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ABSTRACT

A technique based on fitting
splines to the phase derivative curve is
presented for the efficient and reliable
computation of the two—dimensional
complex cepstrum. The technique is an
adaptive numerical integration scheme
and makes use of several computational
strategies within the Tribolet's phase
unwrapping algorithm. An application of
the complex cepstrum in testing the
stability of two—dimensional recursive
digital filters is considered.
Susceptibility of the computation of
complex cepstrum to slight changes in
the coefficients of a two—dimensional
array is studied, Several examples of
stable and unstable two—dimensional
quarter—plane and non—symmetric
half—plane recursive digital filters are
presented.

I. INTRODUCTION

The main step in using the
technique of homomorphic signal
processing is the efficient and reliable
computation of the complex cepstruin.
The computation of complex cepstrum is
of importance because of its use in
testing the stability of 2—D recursive
(infinite impulse response) digital
filters, to solve the blind
deconvolution problem in 2—D, to
characterise reverberance in 2—D signals
etc. (1—3). Dudgeon () uses
Tribolet's (5) 1—D phase unwrapping
algorithm and the recursion equations
for the computation of the 2—D complex
cepstrum. Bhanu and McClellan (6) have
described a technique based on fitting
splines to the phase derivative for the
efficient and reliable computation of
the 1—D complex cepstrum. One common
complaint with the use of 1—D phase
unwrapping techniques to compute the 2—D
complex cepstrum is that if we reverse
the order of row and column operations,
different results are obtained. The
reason for this lies in the incorrect
phase unwrapping techniques. In this
paper we use an optimized 1—D phase
unwrapping technique (6,7) to compute
the 2—D complex cepstrum where such
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errors do not occur. We present several
phase unwrapping examples when we use
complex cepstrum to check the stability
of hR filters.
II, COMPUTATIONAL DETAILS AND PROPERTIES
Fig. 1 shows a 2—D homomorphic system
for convolution. The complex cepstrum
is given by,

[m,n] = [log Z(x[jn,n])] (1)

It is defined within its region of
convergence,,, that includes fw 1.
Evaluating X(w,z) Log[X(w,z)] at w
e and z , we get,

= log X(e3,e3)I
(2)

X1(e,e) = arg [X(e,e')}

integration and the inadequacy of the
principal value alone, an adaptive
approach is used, The use of bicubic
spline interpolation does not seem
feasible. In (6,7) we have described
the incorporation of various features
such as the improvement of the
integration rule using splints,
efficient computation of DFT at a single
frequency off the FFT grid, the need of
double precision for certain variables,
determination of incremental and
consistency thresholds and the
estimation of linear phase within the
Tribolet's algorithm, The use of these
features results in an efficient and
reliable phase unwrapping algorithm.
There can be several approaches for
phase unwrapping (7) when using the 1—D
phase unwrapping algorithm to compute
the 2—D complex cepstrum. The approach
that we have used is to compute the
first and second partial deivatives with
respect to ).4 at all the DFT points and
with respect to V along the first
column only (7). Computation of these
derivatives require the Fourier
transforms of x[m,n], nx[m,n],
mx[m,n],nx[rn,nJ, m2x[m,nI. First we
compute the initial phase at the origin
(5) and then unwrap the phase along the

The unwrapped phase
integrating the
However, because
truncation error

can be. obtained by
phase derivative.
of the inherent
in the numerical
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first column using the optimized
adaptive phase unwrapping algorithm
(6,7). This is followed by the
computation of the unwrapped phase for
every row. Linear phase components are
determined by using the value of the
unwrapped phase at 71 along the axes.
These componentes are subtracted from
the unwrapped phase to make it periodic.
The 2—D FFT at a single frequency off
the FFT grid can be efficiently computed
by extending the Bonzanigo's
modification (6,7) to 2—D.
The following 3 properties of the 2—D
complex cepstrum are used in the
following sections (7).
1. For a separable sequence the complex
cepstrum exists only on the axes.
Before considering the next property, a
few definitions follow:
Support of htm,n] is the set {(m,n)
htrn,n]} O}
Non—Symmetric 1J1 plane (NSHP) is a
region of the form {m>, 0, n>,.. O} U {m>0,
n<O} or their rotations. There are
total 8 NSHPs.
Admissible region is a NSHP intersected
with a sector.
2. If the support of h[m,n) lies in an
admissible region, then support of
h[m,n] lies in the same admissible
region.
3. When the signal x[m,n] is known to
be mm—mm phase (i.e., has no poles or
zeros in the region Iwl > 1, zJ 1), the
use of recursion equations allow us to
compute [m,n] accurately (14,7).
However, the use of these equations is
inefficient compared to the DFT
approach.
III. STABILITY OF hR DIGITAL FILTERS

A number of attempts (8—10) have been
made to formulate algorithm tests for
testing the stability of 2—D recursive
digital filters. The numerical
implementation of these tests is usually
inefficient. Moreover, these results
are applicable only to the class of 2—D
IIR filters which are quadrant causal.
The use of complex cepstrum generalises
the concept of stability test in the
sense that it not only includes
quarter—plane filters, but also
non—symmetric half—plane filters(2 ,3)
and the implementation is more efficient
than other tests when the FFT is

employed. The order of the filter can
be very high also. Ekstrom and Woods
(2) have described a method for checking
the stability. They avoid the problem
of phase unwrapping by taking the input
of a homomorphic system as the
utocorrelation of the sequence. This
procedure is not computationally as
attractive as the method based on
computing the complex cepstrum which
requires phase unwrapping. Ekstrom and
Twogood (3) have presented the stability
test which requires phase unwrapping.
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However, their phase unwrapping is based
on the principal value, hence it is not
very reliable. Filip (1) got a very
poor estimate of the phase while using
the phase unwrapping approach based only
on the principal value. Our approach
for testing the stability is similar to
Ekstrom and Twogood (3) but the phase
unwrapping technique is different. To
check the stability of the filter
G(w,z) N(w,z)/D(w,z), where N(w,z) and
D(w,z) are each 2—D polynomials, we
compute [m,n] corresponding to the
denominator polynomial D(w,z). Now we
appJy property 2 to check if the support
of d[m,n] is the same as that of d{m,n].
If yes, then the filter is stable
otherwise it is up.stable. The DFT
implementation gives d[m,n] which is an
aliased version of 8[m,nl. But since
the cepstrum dcays faster than an
exponential, dtm,n] wiki be a
reasonable approximation of d[m,n] for
the modest size of 2—D FFTs.

IV. EXAMPLES AND COMMENTS
Example 1 Quarter—plane filter involving
separable sequences. This example has
been examined by Anderson and Jury (10).
The 2—D denominator array d{m,n] is
given by,

5 1

12 10 2

and the complex cepstrum is[].og 12)lSLm,n]

In

m
un in

+ (j) ] u[rn—lj_ -'--iL u[n—1](3)n
The principal value plot is the same as
the unwrapped phase shown in fig. 2.
The complex cepstrum is shown in fig. 3
and it can be verified by comparing it
to the knon cepstrum of equation (3).
Note that d[m,n] exists only on the axes
and it has the same support as d[m,nl so
the stability is guarnteed. A 611x6i4
sized FFT is. used.
Example 2 Quarter—plane 6th order
bandpass filter. This filter has been
examined by Ekstrom and Twogood (3).
The denominator array of the filter is
given by,

15626
0.09375 0.0A16875
0.375 0.28125 0.09375
0.875 0.9375 0.l6875 0.109375
1.5 1.875 1.3125 0.6875 0.09375
1.5 2.25 1.875 0.09375, 0.28125 0.06875
1. 1.5 1.5 0.875 0.375 0.09375 0.015625

Fig. 14 shows the principal value and
fig. 5 the unwrapped phase. Note that
the discontinuities because of the
modulo 2W operation have been removed.
The FF1 size used is 684x614. The complex
cepstrum is shown in Fig. 6. Its values
are verified using the recursion
equations. Since the support of the
cepstrum lies in the first quadrant, the
filter is stable.
Example 3 Non—symmetric half plane
filter. Let the filter be given by
N(w,z)1 (4)



The complex cepstrum corresponding to
equation (U in closed form is given by,

-' f2in+nl (1)
2m+fl 2zn+

d[in,n1_I ____
m J

2i'0'n2m+z
Fig. 7 shows the principal value and
Fig. 8 the unwrapped phase. Note that
the jumps introduced by the modulo 21T
operation have been removed, The
complex cepstrum is shown in Fig. 9.
The FFT size used is 614x614. Since the
cepstrum and the sequence occupy the
same support, the filter is stable.
Example LI Unstable filter examined by
Shanks (8). The denominator array is,

ei —0.9 0.5
' 1.

,,, —0.95
Figs. 10 and 11 show the principal value
and the unwrapped phase after the
removal of the linear phase, Observe
that the unwrapped phase is not
continuous and the complex cepstrum
shown in Fig. 12 does not occupy the
same support as the sequence, hence the
filter is unstable. Using Huang's test
(9) the filter can also be shown to be
unstable. FFT size used is 32x32.
Example 5. Unstable filter examined by
Shanks (8). The denominator array is,

0.5 —0.75 0.25
-1.2 1.8 -0.72
1. —1.5 0.6

FigL 13—15 show the principal value,
unwrapped phase and the complex
cepstrum. FFT size used is 614x614,

Comments similar to example 4apply
here. In an attempt to observe how the
computation of the complex cepstrum is
susceptible to the slight changes in the
values of the coefficients, we changed
the value of d[2,2] in the denominator
array of example4 from 0.25 to 0.29.
This case has also been examined by
Shanks using contour mapping and has
been shown to stable. Figs. 16 and 17
show the unwrapped phase and the complex
cepstrum. The unwrapped phase is the
same as the phase principal value. Both
the cepstrum and the sequence have the
first quadrant support, hence the filter
is stable. Computed values of' the
cepstrum are verified by using the
recursion equations. FFT size used is
32x32. This example illustrates that
the computation of the complex cepstrum
is quite sensitive to the stable and
unstable cases and1Icphase unwrapping
algorithm is reliable.
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Fig. I 2-D Homomorphic System
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Fig, 2 Unwrapped Phase (Ex, I)
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Fig. 3 Complex Cepstrum (Ex. 1)
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Fig. 4 Principal Value (Ex. 2)
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Fig. 15 Copplex Cepstrum (Ex. 5)
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Fig. 17 Complex CepStrUm
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Fig. 11 Unwrapped Phase (Ex, 4)
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Fig. 16 Unwrapped Phase


