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Abstract

We describe a methodology which permits (1)
the precise characterization of sensors, (2) the
specification of algorithms which transform the
sensor data, and (3) the quantitative analysis of
combinations of algorithms and sensors. Such
analysis makes it possible to determine appropriate
sensor/algorithm combinations subject to a wide
range of criteria including: performance, computa—
tional complexity (both space and time), possibility
for concurrency, modularization, and the use of
multi-sensor systems for greater fault tolerance
and reliability. Some examples from the domain of
remote sensing are given.

Introduction

Current systems for the analysis of remotely
sensed data are limited in their capability by ex—
treme data dependency and a set of ad hoe

algorithmsl: 2. The performance of such systems in -n

realistic scenarios is not very good and results in ... : .
: . of features such as erTor, accuracy, repeatability,

~ poor Trecognition accuracy and a high false alarm
“rate. One approach to solving this problem is to
~ develop expert systems for the automatic analysis
of imagery. For example, Nagao and Matsuyama3,
' describe an expert system for the analysis of aeria]
° photographs, and Tsotsos* presents an expert sys—

“'tem for understanding motign in images. Although
such systems may achieve a certain amount of suc—
' cess, we believe that, in order to produce better
~“systems, it is essential to consider the system as a
whole, and, if ‘possible, to produce the system sub-
-Ject to known design constraints and requirements.

1”I.'his work was supported in part by NSF Grants
ECS-8307483 and MCS-82-21750; Chuck Hansen is
an ARO Fellow.
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All this requires a thorough understanding of the
algorithms for low level data analysis such as
preprocessing, detection, segmentation and feature
computation. To a great extent the success of such
an analysis system depends on the low level image
analysis.

Recent efforts have been concentrated on apply—
ing a given algorithm to a set of images and car—
rying out statistical analysis without regard to the
sensor. This is one of the root causes for the lack of
understanding of the behavior of algorithms and
the inability to predict their performance in real
situations. In this paper we describe a novel
framework which allows the evaluation of the per—
formance of a suite of algorithms based on the in—
teraction of algorithms with the sensor.

In a multi-sensor environment it is necessary to
exactly characterize the nature of each sensor, in—
cluding the type of information returned by the
sensor and the manner in which this information is
Obtained5. 6, For example, most sensors can be
characterized to some extent in terms of a small set

dfiﬁ, resolution, hysteresis, threshold and range.
Moreover, as we are dealing with digital signal
processing, measures of quantization and sampling
performed by the sensor are also considered. In
general; the- essence of any sensor is the domain
over which the sensor operates and the kind of data
it returns; e.g., a camera provides x and y spatial
values - (perhaps implicitly according to location in
the:signal) and light intensity information. A
camera; can: be:viewed as a function over its two—
dimensional viewing space, or as a stream of triples
(%,y,intensity) produced by it. A computational



theory of sensors is explicitly based on the sensor,
the algorithm, and the manner in which the algo—
rithm acts on the output of the sensor. It requires
the definition of the domain over which a sensor
operates, the physical nature of the transduction,
and the characteristic output of the sensor. Given
this framework, it is possible to make a quantita—
tive performance of various digital signal process—
ing algorithms on the sensed data.

There are several difficult issues involved in
choosing a scheme whereby features of algorithms
can be composed with features of physical sensors
such that the overall sensor system may be
analyzed. A desirable characteristic of a complex
suite of algorithms as required for analyzing
remotely sensed data is that each of its component
algorithms makes maximum use of the input data
characteristics and its goals are in conformity with
the end result of obtaining the best recognition
performance. One approach to this problem is to
view algorithms and sensors in much the same
way; i.e., an algorithm takes in a certain set of data
from a sensor or from another algorithm and
produces a set of transformed data. Its output can
then be characterized in much the same way as the
output of an actual sensor. This view permits an
economy of representation and easy movement
from actual physical sensor devices to
sensor/algorithm combinations. Not only does this
make the analysis easier, but it also gives a
mechanism by which it is possible to consider dif-
ferent sensor/algorithm combinations to be equiv—
alent according to the characteristics of their out—
put. As an example, if an edge detection algorithm
is run on a certain kind of image data, then the
output is essentially that of a "smart” sensor which
detects edges directly. Similarly, two cameras and
a stereo algorithm which ‘ fuses their data to
produce range data may be considered equivalent
to an actual direct range finding device. This also
makes it possible to consider under what cir—
cumstances the sensor algorithm combinations are
different and to use those differences to solve user
or problem imposed ‘constraints. For example,
given two systems which ultimately produce data
with the same characteristics, one system might be
faster than the other or one might have better ac-
curacy than the other. '

Finally, it is nece‘,.ssai.'yrto provide a quantitative
analysis of the performance.of different sensor sys—
tems. This can be parameterized along whatever
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dimensions are defined for the various sensors and
algorithms. A major difficulty in resolving such
issues is presented by the great variety of sensor
systems and the varying level of awareness of such
issues within different sensor user communities.
Experienced users of certain types of sensors may
have a fairly good knowledge of when and why cer—
tain algorithms work well. However, algorithm
evaluation techniques are not standardized, and
there are many ways in which the properties of al—-
gorithms can be characterized. This is one of the
major motivations for establishing a uniform
framework for the description of both sensors and
algorithms; namely, it becomes possible to define a
coherent computational theory of sensors. Then,
the sensor system can be defined not simply as a
task to be done, but rather as a task to be per—
formed in an optimal way. Of course, the optimal
solution depends on the application.

The use of statistical, heuristic and parametric
models is considered for algorithm evaluation on a
sample database of a given scenario. In this con—
text these models are chosen such that each part of
the remote sensing system can be evaluated not
only with respect to its own figure of merit, but also
against the overall classification. In this view,
statistical measures of an algorithm’s performance,
the ability of an algorithm to make maximal use of
the specific characteristics of the data, and the
whatever general parameters are used to evaluate
the overall performance of the system (probability
of classification, and false alarm per frame) must
all be taken into account when evaluating the sys—
tem. In addition, the models can be used to estab—
lish the requirements of the database in terms of
data collection and organization, with the end goal
of generating databases of sensor data which are
increasingly - representative of the real world.
Thus, sensor/algorithm systems are the best source
of information on how to improve themselves. The
proposed framework for a computational theory of
sensors provides a firm basis for a thorough under-
standing of the problems involved.

“Method

In order to achieve the analysis and performance
evaluation system:described above, it is necessary
to divide the problem into more manageable sub—
problems. The two major aspects of the problem
are: Alta s, R PR

1. the speciﬁ;:;ation of sensors and al-
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gorithms which transform

data, and

sensor

2. the inference of properties of proposed
configurations of sensor/algorithm
systems.

In this section we discuss our solution to these two
problems.

Logical Sensor Specification

Multi-sensor systems require a coherent and ef-
ficient treatment of the information provided by the
various sensors. We have proposed elsewhere a
framework, the Logical Sensor Specification Sys—
tem, in which the sensors can be abstractly defined
in terms of computational processes operating on
the output from other sensors®:6.  Various
properties of such an organization have been inves—
tigated, and two implementations have been
described.

The principal motivations for logical sensor
specification are:

—benefits of data abstraction: the
specification of a sensor is separated
from its implementation. The multi-
sensor system is then much more port—
able in that the specifications remain
the same over a wide range of im-—
plementations. Moreover, alternative
mechanisms can be specified to produce
the same sensor information but per—
haps with different precision or at dif-
ferent rates. Thus, several dimensions
of sensor granularity can be defined.
Further, the stress on modularity not
only contributes to intellectual
manageability but is also an essential
component of the system’s recon—
figurable nature. The inherent hierar—
chical structuring of logical sensors
further aids system development.

—availability of smart sensors: the
lowering cost of hardware combined
with developing methodologies for the
transformation from high level al-
gorithmic languages to silicon have
made possible a system view in which
hardware/software divisions are trans—
parent. It is now possible to incor-
porate fairly complex
directly into hardware. Thus, the sub—
stitution of hardware for software (and
vice versa) should be transparent above

algorithms *
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the implementation level.

Logical Sensors

We have briefly touched on the role of logical
sensors above. We now formally define logical sen—
sors.

A logical sensor is defined in terms of four
parts:

1. A logical sensor name. This is used
to uniquely identify the logical sensor.

2. A characteristic output vector.
This is basically a vector of types
which serves as a description of the
output vectors that will be produced
by the logical sensor. Thus, the out—
put of a logical sensor is a set (or
stream) of vectors, each of which is of
the type declared by that logical
sensor's characteristic output vector.
The type may be any standard type
(e.g., real, integer), a user generated
type, or a well-defined subrange of ei—
ther. When an output vector is of the
type declared by a characteristic out—
put vector (i.e., the cross product of
the vector element types), we say that
the output vector is an "instantiation”
of that characteristic output vector.

3. A selector whose inputs are alternate
subnets and an acceptance test name.
The role of the selector is to detect
failure of an alternate and switch to a
different alternate. If switching can—
not be done, the selector reports
failure of the logical sensor.

4. Alternate Subnets. This is a list of
one or more alternate'ways:in which
to obtain data with the:same charac—
teristic output vector.: Hence, each al—
ternate subnet is equivalent, with
regard to type, to all other alternate
subnets in the list, and can serve as
backups in case of failure. Each al-
ternate subnet in the list:is itself com—
posed of: P

" -~ A set of input Sotirces. Each
" element of the s&t ‘must either
' be itself a logical sénsor, or
the empty set (null).. Allowing
null input permits physical
sensors, which have only an as—

ey
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sociated program (the device
driver), to be described as a
logical sensor, thereby permit—
ting uniformity of sensor treat—
ment.

- A computation unit over the
input sources. Currently such
computation units are software
programs, but in the future,
hardware units may also be
used. In some cases, a special
“do-nothing” computation—unit
may be used. We refer to this
unit as PASS.

A logical sensor can be viewed as a network com—
posed of sub—networks which are themselves logical
sensors. Communication within a network is con—
trolled via the flow of data from one sub—network to
another. Hence, such networks are data flow net—
works.

Implementation

We currently have two implementations of the
logical sensor specification language running: a C
version (called C-LSS) running under UNIX?, and
a functional language version (called FUN-LSS)8.
The C version produces a shell script from the
specification, while FUN-LSS generates code for a
special functional programming language (FEL).
FUN-LSS provides a logical sensor specification
interface for the user and maintains a database of
s—expressions which represents the logical sensor
definitions (see Figure 1).

t,

logical sensor specification interface

!

logical and physical sensor database

Figure 1. The Logical Sensor Interface
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We have defined a Logical Sensor Specification
Language as a framework facilitating efficient and
coherent treatment of information provided in
multi-sensor systems. In addition to the issues
raised when considering the language implemen—
tation itself, various extensions have been sug-
gested. In particular, we have implemented:

- A Logical Sensor Specification Lan—
guage compiler.

- General fault-tolerance features such
as:
1. A mechanism for detecting two
types of sensor failure.

2. A technique by which switching
to an alternate subnet is ac—
complished.

— A database of physical sensors.

An Expert System

The knowledge which must be represented
depends primarily on the problem to be solved. We.
have considered three application domains:

—Sensor hardware configuration and
design constraints,

- The pixel classification problem, and
~ Feature detection.

Concerning the first of these, there are many fac—
tors which come into play when a remote sensing
system is being configured. For example, the user
must specify the signal-to—noise performance
which is expected of the system. This index is re—
lated to the velocity at which the sensor will be
flown, as well as its altitude, field of view and the
number of detectors involved. Once these are
determined, however, it is possible to choose the
spectral channel bandwidth so as to achieve an ac—
ceptable signal-to—noise ratio. '

In the second example application, consider the
classification of corn. If it is necessary to distin—
guish corn from soybeans, then it is necessary to
have data taken in the 1.3,1.5t0 1.8, and 2.1t0 2.3
micrometer wavelengths.  Moreover, seasonal
variation must be taken into account, and:there
must be an algorithm which classifies corn’ or can
be appropriately parameterized to classify corn.:::

Let’s look at a more detailed example*of ‘the
third application area. Suppose that we wish to

)



know given the current set of sensors on the one
hand and a set of algorithms for edge detection on
the other, if it is possible to detect edges with a cer—
tain absolute resolution in the placement of the

edges.

Furthermore, suppose that the following

two sensors are defined (we are using HPRL, a
Heuristic Programming and Representation Lan—

guage made available to us by HP8):

* % %

**x*  show the sensor frames
L
(M—7 (AKO ($VALUE (AIRBORNE)))
(BANDS
(3VALUE (12)
(RANGE
(3VALUE ((0.4 0.9) (UNITS:
MICROMETERS))))
(FOV ($VALUE (90 (DEGREES: !+— 45
FROM NADIR))))
(THERMAL—-RESOLUTION
($VALUE (0.1 (UNITS:
~ DEGREES C())))
(REFLECTANCE—RESOLUTION
(3VALUE (1 (PERCENT:))))
(REFERENCE—PORTS
(3VALUE (5 (RADIATION:))))

(COLLECTOR-OPTICS
($VALUE (12.25 (DIAMETER:
™)) ))
(SCANS—PER—SECOND
($3VALUE (100)
(60)))

(ELECTRONIC—-BANDWIDTH
(3VALUE (90 (KHZ: FROM DIRECT
CURRENT) ) )))

NIL

(M—7 (AKO AIRBORNE)
(BANDS 12)
(RANGE (0.4 0.9))
(FOV 90)
(THERMAL—RESOLUTION
0.1)
(REFLECTANCE—RESOLUTION
1)
(REFERENCE—-PORTS
5)
(COLLECTOR-OPTICS
12.25)
(SCANS—PER—SECOND
100 -
60)
(ELECTRONIC—BANDWIDTH
90))
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NIL

(LANDSAT-1 (AKO ($VALUE (LANDSAT)))
(BANDS
($VALUE (4)))
(RANGE
($VALUE ((0.8 1.1)
(UNITS: MICROMETERS))
((0.7 0.8)
(UNITS: MICROMETERS))
((0.6 0.7)
(UNITS: MICROMETERS))
((0.5 0.6)

(UNITS: MICROMETERS))))
(FOV ($VALUE (11.56 (DEGREES:))))
(PIXEL—SPATTAL~RESOLUTION
(JVALUE (80 )

(UNITS: METERS SQUARED))))
(REFLECTANCE—-RESOLUTION
($VALUE (8 (BITS:))))
(REFERENCE—-PORTS
($VALUE (2)

(1))
(COLLECTOR—OPTICS
(SVALUE (22.8 (CM:))))
(SCANS—PER—SECOND
($VALUE (13.65)))
(ELECTRONIC-BANDWIDTH
($VALUE (42.3))))

NIL

(LANDSAT—-1 (AKO LANDSAT)
(BANDS 4)

(RANGE (0.8 1.1)

(0.7 0.8)

(0.6 0.7)

(0.5 0.6))

(PIXEL—SPATIAL—RESOLUTION
B 80)
(REFLECTANCE—RESOLUTION
8)
(REFERENCE—PORTS
2
1)
(COLLECTOR—OPTICS
22.8)
(SCANS—PER—SECOND
‘ 13. 65)
(ELECTRONIC—BANDWIDTH

NIL




Finally, suppose that the knowledge of the
available edge detection algorithms is:

* % %k
***  show the edge detector frames
* % %
(PREWITT (AKO ($VALUE
(INPUT
(3VALUE (GRAY—SCALE)
(IMAGES) ))

(EDGE-DETECTOR) ) )

(PROCESS
(3PARMS (THRESHOLD)
(QUANTIZATION)
(WINDOW-SIZE) )
($CODE ("PREWITT-EDGE—PROCEDURE) ) )
(COV ($VALUE (THETA)))
(RESOLUTION
(3VALUE (1.0 (ACCURACY: PIXEL
’ / SUB-PIXEL)))))

NIL

(LAPLACIAN (AKO ($VALUE
(EDGE-DETECTOR) ) )
(INPUT
(3VALUE (GRAY—SCALE)
(IMAGES) ) )
(PROCESS
(3PARMS (THRESHOLD)
(QUANTIZATION)
(WINDOW—SIZE))
($CODE (" LAPLACIAN-EDGE-PROCEDURE) ) )
(COV ($VALUE (RHO)))
(RESOLUTION
(3VALUE (1.0 (ACCURACY: PIXEL
/ SUB-PIXEL)))))

NIL

(TRIENDL (AKO ($VALUE - (EDGE-DETECTOR) ) )
(INPUT .. . »
(SYALUE.. (GRAY—SCALE}
. ‘(IMAGES) ) ) =
(PROCESS :
($PARMS (THRESHOLD)
(QUANTIZATION)
(WINDOW—SIZE) )
: DE ' (" TRIENDL~EDGE-PROCEDURE) ) )
(cov ($VALU'E (RHO)
H gv b (THETA).
SA(RY)) s

e

-(RESOLUTION
(SVALUE. (0. 00

™

)39 V(ACCU‘RACY PIXEL
-PIXEL)))))

EA I

(PREWITT (AKO EDGE-DETECTOR)
(INPUT GRAY-SCALE
IMAGES)
(COV THETA)
(RESOLUTION 1.0))

NIL

(LAPLACIAN (AKO EDGE-DETECTOR)
(INPUT GRAY-SCALE
IMAGES)
(COV RHO)
(RESOLUTION 1.0))

NIL

(TRIENDL (AKO EDGE-DETECTOR)
(INPUT GRAY-SCALE
IMAGES)
(COV RHO
THETA
R)
(RESOLUTION 0.0039))

NIL

Then if we want to find out whether there is any
sensor/algorithm combination which can detect

edges at an 80 meter resolution, we obtain:

* % %

***  golve for minimum sub-pixel

*xx resolution of 80 meters

* % %

(solve—all ' (?x sub—pixel-resolution

80))

Us 1ng F1nd——Sensor—Algor1 thm—Palr

Usmg Fmd—Sensor—Algor1thm-Pa1r

Landsat-i combined with the triendl

\dge detector .satisfies the sub—plxel
; 80 meters.

U51ng”Find—Sensor—Algorithm—Pair:
-.:;; Landsati ¥ .combined with the-laplacian
d%dde‘tféémrmsatrsf ies the sub—plxel
rai ﬁf SQ_meters > 7

t Uporf asking '"abogt al meter resolutibn; we get:
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* ¥k %k
**x*  golve for min sub-pixel

*** resolution of 1 meter

X K %

(solve-all ' (?x sub—pixel-resolution 1))

Using Find—-Sensor—-Algorithm—Pair:
Landsat—1 combined with the triendl
edge detector satisfies the sub—pixel
constraint of 1 meters.

Finally, at 0.005 meter resolution, we learn that:

% %k %
- ***  golve for min sub-pixel

*** resolution of .005 meters

* % *k

(solve—all ' (?x sub—pixel-resolution
005))

NIL

Thus, no combination was found for detecting edges
at the given resolution. Even from this simple ex—
ample, it is possible to see the further implications
to a more complete set of information.

Conclusions

Our primary goal is to produce a system which
makes it possible to:

1. Characterize physical sensors in terms
of their domains of application, their
principles of operation, and their out—
put,

2. Specify algorithms in such a way that
the transformations they perform on
the input data are well-defined, and

. Evaluate a glven sensor configur; ‘ 'on

g deﬁnéii criteria.

The framework based on the mteractlon of sensors -

computational complexity, concurrency,
modularity, parallelism and the adap—
tability to the other types of sensors in
a multi-sensor environment.

—How well the algorithm is able to
‘predict performance. The performance
is verified on a sample data base, and is
based on quantitative figures of merit.

We believe that the logical sensor methodology can
provide the basis for a computational theory of sen—
sors and that when combined with an appropriate
inferencing system makes these goals possible.
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