SEGMENTATION OF IMAGES USING A GRADIENT RELAXATION TECHNIQUE

Bir Bhanu

Ford Aerospace and Communications Corporation
Newport Beach, CA 92660, USA

Abstract

A gradient relaxation method based on
maximizing a criterion function is presented for
the purpose of segmentation of images having
almost unimodal distributions. The method
provides control over the relaxation process by
choosing three parameters which can be tuned to
obtain the desired segmentation results. Examples
are given on several different types of scenes.

I. INTRODUCTION
In this paper we present a gradient relaxation
method based on maximizing a criterion function
for the purpose of segmentation of images having
unimodal gray level distributions. Unimodal
distributions are obtained when the image consists
mostly of a large background area with other small
but significant regions. This is true for most
biological and aerial images. As an example
Fig. 1 shows a cancer cell image. Our objective
is to get the boundaries of all the cells. Gray
level histogram of the image is shown in fig. 2.
Note that the histogram is almost unimodal and as
a consequence there is no reliable way of
automatically choosing a threshold for segmenting
this image.
II. SEGMENTATION USING GRADIENT

We consider a criterion which is based upon the
explicit use of consistency and ambiguity to
define a global criterion upon the set of pixels
[1,2]. The criterion is the inner product of
probability vector 31 and consistency vector 61.
N is the number of pixels in the image, 61 is a
function of 51'3 as discussed below and we define
the criterion as,

C(;]nazv oo (1)

and carry out its maximization using the gradient
projection approach.
Suppose the set of N pixels i= 1,2,...,N fall into
two classes )] and A2 corresponding to the white
(gray value = 255) and black (gray value = 0).
The relaxation process is specified by choosing a
model of interaction between pixels. We attach to
every pixel i the set V; of its 8 nearest
neighbors. Assuming that objects of interest in
the picture are continuous we will make like
reinforce like and define a compatibility fumnction
¢ such that:
cliXadny) = 0,
clingdny) =1,

k#L,
k=1,2

jin Vi for all i

J in Vi for all i

(2)
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The consistency vector Ei is then defined as

2
1 .
W =3 L L clihaiag oy, k=l2
jevy L=1 i=1,..0,

(3)

The maximization of the global criterion (1) means
that we are seeking a local maximum close to the

initial labeling B;(0)(i = 1,...,N) subject to the
constraints that Pj's are probability vectors.
The maximization of (1) results in a reduced
inconsistency and ambiguity. Inconsistency is
defined as the error between S} and a}.
Intuitively this means the discrepancy between
wggt every pixel "thinks" about its own labeling
(gj ) and what its neighbors "think" about it
(dj ). Ambiguity is measured by the quadratic
entropy ap?o results from gp? Sact that initial
labeling pj )is ambiguous (pj 0) “are not unit
vectgys). We are trying to align the vectors jof}
and qj while turning them into wnit vectors. It
can 99 g@sily seen that each term pi-qi_ig_maximum
for pj=q; (maximum consistency) and pj=qj= unit
vector (maximum unambiguity).

From the intensity distribution the initial
assignment of probabilities is obtained by [2],

0. (0,) = FacT+( L Tys0 5 )
i 255

where I is the mean of the image, I(i) is the
intensity at the ith pixel, and FACT is a function
of the intensity. When I(i)<I, FACT is usually
taken_ between 0.5 and 1 and equal to 1 when
I(i)>I. 1If the first term of (4) happens to be

greater than 0.5 or less than -0.5, then a
probability of one or =zero respectively is
assigned to that pixel.
The gradient of the criterion C in (1) is,

9C_ 0. (n) ac .

3Pi(N) %M apilxzi 2a;(%p) (5)
Computing theﬂ_projection of the gradient, the
iteration of P;'s is given by [2],

o™iy = p M) + o) [Zqi(l1) -1] (6)

pi("*‘)(xz) = pi(")(xz) + oM [1-2qi(x])] m

yhere o(n)is a positive step size. Normally, p(n)
is kept constant for all pixels during each
iteration and is determined to have the largest




possible value such that p;'s at the n+lst
iteration still lie in the bounéed convex region
of 2N dimensional Euclidean space defined by
p:(x )+p.(x2):1 and pi(xk)zp, k=1,2 and iz1,...,N.
H&we\}er,1 in the 2 '¢lass case considered it is
easier to compute a pj N) for each pixel. This
leads to a faster convergence rate. The maximum
possible value for p; N)is obtained from (6) by

settin pi(”+1)(kl)=1 when 2q;(X)=1 > 0 and
p; (n*1)(X]) = 0 when 2q;(1;)-1 < 0." Thus,

(n)
(n) . [ PR e A (8)
Pin s 1 29.(X,)-1>0
TMax (?_‘f_ﬂ_q,. )\] - ) i
(n)
Pi O, 45 20,001 <0 )

Since we want to be able to control the rate of
convergence and the number of pixels within each
class we actually took

pi(n+])(>‘k)= pi(n)()\k) N pi(n) lzqi()‘k)'1l (10)
(n)
and, (n) o pi;ax‘ if 20;(xy)-1>0
Pi "% a, gl (
2 Pimax, if 2a5(x))-1<0 m

where, k=1,2 and a7 and oy are constan%s less than
unity. A side effect of computing Pj n)for every
pixel is that we may not be following the gradient
exactly. However, it can be expected that we are
approximately in the direction of the gradient and
the criterion (1) is still maximized. It is our
conjecture that for the two class case, the
criterion will always increase. Figure 3 shows
the behavior of criterion as the iteration number
increases for the cell image when o] = ap. The
values of @] and ap can be used to bias a class
and control the speed of convergence, hence the
control over the relaxation process.

Fig. U4 shows how changing the ratio of o] and o>

allows the control of where we converge by biasing
one class. From fig. 3 it can be seen that for a
fixed ratio of o) and ap, increasing both of them
by a constant factor increases the speed of
convergence and fig. 5 verifies this fact that
indeed we converge towards a similar result. What
we seem to be loosing when increasing o] and o is
some amount of smoothing: there are a few more
isolated small black blobs in fig. 5(b) than in
fig. 5(a). The magnitude of o] and @ controls
the degree of smoothing at each iteration and
their ratio the bias. The value of FACT does not
affect the speed of convergence very much, but it
affects the segmentation results [2].

Fig. 6 to 9 show the results of gradient
relaxation method at various iterations and
corresponding histograms for 4 aerial images.
Observe that at the first iteration itself we get
two peaks separated by a valley which can be used
to automatically select the threshold to obtain
segmentation. As the number of iteration
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increases the two peaks get apart, contrast
increases, and the convergence of probabilities
takes place as expected. When the peaks are far
apart thresholding can be done at the mean value.
III. CONCLUSIONS
The method provides the control over the
relaxation process by choosing the aj, op and FACT
parametes which can be tuned to obtain the desired
segmentation. The method has been compared with
the nonlinear relaxation method in detail in [2]
on the basis of segmentation results, convergence
rate and the ease with which the relaxation
process is controlled.
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