Computer-Aided Geometric Design
Based 3-D Models for Machine Vision

Bir Bhanu and Chih-Cheng Ho

Department of Computer Science
The University of Utah
Salt Lake City, Utah 84112, USA

Abstract: Model based recognition is one of the key paradigms in
computer vision and pattern recognition. However, at present there is an
absence of a systematic approach for building geometrical and functional
models for a large class of 3-D objects used in industrial environments. In
this paper we present a Computer-Aided Geometric Design (CAGD) based
approach for building 3-D models which can be used for the recognition
and manipulation of 3-D objects for industrial machine vision applications.
We present the details of the design on a relatively simple object named
"Green Piece," and the complex automobile "Renault Piece” used in
computer vision and pattern recognition community. A new algorithm is
presented which uses the above geometric design and allows the points on
the surface of the object to be sampled at the desired resolution, thus
allowing the construction of multiresolution 3-D models. The resulting data
structure of points includes coordinates of the points in 3-D space, surface
normals and information about the neighboring points.

1. Introduction

The emergence of CIM (Computer Integrated Manufacturing) technology
as a driving force in manufacturing engineering has provided opportunities
and challenges to use geometric and functional models of real-world 3-D
dbjects for the task of visual recognition and manipulation of these objects
by robots [2]. CIM technology provides the database of objects as a
byproduct of the design process. It allows the model-based recognition of
3-D objects to be simulated even before these objects are physically created.
In this paper we present our ongoing work in defining how these designs
could be used or modificd in novel ways so as to be suitable for the task of
recognition and manipulation.

A formal CAGD system contains an interactive designer interface,
graphic display utilities, model analysis tools and automatic manufacturing
interfaces. It is a suitable environment for design purpose. However, the
models it generates do not contain features which are important in computer
vision. A systematic approach to build heterogeneous vision models [2] is
to construct them from the CAGD database and incorporate those features
which are crucial for object recognition and manipulation. Here are some
approaches used in our ongoing work: (1) Universal representation of
objects by surface points. These points can be sampled at a desired
resolution and the neighborhood and surface normal information is provided
which can be used in building higher level description of the model and
shape matching [1]. (2) Intrinsic surface characteristics defined by swrface
curvatures. The local surface can be characterized by curvatures alone. In
B-splines based Alpha_1 CAGD system (3], derivatives are embedded
inherently in its control mesh and knot vectors. Surface normals and
curvatures can be obtained as a byproduct of many B-splines computations.
(3) Surface representation by edges/arcs and local shape features. Edges
and arcs can be extracted as boundaries of surface patches used in the
design process. A more precise way is to define edges as the local extrema
of curvature or to use some 3-D edge detection techniques. (4) High level
volumetric and sweep representations. From the CAGD design procedure,
we can construct a CSG (Constructive Solid Geometry) like representation
where we.can put functional information. Also, we can convert the CAGD

!This work was supported in part by NSF Grants DCR-8506393, DMC-8502115,
ECS-8307483 and MCS-8221750

CH2342-4/86/0000/0107$01.00 © 1986 IEEE

107

model into a generalized cylinder model by applying an object
decomposition technique followed by an axis extraction procedure. In this
paper we present approach (1) for model building using the Alpha_1 CAGD
system developed at the University of Utah.

2. Model Building Using the Alpha_1 CAGD System

Alpha_l models the geometry of solid objects by representing their
boundaries as non-uniform rational B-splines. Alpha_1 uses the Oslo
algorithm (3] for knots insertion. Rational B-splines are an ideal design
tool, they are simple yet powerful, all quadratic surfaces which are used as
primitives in CSG can be represented exactly. Other advantages include
good computational and representational properties of the spline
approximation: the variation diminishing property, the convex hull property
and the local interpolation property. Alpha_1 supports several modeling
paradigms, including direct manipulation of the B-spline surfaces, creation
and combination of primitive shapes, and high-level shape operators such as
bend, twist, warp and sweep. It also allows set operations on surface
patches which make the modeling task easy and complete. Here are some
guidelines in using Alpha_1: (1) Analyze the object, a complex object is
decomposed into simpler parts which are designed more easily. (2) Make a
precise measurement of parameters. (3) Maintain validity of the model by
setting correct orientation and adjacency information of each patch. (4)
Perform the appropriate transformations and Boolean operations.

To design simple objects such as the "Green Piece” (Fig. 1) which has
many local features, we build the complete object in a stepwise manner.
First, we design the plate and all holes as in Fig. 2(a), then the dent part and
scratches of Figs. 2(b) and 2(c). To design these parts, we first design
curves using B-splines and then use various high level operators for surface
construction, such as revolving a curve about an axis, extruding a curve in
some direction and filling the surface between two curves. There are seven
threads in the Green Piece each of them is designed by filling two surfaces
between two twisted curves. Fig. 2(c) shows the center one, the others are
similar except their radii and pitches. This design can be used in
manufacturing the green piece on a numerically controlled milling machine.

For objects like the Renault Piece (Fig. 3) which contains sculptured
freeform surfaces, we divide it into a set of simpler parts though the
partitioning is not so straightforward. Here we divide it into five sub-parts:
left head, right head, neck, base plate, and back bump (Fig. 4). For the right
head, left head and back bump, we find all sharp edges and then construct
the surfaces from them as before. For the base plate and the neck part, we
need some pseudo sharp edges which are the intersection of the surface
planes. Then we construct these surfaces but leave small gaps between
them where we use cubic B-splines patches to produce the rounded edges.
Fig. 5 shows rendered images of these parts and Fig. 6 shows intersection
curves of them, which are computed to obtain the complete object using set
operations performed by the combiner in Alpha_1. Figs. 7 and 8 are the
final CAGD model for Renault Piece and Green Piece respectively.

3. Multiresolution Surface Point Extraction

The set operations over B-spline surfaces are not closed, parts of the final
CAGD model are represented as polygons. Our strategy is to subdivide all
the B-spline surfaces into polygons so as to make the problem uniform. By
applying a contour filling algorithm, we get interior line segments of the
polygons, and extract points along these segments at a desired resolution.

R —

An edge based contour filling algorithm is described in (41 which
requires expensive preprocessing on the contours. It is used in applications,
such as surface shading, where the same contour is used repeatedly. In our
case, the number of polygons in a model is very large and we extract only a
small number of points from each one of them. Instead of sorting and
marking the edges, we use topological information of the intersection
points. Since the number of vertices is usually much larger then the number
of intersection points for one line segment, its time complexity is linear in
the average case.

3.1. Contour Filling Algorithm

The main element of contour filling is to find the intersection segments of
a line (scanline) and the polygon. They can be obtained by first finding all
intersection points and then deciding which parts are inside the polygon.
There are three kinds of intersection points: start, end, and middle point.
Suppose we travel along a line from left to right, the start point is defined as
a point whose left neighborhood is outside the polygon. Similarly, the end
point is the one whose right neighborhood is outside the polygon, and a
middle point is the one for which both left and right neighborhoods are
inside the polygon. In Fig. 9, point A is a start point, B and C are middle
points and D is an end point. However, point E is both a start and an end
point. Now we want to characterize the intersection points into these three
classes. Then the segments between all start/end point pairs are inside the
polygon.

To determine the kind of an intersection point, we need its topological
information. In Fig. 9, the space is divided by line ab into two regions, I
and II. There are five intersection points: A, B, C, D, and E. We find the
incoming and outgoing directions (in,out) of an edge (along the contour)
when it passes through an intersection point. For the edge going from
region II to region I we mark its direction as 1 and if it goes from region I 10
region II we mark it as -1. And if the edge is lying on the line itsclf, we
mark it as 0. For example, point A will be marked as (1,1), point C as (0,1)
and point E as (1,-1). This information is obtained when we find the
intersection points. There are nine different combinations of the (in,out)
directions. They can be classified into four kinds only: flat (in = out = 0),
tangent (in = -out # 0), cut (in = out # 0), and flat-cut (only one of them is
0), see Fig. 10. Now the problem is to map these four kinds of intersection
points into three classes - start, middle, and end points.

Obviously, the flat point must be a middle point. The tangent point must
be an end point if it is a start point otherwise it is a middle point. The cut
point can be either a start or an end point. But the flat-cut point can be
anyone of them. There is an important property of the edge directions: the
out direction of an end point must be opposite to the in direction of its start
point. Asan example in Fig. 9, the start point A has 1 as its in dircction and
the end point D has -1 as its out dircction. But using this property alone
may not result the correct mapping when the contour is in the opposite
direction of the cutting line. As shown in Fig. 11, the direction of the
contour between D and C is from right to left but all intersection points are
labeled assuming the cutting line is from left to right. The end point should
be D instead of C which is a middle point. It can be resolved by exchanging
the in and out directions of these points. Thus, there is a restriction on the
in/out directions which is used to tell if such a correction is required.
Assuming that the conwur does not intersect itself, where the injout
directions cannot be defined uniquely, for any two adjacent intersection
points, the out direction of the first one and the in direction of the second
one must be both zero or both non-zero if they are marked correctly. In Fig.
11, there is a conflict between B and C, the out direction of B is not O but
the in direction of C is 0. The in/out dircction of C is therefore changed to
(-1,0) and point D is changed to (0,-1), since the conflict occurs on point D
after we change point C. After these corrections we can find that point D is
the end point corresponding to point A. The final algorithm is:

Inputs: List of intersection points, each point contains both
geometric (coordinates) and topological (in/out
directions) information.

Outputs: A list of start/end point pairs, each represents one
interior line scgment.

Assumptions: The contour is closed and does not intersect itself.

Procedure: It includes the following steps:

1. Sort the intersection points along the cutting line.

108

(8]

- For each intersection point, if it is the first one or the previous

one is an end point, then it is a start point and do step 3 else
do step 4.

w

. If it is a tangent point, then it is also an end point else if its in
direction is 0, then exchange the in and out direction of this
point. Save the in direction of this start point.

4.1If it is either a flat point or a tangent point, then it is a middle
point else do step 5.

5.1f there is a conflict regarding the restriction as described
above, then exchange its in and out direction. Finally, if the
out direction of this point is opposite to the saved in direction
from step 3 then it is the end point else it is a middle point.

Fig. 12 shows a two dimensional example. Fig. 12(a) is the input
polygon which is taken from the output of the combiner. Each cross
represents a vertex of the contour. Some of them appear to be redundant
were kept 1o maintain the adjacency information between neighboring
polygons. When considering a single polygon they can be removed. Fig.
12(b) is the result of the above algorithm applied to Fig. 12(a). Finally, in
Fig. 12(c), we extract the surface points from these line segments by a user
defined resolution.

The time complexity of this algorithm is O(n + m*log(m)), where n is the
number of vertices of the input contour and m is the number of intersection
points of one cutting line. Usually the number of intersection points is
much less then the number of vertices, and the complexity is linear. In the
worst case, m is equal to (n-1), number of edges minus 1, and it becomes
O(n*log(n)), the same as the edge based algorithm.

3.2. Surface Point Extraction Using Contour Filling Algorithm

We use the contour filling algorithm described above 1o find the surface
points and their normals. Since the algorithm uses topological information
only, it can be applied to 3-D polygons as long as we change the concept of
cutting "lincs" to cutting "planes". The resolution in one sampling direction
is defined as the maximum distance between any two adjacent points. The
given resolution is ensured by finding the maximum projection plane of
cach polygon among either x-y, y-z or z-x planes from its normal vector and
using cutting planes orthogonal to it. Thus the distance between any two
adjacent points is less than the grids spacing times 3172,

Figs. 13 and 15 show the surface points extracted from the models of
Green Piece and Renault Piece at 0.2 inch resolution. In Figs. 14 and 16,
we show the surface normals at 0.4 inch resolution. These were computed
using bi-lincar interpolation of normals at vertices. Fig. 17 exhibits three
samplings of surface points of Renault Piece at various resolutions. They
are taken from only one view and can be used to simulate the real range
data.

4. Conclusions

In this paper we have presented a new technique for the representation of
3-D objects by surface points which can be sampled at any desired
resolution. Other approaches toward the multi-representation vision system
and matching based on these representations are under investigation. These
results will be presented in the future.

References

mn B. Bhanu. Representation and Shape Matching of 3-D Objects.
IEEE Trans. on Pattern Analysis and Machine Intelligence
PAMI-6(3):340-351, May, 1984.

2] B. Bhanu and T. Henderson. CAGD Based 3-D Vision. In
International Conference on Robotics and Automation. TEEE, March, 1985.

(31 E. Cohen, T. Lyche and R.F. Riesenfeld. Discrete B-splines and
Subdivision Techniques in Computer-Aided Geometric Design and
Computer Graphics. Computer Graphics and Image Processing
14(2):87-111, October, 1980.

4] T. Pavlidis. Algorithms for Graphics & Image Processing.
Computer Science Press, 1982.

Fig. 2 Sub-parts of Green Piece CAGD Model

Fig. 1 Green Fizue T 2t

(e)

Fig. 4 Sub-parts of Renault Piece CAGD Model
(a) Left Head (b) Right Head

(c) Neck (d) Base Plate

(e) Back Bump

(a)

Fig. 5 Rendered images of Sub-zarts of Renaul: Piece . . .
(a) Base Plate (5) Necw Fig. 6 lntersectlfn gurveitcg_
(c) Left Head (4) Rignt Head Sub-parts of Renault Piece

109

x

(b) Top View

Fig. 7 Various Views of Designed (c) Back View
CAGD Model for Renault Piece

I
/\ /\ (a) (b \/
AL, D (-t oe

3/‘ ” B (10 C@L ‘VI'\E (-1 p
outside /made)
@ \ @ \
ll contour \

Fig. 9 Direction of Edges
Fig. 10 Four Kinds of Junction Points
(a) Flat Point (b) Tangent Point

: . ¢ (c) Cut Point (d) Flat-Cut Point
Fig. 8 Designed CAGD Model for Green Piece Ao £
% B0 h 01D —_ —_—
\ —_ _ = = =
A \\{ V— Pt ——— —“—.:-
' —— :‘.‘ ot =
R N c :
— \

N ot —— :/.(o ——— ::-

Se— ~=F —= T

(a) (b} (c)

Fig. 12 A Two-Dimensional Example
(a) Input Polygon (b) Interior Line Segments
(c) Sampled Surface Points

Fig. 14 Normals at the Surface Points for
Green Piece, 0.4 Inch Resolution

Fig. 13 Surface Points Extracted From
the CAGD Model of Green Piece,
0.2 Inch Resolution

R NN Y R

Fig. 16 Normals at the Surface Points for
Renault Piece, 0.4 Inch Resolution

Fig. 17 Sampled Surface Points of the Renault
Piece in Various Resolutions o R
(a) 0.4 Inch Spacing (b) 0.3 Inch Spacing Fig. 15 Surface Points Extracted From the CAGD Model

(c) 0.2 Inch Spacing (c) of Renault Piece, 0.2 Inch Resolution

110

Ry
i
e
‘
[
o8
ol
2
o
e
Mu&
i
i

2
e
(%]
@
@
= 9
" ®
€D
al

1

@cféﬁﬁeﬁif&CQ@@(@U@@@@@@Gté@@ﬁ@@@@@@@@@@ﬁ@@@@ DOROVE
ODCO00000QO00000R0CR0000000000000000000000B0OO

00000000000000000000000
00000°0000000000000000C
000000000000 0000000000
00000000000000000000000
CO000000020000000CC00000
COO00 005 000000000000
C0000°00000000000000000
C0C00000000000000000000
| ©0000000000000006000000
s 00000000000000000006600
m 00000000000050C00000000Q0

@

|
COMPUTER

SOCIETY
PRESS

OO0
QOOO00
00000
0000QC
POO00
06000
Q00OQ
Q0OOO
QOGO

-0742-4-

H 000000000080000006006006000
12 00000000000000600000000
% 0000000000030 030000G000
00000200000000000Q00BO0 00000
0000000000000000000000° Q000
aoooooooooooocooooooooaea@ao@QQQG
00°00.000°0000000000000. 2 70000200
@o@oo@00@@ootﬁﬁﬁﬁﬁoooo@o@@ooo@ﬁ@o
000000005000 200000000.2000005 00
@o@oo@00@@000@@@@@0000@otoooooﬁ33
50G00000520000000000000000000° 0 C
@oooooococoooooooooooooooooooa@kﬁ
@@@@@ec@@@@%@@@e@@%@@@@@@@0@@@00.@0@oe@eooooooocc@@@@3 |
)¢ ;J@@czg\:@aas&sca&@@@0@@5@@@@@@9@.@@000000000@@%@@@@@@
O ﬁé@agk;sgafwﬁwoa? POO0000000000C000000000000 00000 0DO0
FVOOBTHOVOICO0OVOD @.3@@&@Qwao@ocoooooooooooo@aaae@@@g@
TDOPD0C S OC0000°000000000000000000000000000°0C000000
ooooooonooooooooc000ooooooooooooooooooocoooooooaga@@@a%ﬁ@@
oooooocoooooooo.coooooooooooooooooomeaﬁ@@a@3@3
B3OO000 9Qoocttoooooooooooooccoooo dﬁgﬁasagm

NOODDOO wazseootoooooooooooiﬁﬁ acgﬁ

iy
QDE OO0

P

PROCEEDINGS

1

IEEE Computer Society Order Number 742
ibrary-of Congress Number 86-81419
EEE Catalog Number 86CH2342-4

SBN 0-8186

PARIS; FRANCE
OCTOBER 27-31,1986

: AFCET, Association Francaise'pour. la Cybernetique Economique
et Technique RN

: IAPR, International Associatibn for Pattern Recogﬁition

2 RECO GNITION

INTERNATKM%%%CONFERENC
PATTERN

Sponsor
Organizer

M, ﬁn%@; \
4 bﬁﬁiﬁbﬁﬁ@iﬁﬁﬁaQGL@.O@QQQ.@@@@@@@..O.Q..@G@
wu£w6Q£;$$®Q@QZPr@360@$@ YCOOOROONG0000000C OO0

RPR®, e ?éf

EIGHTH
INTERNATIONAL CONFERENCE

RECOGNITION

PARIS, FRANCE
OCTOBER 27-31,1986
PROCEEDINGS

Sponsor : IAPR, International Association for Pattern Recognition
Organizer : AFCET, Association Francaise pour la Cybernetique Economique

et Technique

