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Abstract—Affective computing—the emergent field in which com-1

puters detect emotions and project appropriate expressions of their2

own—has reached a bottleneck where algorithms are not able to3

infer a person’s emotions from natural and spontaneous facial ex-4

pressions captured in video. While the field of emotion recognition5

has seen many advances in the past decade, a facial emotion6

recognition approach has not yet been revealed which performs well7

in unconstrained settings. In this paper, we propose a principled8

method which addresses the temporal dynamics of facial emotions9

and expressions in video with a sampling approach inspired from10

human perceptual psychology. We test the efficacy of the method on11

the Audio/Visual Emotion Challenge 2011 and 2012, Cohn-Kanade12

and the MMI Facial Expression Database. The method shows an av-13

erage improvement of 9.8% over the baseline for weighted accuracy14

on the Audio/Visual Emotion Challenge 2011 video-based frame-15

level subchallenge testing set.16

Index Terms—Facial expressions, Audio/Visual Emotion Challenge,17

Sampling and Interpolation18

1 INTRODUCTION19

FACIAL emotion recognition has applications in20

human-computer interaction, medical, advertis-21

ing, and action recognition for computer games.22

An emergent application of Affective Computing in-23

corporates facial emotion and expression recognition.24

An embodied agent senses a person’s emotion and25

projects an appropriate expression in response [1].26

This facilitates non-verbal communication between a27

person and a computer, thus, improving feedback28

between them. However, state-of-the-art algorithms29

do not generalize to unconstrained data, presenting30

a challenge to this field.31

Current methods perform well on datasets ac-32

quired in controlled situations, e.g. the Japanese Fe-33

male Facial Expression database [2], Cohn-Kanade34

(CK) [3], the MMI Facial Expression Database (MMI-35

DB) [4], and the Facial Emotion Recognition and36

Analysis (FERA) challenge dataset [5]. However, the37
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Audio/Visual Emotion Challenge (AVEC) datasets 1

[6], [7] present difficult challenges. With previous 2

datasets, each dataset was small enough to be loaded 3

into memory at once, even for cases of high feature 4

dimensionality. Previous approaches could reduce the 5

number of frames to be processed by taking advan- 6

tage of apexes of emotions, such as in CK. The most 7

intense and discriminative frames corresponding to 8

the apexes were labeled so a method could choose to 9

retain them only. 10

The AVEC datasets explore the problems of a con- 11

tinuous emotion dataset, where it is computationally 12

undesirable to select all the frames for processing. 13

There are approximately one and a half million frames 14

of video. The expressions in the dataset are subtle, 15

spontaneous, and difficult to detect. The people in the 16

videos are expressing emotions in a natural setting. 17

The videos are not segmented. The apex labels are not 18

given and it may be difficult to detect them automat- 19

ically. In this paper, we propose a principled method 20

for downsampling the frames for facial emotion and 21

expression recognition. The method is inspired by 22

the behavior of the human visual system. It can take 23

advantage apexes if they are provided, but they are 24

not required. 25

The rest of the paper is organized as follows: Section 26

2 discusses related work, motivations and contribu- 27

tions. Section 3 details the proposed downsampling 28

method, and the full emotion recognition pipeline. 29

Section 4 provides dataset information, parameters 30

and results on AVEC 2011, AVEC 2012, CK and MMI- 31

DB. Section 5 presents the conclusions of the paper. 32

2 MOTIVATION, RELATED WORK AND CON- 33

TRIBUTIONS 34

The motivation for sampling and reducing memory 35

cost in large datasets is given in Section 2.1. A survey 36

of related work, entries to the AVEC datasets, and 37

other downsampling methods is given in Section 2.2. 38

The contributions of this paper are given in Section 39

2.3. 40
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(a) 

(b) 

Fig. 1: Two different segments of AVEC [6] development
video 14. (a) Many frames are required to describe the
person’s pose change and facial expressions. (b) The person
is less expressive, and the segment needs few frames to be
described.

2.1 Motivation1

In the AVEC datasets, videos are captured at a high2

frame rate and over a long period of time. This makes3

it difficult to train a model for classification using4

all the frames in the dataset. An easy solution is to5

temporally downsample the video at a uniform, low6

frame rate. Unfortunately, this procedure results in7

a loss of precision, as it does not have the ability8

to precisely detect when the emotion changes. A9

dynamic sampling rate is desired that assigns a lower10

frame rate to parts of the video where the person is11

idle, and a higher frame rate to parts of the video12

where the person is animated. For example, in Figure13

1, there are two different segments of the same video14

which merit different sampling rates. In Figure 1(a),15

the person is changing his pose, opening his mouth,16

furrowing his brow, using his cheek muscles, and17

raising his eyebrows. Many frames are needed to18

describe this segment. In Figure 1(b), the person holds19

his expression, so this segment would need only a20

few frames to be described. Therefore, we propose21

a method that applies a dynamic sampling rate which22

would allocate less frames for data analysis when the23

individual is idle, and more when the individual is24

active. The large volume of data poses the following25

problems to a downsampling procedure:26

(1) With the AVEC datasets, processing each frame27

would be too costly. The downsampling should occur28

as early as possible in the video processing pipeline.29

Though related work [8], [9] propose dynamic down-30

sampling, these methods prune samples late in the31

recognition pipeline, in classification.32

(2) Use of the apex label is popular in facial expres-33

sion and emotion recognition, and results show that34

features from the apex region improve classification35

rates [10]–[12]. However, the apexes must be manually36

labeled by an expert. If an algorithm is used to detect37

the apexes, the labeling can have errors. Situations38

may arise in the AVEC datasets where expressions are39

so subtle that extracting apex information is a difficult40

task for both humans and computers. There is a 1

need for annotation free facial emotion and expression 2

recognition. Our method does not require apex labels. 3

2.2 Related Work 4

In the baseline visual system for FERA [5] and the 5

AVEC datasets [6], [7], face region-of-interest (ROI) is 6

extracted which is then aligned by eye corner points. 7

Subsequently, Local Binary Patterns (LBP) [26] are ex- 8

tracted as histogram-based features, and the emotions 9

are classified with a support vector machine (SVM). 10

In [24], the top approach for discrete emotions on the 11

FERA dataset, Yang and Bhanu introduced a novel 12

registration procedure called avatar image registra- 13

tion. It was found that a better registration method 14

greatly improved performance. In [23], Valstar et al. 15

tracked 20 fiducial facial points and classified them 16

using a probabilistic actively learned SVM. 17

AVEC 2011 challenge [6]: In [20], Ramirez et al. 18

quantified eye gaze, smile and head tilt with a com- 19

mercial software (Omron OKAO Vision and Fraun- 20

hofer Sophisticated High-speed Object Recognition 21

Engine) and used a Latent-Dynamic Conditional Ran- 22

dom Field (LDCRF) [27] classifier. In [13], Glodek et 23

al. modelled their system after the human percep- 24

tion’s capability to separate form and motion. Gabor 25

filters captured spatial information, and correlation 26

features captured temporal information. The features 27

were fed into multiple stages of filtering and non- 28

linear pooling to further simulate human perception. 29

In [8], Dahmane and Meunier proposed an approach 30

for representation of the response to a bank of Gabor 31

energy filters with histograms. A SVM with a radial 32

basis function was used as a classifier. 33

AVEC 2012 challenge [7]: In [18], Nicolle et al. used 34

3-D model fitting, and global and local patch-based 35

appearance features. These features were extended 36

temporally with log-magnitude Fourier spectrum. A 37

correlation based feature selector was proposed and a 38

Nadaraya-Watson estimator was used as a classifier. 39

During ground-truth labelling, the expert watches the 40

video, and then notes changes in the label. There is a 41

time delay between the actions in the video, and when 42

the expert notes the change. Their method accounted 43

for this delay. In [22], Soladi et al. employed two active 44

appearance models, one to quantify head pose, and 45

one to quantify smile. A Mamdani type fuzzy inference 46

system was used. The features included who the 47

person was speaking with, duration of sentences, and 48

how well engaged the person was in the conversation 49

with the embodied agent. In [16], Maaten used the 50

baseline features, the derivative of features, and L2- 51

regularized linear least-squares regression. In [19], 52

Ozkan et al. proposed a concatenated hidden Markov 53

model (co-HMM). The label intensity values were 54

discretized into bins. A HMM was trained to detect a 55

specific bin, e.g., if there were ten quantization levels, 56
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TABLE 1: Review of Related Work. AAM: active appearance model. AIR: avatar image registration. CRF: conditional random
field. HMM: hidden Markov model. LBP: local binary patterns. LLS: linear least squares. LPQ: local phase quantization. MHI:
motion history images. SVM: support vector machine.

Approach Downsampling Registration Features Classifier Dataset
AVEC 2012 Baseline
[7]

Fusion of 50 frames Eye-point LBP SVM AVEC 2012 [7]

Dahmane and Meu-
nier [8]

Change granularity if
label changes

Eye-point1 Histograms of Gabor SVM AVEC 2011 [6]

Glodek et al. [13] Random Eye-point1 Gabor, temporal cor-
relation

SVM, HMM AVEC 2011 [6]

Jiang et al. [14] Random,
bootstrapping,
heuristic

Eye-point LPQ from Three Or-
thogonal Planes

SVM, modelling of
temporal phases

FERA [5], MMI-DB
[4], SAL, UNBC-
McMaster pain

Koelstra et al. [15] X Affine MHI, orientation
histograms

Gentleboost, HMM MMI-DB [4], CK [3]

Maaten [16] X Eye-point1 LBP LLS AVEC 2012 [7]
Meng and Bianchi-
Berthouze [17]

X Eye-point1 LBP Multi-HMM AVEC 2011 [6]

Nicolle et al. [18] X Point distribution
model

Eigenappearance,
log-magnitude
Fourier spectra

Nadaraya-Watson AVEC 2012 [7]

Ozkan et al. [19] X Commercial Commercial, frame
number

Level quantization,
co-HMM

AVEC 2012 [7]

Ramirez et al. [20] X Commercial Commercial Latent-dynamic CRF AVEC 2011 [6]
Savran et. al. [21] Select outlier frames

based on standard
deviation

Eye-point1 Local appearance
statistics

Bayesian filtering fu-
sion

AVEC 2012 [6]

Soladi et al. [22] X AAM Statistics of head
pose

Fuzzy inference sys-
tem

AVEC 2012 [6]

Valstar et al. [23] X Particle filtering with
factorized likelihoods

Fiducial facial points Probabilistic active
learning SVM

MMI-DB [4], CK [3]

Wu et al. [10] X None stated Spatiotemporal
Gabor

Bootstrapping, SVM CK [3]

Yang and Bhanu [24] X AIR LBP and LPQ SVM FERA [5]
Zhu et al. [9] Bootstrapping to se-

lect frames based on
apexes

AAM, eye-point Tracker points, SIFT AdaBoost RU-FACS [25]

Proposed Method Dynamic sampling
based on changes in
visual information
with or without apex

AIR LBP SVM AVEC 2011/2012 [6],
[7], MMI-DB [4], CK
[3]

then there would be ten classifiers each detecting if1

that specific level was present. A final HMM fused2

these outputs at the decision level. In the video-3

based approach in [21], Savran et al. extended local4

appearance features to the temporal domain by taking5

the mean and standard deviation in sliding temporal6

windows. AdaBoost was used a feature selector, and7

ε-support vector regression (SVR) was used to regress8

the labels.9

Sampling methods: Some approaches have attempted10

to address the sampling issue. In [13], Glodek ran-11

domly sampled the video frames. In [8], a downsam-12

pling method was proposed that changed granular-13

ity of sampling based on whether or not a change14

was detected in the predicted label. A limitation of15

this system is that it assumes that the system can16

correctly predict the label. In [9], Zhu et al. reduced17

the number of frames in the dataset with a boot-18

strapping procedure. This method requires the apexes19

to be labeled. We propose a method that does not20

require peak frame labeling. In [21], Savran et al.21

downsampled the training data to frames that had an22

emotion label intensity greater than ±σ from the mean23

emotion intensity. No framework for downsampling24

test data was provided. In [14], Jiang et al. pro-25

posed a texture descriptor that extended Local Phase26

Quantization (LPQ) features to the temporal domain.27

It was called Local Phase Quantization from Three 1

Orthogonal Planes. The paper also investigated three 2

downsampling methods: randomly selecting frames, 3

bootstrapping, and a heuristic approach that found 4

two subsets of the data to describe static appearance 5

descriptors and dynamic appearance descriptors. It 6

was found that the heuristic method was the best 7

performer. All of these methods have focused on 8

training data selection, and no method was given to 9

downsample the testing data. A summary of related 10

work is given in Table 1. As compared to the previous 11

related work, the contributions of this paper are given 12

below. 13

2.3 Contributions 14

We propose emulating the behavior of the human 15

visual system to address the challenges in the AVEC 16

datasets. The focus of work in this paper is video- 17

based temporal sampling. The contributions of this 18

paper are: (1) We exploit vision and attention theory 19

[28], [29] from perceptual psychology to determine 20

an appropriate sampling rate. We assign a dynamic, 21

temporal granularity that is inversely proportional to 22

how frequent the visual information on a person’s face 23

is changing. The method improves average correlation 24

with the ground-truth for all affect dimensions on 25

the AVEC 2012 frame-level subchallenge testing set 26
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5 

Fig. 2: System overview. (1) Extraction of ROI. (2) Partitioning of video into smaller segments, formation of temporal feature
that quantifies motion, and computation of the dominant frequency of the temporal feature. (3) Downsampling of the video
segment. (4) Registration of frames. (5) Appearance feature extraction. (6) Classification/regression.

over the baseline approach by a factor of 2.7. (2)1

We provide a framework for the method to integrate2

information from apex labels, if they are provided.3

The method improves average F1 measure across 144

different classes by 7.6 over [24]. (3) We provide a5

framework for using match-score fusion temporally.6

The method improves average weighted accuracy on7

all classes on the AVEC 2011 frame-level subchallenge8

development set over the use of uniform sampling of9

1 frame per segment and no fusion by 5.4%.10

3 TECHNICAL APPROACH11

When viewing a natural scene, the human visual sys-12

tem exhibits a saccade-fixation-saccade pattern [30].13

Fixations are moments of attention, where visual14

information is being processed. Saccades are rapid15

movements of eyes, where information is not being16

processed. First the eyes saccade, then fixate, and17

this procedure is repeated. The latency between two18

saccades decreases with the increasing frequency of19

temporal changes of visual information in the scene.20

We propose a method that emulates this process for21

emotion and expression recognition. Human percep-22

tion of faces is different than recognition of scenes23

or other objects. However, the focus of work is the24

concept of attention, the length of focus on a scene,25

not recognition. The temporal frequency of visual in-26

formation in the scene affects the amount of attention27

given to a part of the scene. Our algorithm is inspired28

by this physical process and emulates attention by29

downsampling a video.30

The overview of this work is shown in Figure 2:31

(1) face ROI is detected with Viola-Jones [31]. (2)32

The video is partitioned into segments. Within each33

segment, the visual information is quantified with34

temporal features. We apply a discrete Fourier trans-35

form to the temporal feature to find the dominant36

frequency, the frequency of the temporal feature with37

the most energy. (3) The video is downsampled at38

the dominant frequency. (4) The selected frames after39

the downsampling are aligned with avatar image reg-40

istration [24]. (5) Appearance features are generated41

in local regions. (6) Initial a posteriori probabilities of42

emotion labels in each frame in the video segment are43

generated from SVM [32]. The results are temporally 1

fused at the match-score level [33] to generate the 2

final predicted labels. Section 3.1 discusses down- 3

sampling for continuous videos, Section 3.2 discusses 4

downsampling when apex labels are given. The full 5

emotion recognition pipeline is described in Section 6

3.3. 7

3.1 Downsampling Continuous Video 8

Downsampling of a continuous video without time 9

annotations for apexes is done as data comes in. The 10

videos are segmented into uniformly sized smaller 11

segments. Each segment is downsampled dynamically, 12

and each segment has its own appropriate down- 13

sampling factor. Conventionally, each segment would 14

be processed with a uniform downsampling factor. 15

Psuedocode for the downsampling method is given 16

in Algorithm 1. 17

3.1.1 Time partitioning procedure 18

The video I is segmented into equally sized non- 19

overlapping segments of N frames. The segment of 20

video IΦ contains the frames at indices Φ where 21

Φ = {m0,m0 + 1, ...,m0 +N − 1}. The downsampled 22

video segment IΦ∗ contains the frames at indices Φ∗, 23

where Φ∗ is a subsequence of Φ. Initially, the system 24

delays for N frames, and processes a video segment 25

of N frames at a time. We start with m0 = 0, so the 26

first N frames form one segment. Then m0 = N , so the 27

frames from N to 2N−1 form another segment and so 28

on, until the end of the video. If there is a remainder, 29

it forms its own segment. We chose parameter N such 30

that the duration of each segment is 1 s because 1 Hz 31

is the maximum bound of the HVS according to vision 32

and attention theory [30]. 33

3.1.2 Computing the temporal feature 34

IΦ∗ is created by resampling IΦ at a lower frequency. 35

The first step is to quantify facial expressions into a 36

signal that varies with time. The signal’s frequency 37

must respond to changes of facial expression. Because 38

the frame rate is high, and the ROI is a frontal face, 39

optical flow can be exploited to quantify the facial 40

expressions [34]. ∆In is optical flow between the 41
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Fig. 3: Overview of how the temporal feature is computed. The video is segmented into non-overlapping segments of length
N . Optical flow is computed using a pair of adjacent frames. The result of the optical flow forms the temporal feature.

frames In and In−1. It outputs a motion vector. The1

magnitude is summed for all pixels in an image to2

form a 1-D signal:3

f (n) =
∑
x

‖∆In (x) ‖2 (1)

where f (n) is the temporal feature for a single frame,4

x is a pixel, and ‖.‖2 is the magnitude. For the entire5

segment IΦ, the temporal feature fΦ is indicated by:6

fΦ ≡ [f (m0) , f (m0 + 1) , ..., f (m0 +N − 1)]. Figure 37

shows how the video is segmented, how the optical8

flow is computed, and how the temporal feature is9

generated. As registration is costly, to reduce the10

number of frames to be registered, we compute the11

optical flow before registration. We do not use optical12

flow as a feature for classification, or for alignment.13

3.1.3 Downsampling the video segment14

To compute the dominant frequency, first, the DC-15

offset is removed:16

f̃Φ = fΦ − E (fΦ) (2)

where E (.) is the mean. It is important to remove17

the DC-offset for two reasons: (1) it normalizes the18

temporal feature and (2) for real data, the FΦ (0)–19

corresponding to the coefficient at 0 Hz, the DC-20

offset–will be greater than other values of FΦ, causing21

it to be selected as the dominant frequency. FΦ is22

the discrete Fourier transform of f̃Φ: FΦ = DFT
(
f̃Φ

)
,23

where DFT (.) is the discrete Fourier transform, and24

k is the frequency index. The frequency index corre-25

sponding to the frequency with the most energy β is26

computed as follows:27

β = argmaxk ‖FΦ(k)‖ (3)

where ‖FΦ(k)‖ is the magnitude of FΦ(k). Note that28

the frequency in Equation (3) is not the Nyquist rate.29

The Nyquist rate applies to sampling a continuous30

signal in order to accurately reconstruct that signal.31

Algorithm 1 Computing the sampling rate for single
segment/single apex
Input: IΦ, the video segment. n0, midpoint-apex time
point (if given). N , number of frames in Φ.
Output: IΦ∗ , downsampled video segment.
1: procedure DOWNSAMPLESEGMENT(IΦ)
2: for all frames n ∈ Φ do
3: ∆In ← optical flow from n− 1 to n
4: f (n) =

∑
x ‖∆In (x) ‖2

5: end for
6: fΦ ← vector corresponding to all features f
7: f̃Φ ← fΦ − mean of fΦ
8: FΦ ← Discrete Fourier transform of f̃Φ
9: β ← argmaxk ‖FΦ(k)‖

10: if n0 is given then
11: Φ∗

Apex ← range n0 − β/2 < n ≤ n0 + β/2
12: Φ∗ ← Φ∗

Apex

13: else
14: M ← N/β . (Downsampling factor)
15: Φ∗ ← Φ ↓M . (Every M -th frame)
16: end if
17: return IΦ∗

18: end procedure

In this paper we are downsampling a discrete signal 1

by removing samples in the signal which have not 2

changed much. For this reason, we sample at the 3

dominant frequency itself. 4

The downsampling factor M is given by: (maxi- 5

mum frequency/dominant frequency). The frequency 6

index β can be converted to the dominant frequency 7

as: 2πβ/N . The maximum frequency index N corre- 8

sponds to frequency 2π. It follows that: M = N/β. 9

Let Φ∗ = Φ ↓ M . That is, Φ∗ is every M -th frame of 10

Φ. When the temporal feature has a high frequency, 11

β → N , the downsampling factor is near 1, and 12

all of the frames are preserved. When the temporal 13

feature has a low frequency, the downsampling factor 14

increases, and most of the frames are removed. 15

3.2 Downsampling with Apex Labels 16

When apex label information is given, instead of 17

segmenting the video evenly, the system segments the 18
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Fig. 4: Comparison of sampling at even intervals versus sampling at the apex. A video is given, and its expression intensity
is given. Sampling at even intervals retains frames that are further away from the apex. They are weakly expressed, and they
are not a good representation of the emotion being expressed. Sampling at the apex retains the frames where the emotion
is most strongly expressed.

video into durations centered at each apex. Instead1

of downsampling the segment evenly, the dominant2

frequency effects the duration of the segment. If the3

dominant frequency is high, then the method will4

select many frames at the apex; if low, only the frames5

nearest to the apex are selected. The human visual6

system has dynamic attention based on the changes of7

visual information. We realize attention as the number8

of selected frames. If there is not much change in the9

visual information, there is less attention given, and10

fewer frames are selected.11

3.2.1 Time partitioning procedure12

If apexes are provided, the video is partitioned into13

uniform segments of N frames, centered at the mid-14

point of the apex frames. There is a segment for15

each apex, and each segment is centered at that apex.16

Frames that are not near an apex will be removed. Let17

n0 be the location of an apex. It now follows that:18

ΦApex = {n : n0 −N/2 < n ≤ n0 +N/2} (4)

Ordinarily we downsample the segment evenly.19

However, when apex labels are given we reformulate20

the downsampling method to take advantage of these21

labels. At the apex, the expressions are strong and the22

emotion is more easily detected. For this reason, the23

frames in the duration centered at the apex should be24

retained, rather than downsampling uniformly, which25

may retain frames further away from the apex where26

emotions are more difficult to detect. An example27

comparing sampling at a uniform rate versus sam-28

pling at the apex is given in Figure 4. There is no29

change in the way β is computed.30

3.2.2 Downsampling the video segment31

In this formulation, Φ∗Apex varies in duration according32

to β, and is defined as follows:33

Φ∗Apex = {n : n0 − β/2 < n ≤ n0 + β/2} (5)

If apex labels are given, Φ∗Apex is taken to be Φ∗. When34

the temporal feature has a high frequency, N frames35

are preserved and IΦ∗ is equivalent to IΦApex
. When 1

the feature has a low frequency, the number of frames 2

approaches 1, and most of the frames are removed. 3

3.3 Emotion Recognition System Pipeline 4

3.3.1 Face ROI extraction, registration and features 5

Faces are detected with a boosted cascade of Haar- 6

like features [31]. If a face is not detected in the 7

frame, we assign the expected label to that frame. For 8

classification, we assign the class label that has the 9

highest percentage of class occurrence. For regression, 10

we assign the average value of the emotion intensity 11

from the training data. A better method for assign- 12

ing the label in this situation would be a first-order 13

Markov assumption, but this is not the focus of work 14

(see [35]). If ROI is detected, faces are registered with 15

avatar image registration. The reader is referred to [24] 16

for a more in depth explanation. We use Local Binary 17

Patterns (LBP) because they are the most popular 18

features in the field for representing a face. The reader 19

is referred to [36], [37] for an in depth explanation. The 20

features are computed for each frame in IΦ∗ . 21

3.3.2 Fusion 22

A method is needed to temporally fuse and smooth 23

the estimated emotions. For each segment IΦ∗ , we 24

propose fusing the a posteriori probabilities for each 25

frame computed by the classifier. A posteriori probabil- 26

ities are obtained with SVM [32]. The a posteriori prob- 27

abilities are fused with combination-based match- 28

score fusion [33], in which the scores, or a posteriori 29

probabilities, from different matchers are weighted 30

and combined to obtain a final, single score as the 31

a posteriori probability. Let yj be the feature vector of 32

LBP features of frame j in IΦ∗ . ci is the class label from 33

one of the classes: c1, ..., cnc . The estimated label for 34

all the frames in IΦ is c̃. Note that this assigns labels 35

to all frames Φ, including those that were not selected 36

for processing. Temporal smoothing is introduced by 37

assigning all the frames in IΦ∗ the same label. p (ci|yj) 38

is the a posteriori probability of a class ci. The first step 39
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TABLE 2: Percentage of positively expressed affective dimen-
sion for the AVEC 2011 video sub-challenge.

Sets Arousal Expectancy Power Valence
Training 47 46 51 55
Develop 56 40 59 64

TABLE 3: Percentage of positively expressed AU for CK.

AU1 AU2 AU4 AU5 AU6 AU7 AU9
29.2 19.6 31.7 16.0 22.7 22.1 10.2
AU10 AU12 AU15 AU20 AU24 AU25 AU27
2.5 23.1 15.1 14.1 8.6 60.1 15.5

of fusion is estimation of p (ci|yj) for each frame in IΦ∗1

with the method in [38].2

The second step aggregates the a posteriori probabil-3

ities from the selected frames into a single score. The4

classification rule for match-score fusion is:5

c̃ = argmaxci
h
(
ci,Φ

∗,y1, ...,ynf

)
(6)

where h(.) is the rule for aggregation, and nf is the6

number of frames in Φ∗. The Sum rule is as follows:7

hSum
(
ci,Φ

∗,y1, ...,ynf

)
=

1

nf

∑
j∈Φ∗

p (ci|yj) (7)

The Product rule is as follows:8

hProduct
(
ci,Φ

∗,y1, ...,ynf

)
=
∏
j∈Φ∗

p (ci|yj) (8)

The Min and Max rules are as follows:9

hMin
(
ci,Φ

∗,y1, ...,ynf

)
= min

j∈Φ∗
p (ci|yj) (9)

10

hMax
(
ci,Φ

∗,y1, ...,ynf

)
= max

j∈Φ∗
p (ci|yj) (10)

The Mode rule hMode, differs from the above rules by11

assigning the most common label to each frame in the12

segment.13

The approach can be applied to regression by taking14

the result of the aggregation rule to be the final15

decision value. This replaces Equation 6, where a16

second classifier is applied:17

c̃Regression = h
(
ci,Φ

∗,y1, ...,ynf

)
(11)

Note that, for regression, we do not estimate the a18

posteriori probability. p (.) in the above equations is19

replaced with the decision values from SVR [32].20

4 EXPERIMENTS21

4.1 Datasets22

AVEC 2011 [6] and 2012 [7] are grand challenge23

datasets. In this paper, they are used to compare the24

proposed method to other state-of-the-art methods. It25

is a non-trivial, unconstrained dataset: (1) the frame26

rate is too high to load all frames into memory.27

For example, if AVEC 2012 has 1351129 frames, if28

LBP features and baseline audio features [6] are used29

which have 7841 dimensions, and if double floating30

TABLE 4: Percentage of classes for MMI-DB emotions.

Anger Disgust Fear Happy Sad Surprise
21.1 13.9 13.0 19.7 14.4 17.9

points are used for each feature, it would require 8.48 1

GB to load all frames into memory. This exceeds the 2

memory of most computers (88.9% of computers have 3

up to only 8 GB of computer memory according to 4

a recent hardware survey [39]). (2) The subjects are 5

free to change pose, and use hand gestures, and (3) 6

the videos are not acted. The videos are not pre-cut, 7

and a person can express multiple emotions per video. 8

In the AVEC datasets, a person is presented with the 9

Sensitive Artificial Listener [40] who engages the per- 10

son in conversation, and causes emotionally colored 11

conversations by being biased to express a particular 12

emotion, such as belligerence or sadness. Emotions 13

expressed in this scenario are natural, continuous, and 14

spontaneous. An example is available online [41]. In 15

this example, a person is interacting with a specific 16

character named Spike. Spike is confrontational, and 17

aggravates the person during conversation. Note that 18

the person is smiling, but not from being pleased. 19

The smile is caused by the person being polite and 20

exercising restraint in response to hostility. A separate 21

classifier is used for each affect dimension (see Section 22

4.2). 23

The AVEC datasets are divided into three partitions: 24

(a) 31 interviews of 8 different individuals form the 25

training set. It is used as samples for a training model. 26

(b) 32 interviews of 8 individuals, who are different 27

from the training set form the development set. It is 28

used as the testing fold in the training phase, and 29

(c) 32 (AVEC 2012) or 11 (AVEC 2011) interviews of 30

new individuals who are not in the development or 31

training set form the testing set. The testing set is 32

the official validation fold with which algorithms are 33

compared to each other. The average length of all the 34

videos in AVEC 2011 is 14.6×103±5.20×103 frames. 35

All results are given in terms of the frame level 36

subchallenge. The percentage of positively expressed 37

affective dimension for the training and development 38

datasets for AVEC 2011 dataset are given in Table 2. 39

The percentages for the testing set are not available 40

because the labels are withheld by the challenge or- 41

ganizers. 42

The second dataset used is CK [3]. We use this 43

database to test the quality of results of the pro- 44

posed sampling method, when apex labels are pro- 45

vided. The length of segments range from 3 frames 46

to over 100. The percent of positively expressed 47

AU are given in Table 3. We follow the test- 48

ing methodology in Koelstra et al. [15]. An AU 49

is selected if it has more than 10 positive exam- 50

ples. We detect the following actions units (AU): 51

{1, 2, 4, 5, 6, 7, 9, 10, 12, 15, 20, 24, 25, 27}. The reader is 52

referred to Lucey et al. [3] for a more detailed expla- 53
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Fig. 5: Average correlation of all affect dimensions on devel-
opment set, AVEC 2012 frame-level subchallenge for varying
values of N .

nation of the data. We use leave-one-person-out cross-1

validation. A binary classifier is used for each AU.2

MMI-DB [4] is frontal face video data similar to3

CK. For most videos, the emotion peaks near the4

middle of the video. The percentage of class for each5

emotion is given in Table 4. We use leave-one-person-6

out cross validation. We use all sessions that have7

emotion labels, and we consider the classes with at8

least 10 positive examples. We use only frontal faces.9

A multi-class classifier is used.10

4.2 Expression and Emotion Labels11

We use three labeling systems: action units [42], emo-12

tions based on the Ekman big six [42] and the Fontaine13

emotional model [43]. Expressions and emotions are14

not the same. Expressions are facial muscle move-15

ments. Ekman and Friesen [42] defined the minimal16

set of facial muscle movements, or action units (AUs),17

that are used in expressions. This is the Facial Action18

Coding System. Emotion differ from expressions in19

that they are the underlying mental states that may20

illicit expressions. A common system for discrete emo-21

tional states is the Ekman big six: happiness, sadness,22

fear, surprise, anger and disgust.23

A different system for emotion labels is the Fontaine24

emotional model [43] with four affect dimensions: va-25

lence, arousal, power and expectancy. An emotion occu-26

pies a point in this four-dimensional Euclidean space.27

Valence, also known as evaluation-pleasantness, de-28

scribes positivity or negativity of the person’s feelings29

or feelings of situation, e.g., happiness versus sadness.30

Arousal, also known as activation-arousal, describes31

a person’s interest in the situation, e.g., eagerness32

versus anxiety. Power, also known as potency-control,33

describes a person’s feeling of control or weakness34

within the situation, e.g., power versus submission.35

Expectancy, also known as unpredictability, describes36

the person’s certainty of the situation, e.g., familiarity37

versus apprehension. For a more detailed explanation,38

the reader is referred to [43]. With this system, multi-39

ple emotions can be expressed at the same time. An40

Ekman big six emotion [44] occupies a point in each41

of these four dimensions.42

An expression or emotion also has intensity. It can43

be continuous, where the label has a numerical value44

representing its intensity, such as in AVEC 2012 [7].45

The intensity can also be discrete, where the numerical 1

values have been categorized into bins. In CK [3], 2

an AU is either expressed (positive) or not expressed 3

(negative). In AVEC 2011, the intensity was quantized 4

into values higher than the average value (positive), 5

or lower than the average value (negative). We use 6

discrete action units for CK, discrete big six-based 7

emotions for MMI-DB, discrete Fontaine for AVEC 8

2011 and continuous Fontaine for AVEC 2012. 9

Another system for level quantization has four 10

states: neutral, onset, apex and offset [15]. These 11

states indicate the intensity of an emotion, e.g., an 12

expression is neutral when it has no expression, and 13

an expression is at its apex when it has its greatest 14

intensity. These four states form a state space. A per- 15

son’s expression will transition between these states, 16

e.g. over time it will go from neutral to onset to apex. 17

4.3 Performance Metrics 18

The AVEC datasets have two scoring systems. In 19

AVEC 2011 [6] the metrics are weighted accuracy 20

(WA) and unweighted accuracy (UA). Weighted ac- 21

curacy is the classification rate, and is also known as 22

percent correct, calculated as follows: 23

WA =
1

nc

nc∑
i=1

p (ci)
tpi

tpi + fpi
(12)

where tpi is the number of true positives of class i, 24

fpi is the number of false positives of class i, and nc 25

is the number of classes and p (ci) is the percentage 26

of class. Unweighted accuracy is defined as: 27

UA =
1

nc

nc∑
i=1

tpi

tpi + fpi

(13)

This metric is used because some classes in the 28

data have disproportionate percentage. For example, 29

positive valence has a percentage of class higher than 30

60% in the training fold. The results for AVEC 2012 31

are given in terms of the Pearson product-moment 32

correlation coefficient with the ground-truth labels. It 33

is computed as: 34

ρ =
E ((c− E (c)) (c̃− E (c̃)))

σcσc̃
(14)

where E (.) is the mean, c are the ground-truth labels 35

across all persons and videos concatenated into a 36

single vector. c̃ are the estimated labels across all 37

persons and videos concatenated into a single vector; 38

µc and µc̃ are the mean of the ground-truth and 39

predicted labels, respectively; and σc and σc̃ are the 40

standard deviation of the ground-truth and predicted 41

labels, respectively. CK comparisons are quantified 42

with the F1 measure [15]: 43

F1 = 2

(
(precision) (recall)
precision + recall

)
(15)
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TABLE 5: Weighted Accuracy Results for Various Sampling
Methods, Registration Methods and Fusion Methods for
AVEC 2011 Development set. Sampling: sampling rate. Uni-
form: uniform number of frames. Reg: registration method.
AIR: avatar image registration. RST: similarity transform.
Rule: fusion rule. HMM: hidden Markov model. WA: weighted
accuracy.

WA Result
Sampling Reg Rule Aro Exp Pow Val Avg
Proposed AIR Sum 71.7 62.1 63.4 65.3 65.6
Proposed AIR Max 71.0 60.7 63.2 64.8 64.9
Proposed RST Min 70.1 61.0 62.1 65.0 64.5
Proposed RST Mode 71.0 61.9 61.8 62.6 64.3
Proposed RST Sum 70.7 60.2 63.0 63.0 64.2
Proposed RST Prod 69.6 61.9 61.2 62.8 63.9
Proposed RST Max 69.0 60.1 61.6 64.6 63.8
Proposed AIR HMM 68.5 62.0 59.8 64.9 63.8
Proposed AIR Prod 70.2 59.8 60.5 64.3 63.7
Proposed AIR Mode 71.6 59.5 60.9 62.6 63.6
Proposed RST No 69.0 59.6 62.1 63.6 63.6
Proposed AIR Min 70.1 59.2 60.8 62.6 63.2
Proposed AIR No 69.1 55.5 62.5 64.7 62.9
Uniform 3 AIR Sum 69.3 57.7 61.0 63.7 62.9
Uniform 6 AIR Sum 67.7 60.0 57.9 62.9 62.1
Uniform 9 AIR Sum 67.6 57.2 60.2 61.4 61.6
Uniform 6 AIR Mode 67.9 56.7 58.7 62.3 61.4
Uniform 3 AIR Mode 65.9 61.6 59.0 58.5 61.2
Uniform 9 AIR Mode 68.3 55.6 58.8 58.6 60.3
Uniform 1 AIR No 65.0 56.3 57.0 62.4 60.2

It is the harmonic mean of precision and recall. It1

can be more meaningful in cases of disproportionate2

percentage of different classes.3

4.4 Parameters4

After ROI extraction, all face images are resized to5

200×200 with bicubic interpolation. For avatar image6

registration, we train the avatar reference image from7

the development data subsampled at 12 fps. The8

parameters specific to avatar image registration are:9

α = 2, 1/ (σ)
2

= .005, and the number of iterations10

is 3. All three of these parameters are empirically11

selected from the previous work [24]. The parameters12

specific to LBP [26] are: the number of local regions is13

8, patterns are computed for 8 neighbors at a radius of14

1, and there are 10× 10 sub-regions on the entire face15

image. All classifiers are SVM [32]. The parameters16

specific to the SVM are: an RBF kernel is used, the cost17

c = 1, and γ = 2−8. The feature vectors are normalized18

to [−1, 1]. For regression, an ε-SVR is used [32]. The19

parameters specific to the regressor are: ε = 0.1.20

N is the initial number of frames. There should21

be enough frames in Φ to describe the expression22

in progress. In the unconstrained case, an expression23

can be very quick. If that expression were a microex-24

pression, it could be as fast as 1/25th of a second,25

requiring 25 fps [45]. MMI-DB videos were captured26

at 24 fps, so we recommend that N > 24 for MMI-DB.27

We chose N = 50 frames. It is validated empirically.28

AVEC 2012 is used for selecting parameter N . A value29

is selected empirically by varying N in powers of 230

seconds:
{

2−3, ..., 28
}

. The results are given in Figure31

TABLE 6: Confusion Matrices for MMI-DB. An: anger. Di:
disgust. Fe: fear. Ha: happiness. Sa: sadness. Su: surprise.

(a)
Yang and Bhanu [24]

An Di Fe Ha Sa Su
An 71.7 2.2 2.2 6.5 4.4 13.0
Di 12.9 48.4 16.1 6.5 0.0 16.1
Fe 27.6 0.0 58.6 3.5 0.0 10.3
Ha 9.5 0.0 4.8 76.2 0.0 9.5
Sa 25.0 0.0 6.3 6.3 59.4 3.1
Su 18.4 2.6 7.9 0.0 5.6 65.8

(b)
Uniform Sampling of 1 Frame

An Di Fe Ha Sa Su
An 76.4 4.7 6.8 2.2 2.2 8.7
Di 9.7 64.5 9.7 3.2 3.2 9.7
Fe 24.1 0.0 55.2 0.0 6.9 13.8
Ha 11.9 0.0 2.4 76.2 2.4 7.1
Sa 28.1 0.0 6.3 3.1 53.1 9.4
Su 21.1 7.9 5.3 0.0 0.0 65.8

(b)
Proposed with Frame Differencing as Temporal Feature

An Di Fe Ha Sa Su
An 78.3 6.5 0.0 4.4 4.4 6.5
Di 9.7 67.7 12.9 0.0 0.0 9.7
Fe 27.6 0.0 58.6 3.5 0.0 10.3
Ha 14.3 7.1 9.5 61.9 0.0 7.1
Sa 21.9 0.0 6.3 0.0 62.5 9.4
Su 15.8 2.6 2.6 0.0 2.6 76.3

(c)
Proposed with Dense-SIFT as Temporal Feature

An Di Fe Ha Sa Su
An 76.1 6.5 0.0 0.0 4.4 13.0
Di 9.7 58.1 16.1 3.2 0.0 12.9
Fe 17.2 0.0 69.0 3.5 0.0 10.3
Ha 14.3 4.8 2.4 69.1 0.0 9.5
Sa 21.9 3.1 0.0 3.1 59.4 12.5
Su 18.4 0.0 2.6 0.0 0.0 79.0

(d)
Proposed with Optical Flow as Temporal Feature

An Di Fe Ha Sa Su
An 73.9 4.4 4.4 0.0 8.7 8.7
Di 6.5 74.2 6.5 0.0 0.0 12.9
Fe 17.2 3.5 69.0 0.0 0.0 10.3
Ha 9.5 4.8 2.4 76.2 0.0 7.1
Sa 21.9 0.0 0.0 3.1 71.9 3.1
Su 21.1 2.6 5.3 2.6 2.6 65.8

TABLE 7: Weighted accuracy and unweighted accuracy on
MMI-DB for varying temporal features. Prop.: Proposed. UA:
unweighted accuracy. WA: weighted accuracy.

Method WA UA
Yang and Bhanu [24] 63.4 64.8
Uniform Sampling of 1 Frame 65.2 66.6
Prop. + Frame Differencing Temporal Feature 67.6 68.4
Prop. + Dense-SIFT Temporal Features 68.4 69.4
Prop. + Optical Flow Temporal Feature 71.8 72.0

5. N = 50 gives the best performance. It decreases 1

as N is reduced below 50 frames. For decreasing 2

values of N , the upper bound of β decreases, and 3

more frames will be forced to be selected. The worst 4

performer is 6 frames per segment. 5

4.5 Experimental Results 6

Training results that select the best performing com- 7

bination of registration method and fusion rule are 8
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TABLE 8: Comparison to Other Methods on AVEC 2011 Frame-level Subchallenge Testing Set. Bold indicates best performer,
underline indicates second best.

(a) Development Set
Arousal Expectancy Power Valence Average

Method WA UA WA UA WA UA WA UA WA UA
Proposed Method 71.7 67.8 62.1 59.8 63.4 61.8 65.3 60.7 65.6 62.6
Glodek et al. [13] 58.2 53.5 53.6 53.2 53.7 53.8 53.2 49.8 54.7 52.6
Dahmane and Meunier [8] 54.9 55.0 51.8 51.2 53.2 52.8 56.6 55.5 46.6 53.6
Baseline [6] 60.2 57.9 58.3 56.7 56.0 52.8 63.6 60.9 59.5 57.1

(b) Testing Set
Arousal Expectancy Power Valence Average

Method WA UA WA UA WA UA WA UA WA UA
Proposed Method 56.5 56.9 59.7 55.1 48.5 49.4 59.2 56.7 56.0 54.5
Glodek et al. [13] 56.9 57.2 47.5 47.8 47.3 47.2 55.6 55.6 51.8 52.0
Dahmane and Meunier [8] 63.4 63.7 35.9 36.6 41.4 41.1 53.4 53.6 48.5 48.8
Baseline [6] 42.2 52.5 53.6 49.3 36.4 37.0 52.5 51.2 46.2 47.5

TABLE 9: Comparison to Other Methods on AVEC 2012
Video-based Frame-level Subchallenge Testing and Devel-
opment Sets. Bold indicates best performer, underline in-
dicates second best. Aro: arousal. Exp: expectancy. Pow:
power. Val: valence. Avg: average of all.

Video-only Development Set
Method Aro Exp Pow Val Avg
Baseline [7] 0.151 0.122 0.031 0.207 0.128
Proposed Method 0.379 0.199 0.244 0.385 0.302
Nicolle et al. [18]∗ 0.354 0.538 0.365 0.432 0.422
Ozkan et al. [19] 0.117 0.076 0.062 0.200 0.114
Savran et al. [21] 0.306 0.215 0.242 0.370 0.283
Yang and Bhanu [24] 0.173 0.099 0.164 0.198 0.159

Video-only Testing Set
Method Aro Exp Pow Val Avg
Baseline [7] 0.077 0.128 0.030 0.134 0.093
Proposed Method 0.302 0.244 0.199 0.279 0.252
Nicolle et al. [18]∗∗ - - - - -
Ozkan et al. [19]∗∗ - - - - -
Savran et al. [21] 0.251 0.153 0.099 0.210 0.178
Yang and Bhanu [24] 0.190 0.105 0.142 0.177 0.154
∗Best performing video feature.
∗∗Video-only testing set not reported.

given in Section 4.5.1. Results comparing temporal1

feature methods on MMI-DB are given in Section2

4.5.2. Testing results on AVEC 2011 and AVEC 20123

are given in Section 4.5.3. Testing results on CK are4

given in Section 4.5.4. A discussion on memory cost5

and visual examples of the proposed downsampling6

method are given in Section 4.5.5.7

4.5.1 Selection of registration method and fusion rule8

The selection of the best performing combination of9

registration method, and fusion rule is made with the10

development set on AVEC 2011. This experiment also11

tests the performance gain when using the proposed12

method versus a uniform sampling rate. The results13

for different registration techniques, sampling meth-14

ods, and rules are given in Table 5. The methods are15

ranked in descending order of average performance16

across all four classes. Under sampling method, Uni-17

form indicates that a uniform number of frames were18

selected for each segment, Proposed indicates that19

the proposed method was used. RST indicates that20

a similarity transform was used with eye points as21

control points. Sum refers to the sum rule; Product, 1

product rule; Min, min rule; Max, max rule; Mode, 2

the mode rule; and no fusion, the labels are assigned 3

without any fusion. HMM indicates hidden Markov 4

model fusion detailed in [47]. 5

The best performer (Proposed + AIR + Sum) im- 6

proves classification rate by 5.4% versus Uniform 1 + 7

AIR + No fusion. This is the combination that is used 8

in the following experiments, except for AVEC 2011 9

testing results, which are the original, official entry 10

results of the challenge that used the Max rule. The 11

combinations can be grouped into three categories: (1) 12

dynamic downsampling with avatar image registra- 13

tion, (2) dynamic downsampling with similarity trans- 14

form based registration, and (3) uniform downsam- 15

pling with avatar image registration. It is clear that 16

methods with the proposed dynamic sampling rate 17

(groups 1 and 2) are better than methods that sample 18

uniformly (group 3). While the two best performers 19

use AIR registration, the difference between avatar 20

image registration (group 1) and similarity transform 21

registration (group 2) is not as clear. Replacing avatar 22

image registration with similarity registration does 23

not cause a significant drop in performance. Proposed 24

+ AIR + Sum and Proposed + RST + Sum have a 25

difference of 1.4% on the average. For AVEC 2011, 26

we conclude that intelligent selection of frames is a 27

greater contributor to classification rate than a better 28

registration algorithm. 29

4.5.2 Evaluation of temporal feature 30

We evaluate the use of optical flow as a temporal 31

feature versus SIFT flow and frame differencing with 32

MMI-DB empirically in Table 6. Weighted and un- 33

weighted accuracies are given in Table 7. When using 34

a different temporal feature, ∆In is replaced by the 35

new method (frame differencing or dense SIFT), the 36

L2-norm of the difference between frames n and n−1 37

is still used. For uniform sampling of 1 frame, the 38

frame at the apex is the only frame used. Yang and 39

Bhanu [24] is the worst performer because it uses all 40

the frames, including the frames furthest away from 41
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TABLE 10: Apex label results compared to other methods for 14 AUSs on CK. Bold indicates best F1 performance, underline
indicates second best. Avg: Average of all AUs.

Facial Action Unit
Method 1 2 4 5 6 7 9 10 12 15 20 24 25 27 Avg.
Proposed 85.3 93.0 87.7 69.6 90.5 62.4 68.5 43.5 76.9 71.0 74.0 65.2 93.6 84.2 76.1
Koelstra et al. [15] 86.8 90.0 73.1 80.0 80.0 46.8 77.3 48.3 83.7 70.3 79.4 63.2 95.6 87.5 75.9
Valstar et al. [46] 87.6 94.0 87.4 78.3 88.0 76.9 76.4 50.0 92.1 30.0 60.0 12.3 95.3 89.3 72.7
Yang and Bhanu [24] 82.0 92.1 82.0 58.6 84.9 52.5 68.4 34.8 68.2 66.7 65.7 51.1 85.6 67.2 68.6

the apex. Frame differencing is the fastest method1

for computing the temporal feature, but it has the2

worst performance among other temporal features.3

SIFT flow improves performance, but it is the slowest4

temporal feature optical flow has a better performance5

and speed. Retaining only 1 frame is worse than the6

proposed downsampling method. We conclude that,7

for MMI-DB, there are instances where retaining more8

than 1 frame can improve classification rate, if those9

frames are intelligently selected.10

4.5.3 Results without apex labels11

Results on the official AVEC 2011 testing and develop-12

ment sets are given in Table 8. The proposed method13

is compared to the two other entries that employed14

a dynamic sampling rate and it is always the best or15

second best performer for the development set. On the16

testing set, it improves weighted accuracy by 9.8%,17

and unweighted accuracy by 7.0% over the baseline18

approach. In [8], the method pays more attention19

when the predicted label changes, which assumes that20

the prediction is accurate, which is not always the21

case, especially for a difficult dataset such as AVEC22

2011. We believe that the proposed method does well23

because it is the only downsampling method based24

on changes of visual information of the face.25

Results on AVEC 2012 frame-level subchallenge are26

given in Table 9. Yang and Bhanu [24] is similar to the27

proposed approach but does not incorporate a down-28

sampling and uses LPQ features. For the development29

set, Nicolle et al. [18] has the best performance, but30

they did not provide video-only testing results. They31

noted that the ground-truth labelers had a time delay32

when recording the label, and they incorporated meta-33

data of who the user was speaking with, e.g. if the34

embodied agent speaking to them was belligerent.35

Though this improved performance, it is ad hoc in the36

sense that rater time delay may be specific to AVEC37

2012, and meta-data about who the person is speaking38

to may not be available with other datasets.39

4.5.4 Results with apex labels40

The efficacy of the proposed method with apex labels41

on CK is given in Table 10. A comparison is made with42

other methods according to F1 measure. For in-depth43

results see [35]. Yang and Bhanu [24] method does not44

take advantage of apex frame labeling. The proposed45

method takes advantage of apex labelling and it per-46

forms better. We performed best for 4 AUs. Valstar47

TABLE 11: Summary of Frames Used for Each Dataset. Bold
indicates least memory cost in terms of frames, underline
indicates second best.

AVEC
2011

AVEC
2012

CK MMI-
DB

# of Videos 74 95 488 222
# of Frames 1090476 1351129 8795 23466
Proposed 65871 76960 1536 764
Dahmane [8] 196051 239920 - -
Savran [21] - 232600 - -
Glodek [13] 740 950 4930 2220

and Pantic [48] perform best for 6 AUs. However, the 1

proposed method has a higher average F1 measure 2

among all the other works. Results for varying fusion 3

rules, sampling methods and registration methods are 4

given in [35]. The comparison to [24] demonstrates 5

the importance of incorporating temporal informa- 6

tion. Intuitively, assuming that each frame is equally 7

discriminative, selecting as many frames as possible, 8

such as in Yang and Bhanu [24], should increase the 9

true positive rate by introducing more samples for 10

the fusion. However, samples that are further away 11

from the apex contain less relevant information of 12

the expression being captured. Frames further away 13

from the apex are close to neutral. They are not 14

good examples of the expression being expressed, and 15

they reduce accuracy. The proposed method sampled 16

frames at the apex, and Koelstra et al. [15] modelled 17

the temporal phases including the apex, this may 18

explain the gap in performance. 19

4.5.5 Memory cost savings and temporal feature re- 20

sults 21

In the following, we discuss the memory cost saving 22

for each dataset, and show examples of the temporal 23

feature. For AVEC 2011, the total number of frames 24

for the development, training and testing (video sub- 25

challenge) partitions are {449074, 501277, 140125}, re- 26

spectively. The proposed method downsampled the 27

number of frames by a factor of 16.6, retaining 28

{27412, 30076, 8383} frames. For CK, the proposed 29

method sampled 3.4 ± 2.2 frames. For MMI-DB the 30

proposed method sampled 3.4 ± 1.5. A comparison 31

of the number of frames reduced by the proposed 32

method is given in Table 11. 33

For a detailed explaination of the downsampling 34

methods for related work, see Section 2.2. Because 35

the method in [21] retains outliers based on the re- 36

gression label, it can only be applied to continuous 37
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(b) Temporal Feature

(c) Fourier Transform of Temporal Feature

(a) Examples of Continuous and Apex Labeled Video Segments

Fig. 6: (a) From top to bottom, a continuous video segment of a neutrally expressive person; a continuous video segment of
an expressive person; an apex segment of a person who is expressive; an apex segment of a person who is less expressive.
(b) The temporal feature of each of the examples, and (c) the discrete Fourier transform of the temporal feature. Note that
both the continuous neutral and apex labeled less expressive examples have a low dominant frequency, whereas the other
two expressive examples have a higher dominant frequency. Black arrow indicates dominant frequency.

label intensities, such as in AVEC 2012. The method1

would process each testing frame uniformly. In [8],2

for continuous data, we categorized the labels into 103

bins. This method is not applicable to apex labeled4

data, where the videos are segmented and have a5

single class label. In [13], frames are sampled uni-6

formly. The method’s memory cost is proportional to7

the number of videos, so the method does not reduce8

memory cost well for datasets with many videos, such9

as CK and MMI-DB. Though the method has the least10

number of frames for AVEC 2011 and AVEC 2012, it11

may sample the long videos too sparsely to precisely12

detect when emotion changes. The proposed method13

can be used to reduce the number of frames on all14

four datasets, both on continuous and discrete data,15

and on segmented and unsegmented data. It is the 1

best or second best method for reducing memory cost 2

on all four datasets. 3

A detailed example of two continuous video seg- 4

ments from AVEC 2012, and two apex labeled seg- 5

ments from MMI-DB is given in Figure 6. The mag- 6

nitude has been normalized to provide a better un- 7

derstanding of the results. The time range has been 8

normalized because MMI-DB segments are of differ- 9

ent lengths. For the discrete Fourier transform, the 10

frequency is normalized to [0, 1]. The first example 11

in Figure 6(a) is of a person who does not use many 12

expressions (Neutral). In this case the dominant fre- 13

quency is at .06 cycles/frame, so only a few frames 14

would be selected. The second row is of a person 15
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who is using many expressions and changing her pose1

(Expressive). Intuitively, many frames will be required2

to describe this segment, which is corroborated by the3

dominant frequency being at .34 cycles/frame. The4

third row is of a person who holds his expression for5

a long time at the apex (Apex Expressive). The domi-6

nant frequency is at .42 cycles/frame. In this example,7

there are 62 frames in the cycle, thus .42 × 62 ≈ 268

frames would be selected. It can be observed from the9

example frames that his expression is held at the apex10

for roughly half of the frames, corroborating keeping11

26 of the 62 frames. The fourth row is of a person who12

weakly expresses his emotion (Apex Neutral). In this13

case, the dominant frequency is .04 cycles/frame, so14

very few frames would be selected.15

5 CONCLUSIONS16

In this paper, vision and attention theory was em-17

ployed to temporally downsample the number of18

frames for video-based emotion and expression recog-19

nition. It was found that a uniform frame rate de-20

creases performance and can unnecessarily increase21

memory cost for high frame rates. With the proposed22

method, AVEC 2011 is downsampled by a factor of23

16.6 and weighted accuracy is improved over the24

baseline approach by 9.6% on the testing set. AVEC25

2012 is downsampled by a factor of 17.6 and corre-26

lation is improved over the baseline by .159 on the27

testing set. CK is downsampled by a factor of 5.72 and28

the F1 measure is improved by 0.3. MMI-DB dataset29

is downsampled by a factor of 30.1 respectively and30

weighted accuracy is increased over [24] by 8.4%31

for all sessions. Unlike previous works, we reported32

results on all four datasets.33

The conventional process of using a short dura-34

tion of frames centered at the apex was corroborated35

with the proposed sampling method, and extended36

to allow for an increase in duration when appropri-37

ate. It was found that top methods from previous38

challenges [24] did not generalize to continuous data39

sets. In that challenge, registration was found to be40

a significant contributor to performance, whereas, in41

the AVEC datasets, we have found that registration42

does not significantly contribute to performance. Pre-43

vious datasets were segmented to the time points of44

most significance, and we posit that, for continuous45

datasets, a method must be critical in its selection46

of frames. A limitation of the current work is that47

the frames are processed in evenly sized segments,48

which may cause a boundary effect if an unlabeled49

apex is close to the segmentation boundary. However,50

this can be addressed by using overlapped boundary51

segments.52
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