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Abstract

A hierarchical stochastic labeling technique
to do shape matching of 2-D occluded objects is
presented. The technique explicitly maximizes a
criterion function based on the ambiguity and
inconsiscency of classification. The hierarchical
nature of the algorithm reduces the computation
time and uses results obtained at 1low levels to
speed up and improve the accuracy of results at
higher levels. The 2-D shapes are represented by
their polygonal approximation. For each of the
objects participating in the occlusion, there is a
hierarchical process. These processes are
executed in parallel and are coordinated in such a
way that the same segment of the apparent object,
formed as a result of occlusion of two or more
actual objects, is rwot matched to the segments of
different actual objects. This problem is solved
by combining the gradient projection method and
penalty function approach. Objects participating
in the occlusion may move, rotate, undergo
significant changes in the shape and their scale
may also change. Results are presented when two
or three objects partially occlude.

I. INTRODUCTION

Matching of occluded objects is one of the prime
capabilities of any shape analysis system. We
view the occlusion problem in 2-D basically a
bounaary matching problem. As compared to the
previous studies, the framework presented here
provides a mathematical basis for the solution of
the occlusion problem [1].

II. PROBLEM FORMULATION
Consider a general case in which M ( > 2) actual
objects, called models (Xq,...,Xy ) occlude one
another to form a single apparent object called
the object. Fig. 1 shows the block diagram of the
algorithm when two models occlude each other. Let
a model Xp (m=1,...M) be represented by
Xp = (T1,T2ye0.,TNy), where Ny is the number of
segments in the polygonal path representation.
Similarly, let 0 = (07,02,...,0,_7) be the
polygonal path representation of the object. The
object has L-1 segments. We want to match the
segments of the models agains segments of the
object such that the following two conditions are
satisfied.
1) None of the segments of the different models
are assigned to the same segment of the object.
This is called the occlusion condition. It is
necessary for the labeling to be unambiguous.
2) Those segments of the models which do not match
to any of the segments of the object are assigned
to the nil class, i.e., no match class.
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We are trying to identify parts of the models
within the object. We designate the object
segments as classes, and the model segments as
units. Let the nil class be denoted by 0. To
each of the units Tj of a model X, we assign a
probability denoted by pijp(k) to belong to class
Qk- This is conveniently represented as a vector
Pim = [Pyn(Myeee,pin(L)IT.  The set of all

vectors By, (i = 1,...,N) is called a stochastic
labeling of the set of wunits. The global
criterion that measures the consistency and

ambiguity of the labeling over the set of units of
a model X is given by [1,2],
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n denotes the first or second stage of the

hierarchy. Ci1 and C2 comapre the local structures
of Xpand O at the first and second stage. _ They
are defined as functions of Spx0“ and S3x03 into
[0,1] where, S2 and S3 are two subsets of XmZ and
Xm° defined by,

Sy = {(Ti’Tj)}' i=1,.00,8 j = i=1 or i+l

S3= LT Ty 0, Tia))s i = 1,.00,Ny

Let Vi be the vector of RP , (P = NjL) equal to
(Pym Pome++sPN. ). Then the total criterion of
consistency and aﬂbiguity for all the M models is,
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where £ is obtained from Vv, with the elements
corresponding to the nil class set equg} gp zero
for all the units of the model Xy and g(sj,sj) is
the inner product of the vectors §j and §5. Now
the occlusion problem can be stated as follows.

Pcab}gm S n : Given an initial 1labeling
IS 72{65...,VM for the set of M models
(X1,X2,+..,X) to belong to various  segments of
the object, find the labeling ug, zg,...,uw that
corresponds to the local maximum o e criterion
(6) which is closest to GH(Of V}(Ol...,GM?O)

subject to the constraints: (a) If
U = probability

(PymsPoms ++ = 1PN then py o is a
vector %og 2= L,Z,'I‘..,Nm and m = 1,2,...,M.

(b) G(Vi,vz,...,vM) as defined by (7) be equal to

zero.

Note that the criterion (6) is nonlinear.
Constraint (a) involves linear equality and
nonnegativity restriction, and constraint (b) is
nonlinear. In order to solve this optimization

problem we use the gradient projection method and
penalty function concept [3].
ITI. OCCLUSION ALGORITHM
In order to solve the problem (A) we define the
penalized objective function as,
M-1 M
wc(vl,vz,...,vM) = F(vl,vz,...,vM) + & 5 (8)

dij ¢ij [g(si'sj) ]

where ¢ i; is a penalty function and {dij} are
penalty constants. The penalty function iS taken
as the simple quadratic loss function.

The problem (A) is equivalent to that of
maximizing (8) subject to the constraints (a). It
is solved by using the gradient projection method
applied to the 1linear constraints. The
maximization of (8) subject to the constraints (a)
is equivalent to maximizing

V)

 max F(;l) + SV

2 17
VI - - -
| max F(vy) + s(vl,...,vM)

{ ?2 (9)
( max F(VM) + S(vl,....vM)
MY

where S(Ji,...,sh) corresponds to the second term
of (8). " In general to solve (9) by maximizing
with respect to v; the algorithm can be stated as
follows:

1., Pick | ?W initial estimate of (v (Ol
vz(o,...,vM 0)). This is the initial assignmen% of
probabilities to the units of the models.

2. Pick the penalty constant {dij} so that it
provides a suitable balance between the associated
first and second terms of (9). This is done in an
automatic manner [1].

3. Determine the maximum Vn,("+1)(m = 1,2,.0..,M)
of the unconstrained penalized objective function
(9) subject to the constraints (a) bg using the
value at the present iteration Vm(” and gradient
projection method.
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4, Pick new penalty constants {di'} in order to
rebalance the magnitude of the penalty terms;
replace n by n+1 and return to 3.

Under the assumption of the continuity of function
F (6) and constraints (7) inherent in (8), the

sequence of maxima {Vé"+1b for m=1,...,M
generated by the above algorithm approaches a
constrained maximum of the problem defined in (A).
Since we are seeking only local maximum,
ill-conditioning problems do not occur [3].
IV. EXAMPLES

Example 1: Figure 2 presents a synthetic example,
where three models Xj, X, and X3 occlude one
another to form an apparent object. We want to
identify each of the models within the apparent
object. The problem is a kind of "jig-saw
puzzle", Table 1 shows the results of labeling
All the labels of all the units of Xi, X, and X3
are correct except the label of the unit 5 of the
model Xy. This is because of the high similarity
of the local structure of the incorrect match.
Example 2: Figure 3 shows gray scale images of
industrial parts (fig. 3(b) and (c¢)) which occlude
each other to form an occluded object shown in
fig. 3(a). The images shown in fig. 3 are of size
512x512, 8 bits. The images in figs. 3(b) and (c)
are reduced by 16 times and the image in fig. 3(e)
by 18 times. The reduced images are thresholded
and their polygonal approximation is shown in

fig. 4. Only the rotation and scale invariant
features are used in the initial probability
assignment. Label 25 is the nil class. The

results are shown in Table 2. Note that all the
key assignments of the units are correct.
V. CONCLUSIONS

The technique is found to be very effective when
applied to synthetic, industrial and biological
images [1]. The computation time varies linearly
with the number of objects occluding one another
and it took about 1 to 10 minutes on a PDP-10.
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Fig. 1 Block diagram of the occlusion algorithm
for the shape matching of two occluding models using
two stages of the coordinated hierarchical
stochastic labeling technique.
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Fig. 2(b) Model X1 Fig. 2(c) Model X2

Table 1. Results of Labeling for the Model xl, Xz. and X3. Example 1

10 3 Labels at Different Iterations
i i Model X
Fig. 2(a) Apparent Object Model X, Model X, el X,
Units of First Stage Second Stage First Stage Second Stage First Stage Second Stage
4 Model X, X,,
1 2 and X
3
3 0 3 1 6 0 3 1 6 0 3 1 6
5
° 1 4 15 15 15 P 4 4 415 15 15
2 1 1 1 1 5 5 5 5 5 15 15 15
3 15 15 15 15 6 6 6 6 13 15 15 15
8 4 15 15 15 15 15 7 7 15 115 15 15
5 15 15 15 7 13 13 13 15 2 15 15 15
6 15 15 15 15 15 15 15 15 9 9 9 9
7 B 7 15 15 15 3 10 10 10 10
8 1mn o1 11
Fig. 2(d) Model X3 9 1415 15 12
First Term - .97 1.07 2.4 - 1.57 1.38 3.45 - 3.03 3.07 3.69
Penalty Term - .29 32 0 - 47 .41 0 - .90 .92 0
Criterion - .68 75 2.4 - 1.09 .97 3.45 - 2.2 2.15 3.69
Penalty Const. - 042 075 - - .07 .09 - - a3 .21 -

Table 2. Results of Labeling for the Model X) and X,, Example 2

Labels at Different Iterations

Model X, Model X,
Units of First Stage Second Stage First Stage Second Stage
Model X)&X,
0 3 1 5 0 3 1 5
1 5 5 5 5 25 25 25 25
2 6 6 6 6 25 25 25 23
3 25 7 25 7 25 25 25 25
4 25 8 8 8 25 25 25 25
S 25 25 25 25 25 25 25 25
6 25 25 25 25 25 25 25 15
7 25 25 25 25 25 18 18 18
8 25 25 25 25 25 25 25 25
9 25 25 25 25 25 25 25 25
10 25 25 25 25 25 25 25 25
11 25 25 25 25 25 25 25 25
12 25 25 25 25 25 25 25 19
(a) (b) (c) 13 25 25 P 25 25 P 5 2
. . . . . . - 14 25 25 25 25 25 25 25 25
Fig. 3 Partial occlusion of industrial pieces !’ 1s 25 % % %
16 25 25 25 14
17 25 25 25 25
18 25 25 25 25
19 25 25 25 25
20 25 25 25 25
21 25 25 25 25
22 25 25 25 25
23 25 25 25 25
24 14 14 14 14
25 25 25 25 25
26 25 4 25 25
First Term b 4.7 16.2 17.2 - 2.8 5.6 7.1
Penalty Term - 47 1.6 0 - .28 .56 0
Criterion - 4.2 4.6 17.2 - 2.5 S.1 7.1 '
Appar‘ent Object MOdE] X2 Model Xl Penalty Const. -- .008 1.7 - - .005 .59 -
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