Partially Visible Objects Using Feature Indexed Hypotheses", |IEEE Journal of Robotics and Automation,
Vol. RA-2, No. 1, March 1986, pp 3-13.




7. F.P. Kuht, O.R. Mitchell, M.E. Glenn and D.J. Charpentier, "Global Shape Recognition of 3-D Objects Using a Differential Library Storage”,
Computer Vision, Graphics, and Image Processing, No. 27, 1984, pp 97-114.

8. J.S. Albus, Brains, Behavior, & Robotics, BYTE Books, Subsidary of McGraw-Hill, 1981.

9. J.A. Feldman, "Connections", BYTE, April 1985, pp 277-234.

10. J.A. Anderson, "Cognitive and Psychological Computation with Neural Models", IEEE Transactions on Systems, Man, and Cybernetics, Vol.
SMC-13, No. 5, September/October 1983, pp 799-815.

11. C.M. Brown, C.S. Ellis, J.A.Feldman, T.J. LeBlanc and G.L. Peterson, "Research with the Butterfly Multicomputer", Report from Computer
Science Dept., University of Rochester, 1986.

12. D.H. Ballard and C.M. Brown, Computer Vision, Prentice-Hall, 1982.

13. (a) "Buttertly Parallel Processor Overview", BBN Report Number 6148, Version 1, March 6, 1986. (b) "Chrysalis Programmers Manual,
Version 2.3", BBN Report Number 6191, May 1, 1986. (c) "Butterfly Parallel Processor Tutorial for Programming in the C Language”, BBN Repont
Number 6190, March 10, 1986. (d) "The Unitorm System Approach to Programming the Butterfly Parallel Processor”, BBN Report Number 6149,
Version 1, March 6, 1986.

14. C. Jacobus, W.D. Lee and J. Norton, "Flexible Assembly and Inspection of a small Electric Fuel Pump”, SPIE Vol. 579 Intelligent Robots and
Computer Vision, 1985, pp 528-536.

15. L.G. Roberts, "Machine Perception of Three-Dimensional Solids", Optical and Electro-Optical Information Processing, J.T. Tippet et al., Eds.,
1965, pp 159-197.

16. R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. Wiley, New York, 1973.

17. M.J. Magee, B.A. Boyter, C.H. Chien and J.K. Aggarwal, "Experiments in Intensity Guided Range Sensing Recognition of Three-Dimensional
Objects”, IEEE Transactions on Patten Analysis and Machine Intelligence, Vol. PAMI-7, No. 6, November 1985, pp 629-637.

18. B. Bhanu, SK. Lee, C.C. Ho and T.C. Henderson, "Range Data Processing: Representation of Surfaces by Edges”, Eight International
Conference on Pattern Recognition, Paris, France, October 27-31, 1986.

Hierarchical Controt Input From User KN 5
Structure Input From Multisensors —
G &
G G &)

LGt | 7]
Global Knowledge Bail I Global Data Base l
@] & &
Figure 1: The Basic Building Blocks of The Control System G G
LG ]
Achieve_Goal(Goal,Goal_information) = @ ©
char *Goal; ‘
(subgoal Goal_Information; ] (&)
urils (STATUS = DONE) Lo
/* Activation Section °/
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Figure 2: Hierarchical Control Tree: Serial and Parallel Versions
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Figure 6: Example of the feature indexgd
hypotheses method. (a) Selceting (b)
a vertex and its three angle)s
as the pertinent feature. (b i . .
feature in data base. Figure 7: Test images: Poly_2 & Poly_3. (a) Range image.
Sresenees o ’ (b) Edge detection result.
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Figure 8: Models: (a) Poly_1. (b) Poly_2. (c) Poly_3.



(a)

(b) \

y

Figure 9: The feature type is
(139,90,90). This
feature matches six
times in the data base.
Four of the matches

Figure 10: Some of the edges in the
image (Poly_1) do not fit

any of the edges in the
possible model (Poly_2).

are shown in (a).
Two of the matches are
shown in (b).

Poly_2
(01,02,03)=(136,102, 94) v =70.00, 3.37, 0.00)
v1=(9.25, 3.37, 0.00)
2oly_1 v2=(1.63, 3.37, 1.42)
v =(1.63, 2.90, 1.42) ¥3=(0.00, 2.€0, 0.00)
vi=(0.00, 3.37, 0.00)
v2=(7.75, 3.37, 1.42) Poly_2
v3=(1.63, 0.00, 1.42) v ={9.25, 0.00, 0.00)
v1=(9.25, 3.37, 0.00)
v2e(7.75, 0.00, 1.42)
(01,02,03)=( 90, 78, 43) v3=(0.00, 0.00, 0.00)
V2
Poly_1 Poly_2
R v =70.00, 3.37, 0.00) v =70.00, 0.00, 0.00)
V3 983 = 40 V1e(7.75, 3.37, 0.00) 71=(9.25, 0.00, 0.00)
v2e(1.63, 2.90, 1.42) /2=(0.00, 3.37, 0.00)
v3=(0.90, 0.00, 0.00) v3=(1.63, 0.00, 1.42) v3=(3.75,
02 = 140 YV o1 - 16d 2oly_3
(01,02,03)=(139, 90, 90) (01,02,03)=(180,111, §9) Vv =(3.7S,
Vie(3.75,
Poly_ 1 Poly_3 v2=(0.00,
v =(1.63, 0.00, 1.42) Vv «(3.75, 1.00, 1.50) V3= (3.75,
vie(1.63, 2.90, 1.42) vi=(3.75, 0.00, 1.50)
v2=(0.00, 0.00, 0.00) v2=(3.75, 3.75, 1.50) Poly 3
v3=(7.75, 0.00, 1.42) 73=(1.13, 0.00, 1.50) v =73.75,
v1=(3.75,
Poly_2 V2=(0.00,
Vi v =(7.75, 3.37., 1.42) (91,02,03)=(135,111, 75) V3=(3.75,
v1=(9.25, 3.37, 0.00)
v2=(7.75, 0.00, 1.42) PalyTg 5. .00, 0.50) paxy_g 7
. i i - . 0 . 7: . A - . . - . . - .
Figure 11: Select corresponding points example v3=(1.63, 3.37, 1.42) e v
Poly_2 v2=(3.75, 1.00, 1.50) v2=(3.75,
v =T1.63, 3.37, 1.42) v3=(1.13, 0.00, 1.50) V3=(0.00,
v1=(0.00, 3.37, 0.00)
v2=(7.75, 3.37, 1.42) Poly_3
v3=(1.63, 0.00, 1.42) (01,02,03)=(159,159, 29) v «(0.00,
v1=(0.00,
2oly_2 Poly 3 v2=(0.99,
v =(7.75, 0.00, 1.42) v =(1.13, 0.00, 1.50) V3= (1.13,
V1=(9.25, 0.00, 0.00) V1=(3.75, 1.00, 1.50)
72=(7.75, 3.37, 1.42) V2=(3.75, 0.00, 0.50) Poly_ 3
v3=(1.83, 0.00, 1.42) v3=(0.00, 0.00, 1.50) v =(0.00,
v1=(0.00,
Poly_2 V2=(3.75,
v =(1.63, 0.00, 1.42) (01,02,03)=( 90, 90, 30)  V3=(0.00,
vi=(1.63, 3.37, 1.42)
v2=(0.09, 0.00, 0.00) Poly_1
V3=(7.75, 0.00, 1.42) v =(7.75, 3.37, 0.00)
v1=(7.75, 3.37, 1.42)
v2=(0.00, 3.37, 0.00)
(01,02,03)=( 90, 90, 41) Vv3=(7.75, 0.00, 0.00)
Poly_1 Poly_1
v «70.00, 0.00, 0.00) v =(7.75, 3.37, 1.42)
vi=(7.75, 0.00, 0.00) Vie(7.75, 3.37, 0.00)
v2=(0.00, 3.37, 0.00) v2=(7.75, 0.00, 1.42)
v3=(1.63, 0.00, 1.42) v3=(1.63, 2.90, 1.42)
Poly_2 Poly_L
v =(9.25, 3.37, 0.00) v ={7.75, 0.00, 0.00)
Vie(7.75, 3.37, 1.42) V1=(7.75, 3.37, 0.00)
v2=(0.00, 3.37, 0.00) v2=(7.75, 0.00, 1.42)
v3=(9.25, 0.00, 0.00) v3=(0.00, 0.00, 0.00)
Table 1: Data Base Selected for Features
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