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a b s t r a c t

Recognizing a subject given a set of biometrics is a fundamental pattern recognition problem. This paper
builds novel statistical models for multibiometric systems using geometric and multinomial distribu-
tions. These models are generic as they are only based on the similarity scores produced by a recognition
system. They predict the bounds on the range of indices within which a test subject is likely to be
present in a sorted set of similarity scores. These bounds are then used in the multibiometric recognition
system to predict a smaller subset of subjects from the database as probable candidates for a given test
subject. Experimental results show that the proposed models enhance the recognition rate beyond the
underlying matching algorithms for multiple face views, fingerprints, palm prints, irises and their
combinations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Biometric systems are increasingly being deployed for identi-
fication, access control and surveillance [1]. Traditional deploy-
ments were mainly unimodal biometric systems which used a
single sample from a single biometric modality. Performance of
such systems suffered from noisy data, intra-class variations, inter-
class similarities, non-universality and spoofing [2]. Some of these
problems are addressed by using multibiometrics [2,3].

The term multibiometrics is used to denote three distinct
classes of biometric systems: multisample, multiview and multi-
modal. In multisample biometrics, multiple samples are obtained
from the same modality without any change in parameters.
Examples are multiple images of the frontal view of the face,
fingerprints of the same finger, iris images of the same eye etc. It
has been shown that multisample biometrics can provide better
recognition results compared to single sample results [4,5].

In multiview biometrics, samples are taken from the same
biometric modality but under different conditions such as different
face poses, different fingers, and different irises. Face recognition
using multiple poses of face images, person identification using ten-
print fingerprints, video based face recognition of walking persons
etc. constitute examples of multiview biometric systems.

In multimodal biometrics, samples from different biometric
modalities such as face, fingerprint, palmprint, iris, etc. are used.
Multimodal biometrics provide better and robust authentication

and security [3] compared to unimodal biometric systems. A very
visible use of multimodal biometrics is the US-VISIT program
where the ten fingerprints, face and iris images of all international
visitors are collected [6].

Even with multibiometrics, the matching subject returned by
the recognition system may not be the true match [7]. Thus, a
biometric recognition system generally provides a set of ranked
matching subjects instead of just one matching subject. The
performance of a biometric recognition system is typically char-
acterized by the Cumulative Match Characteristic (CMC) Curve
which provides a plot of the identification rate against rank k,
where k is the number of top candidates [7].

This paper describes novel and generic statistical predictive
models, which can predict the matching subjects in a multiview/
multimodal biometric environment, depending on whether the
view details of the test subject are known or not. By view details
we mean the specific face pose (frontal, profile, etc.), the specific
finger from which the fingerprint is taken, etc. The first model is
called the Multinomial Model (MM) and is based on multinomial
probability distribution. The second is called the Geometric Model
(GM) and is based on geometric probability distribution. Both
the approaches model the similarity scores produced when a
test subject is matched against all the subjects in a database, and
therefore, they are generic in nature. They can be applied to any
biometric, provided a matching algorithm for that biometric is
available. The models proposed in the paper model the score
distributions and draw inferences regarding retrieval rankings
based on those models. They do not explicitly model the recogni-
tion systems. The term predictive is used to emphasize the
application of the models as the models are used to predict the
ranking of the retrievals.
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The GM can be used in multiview systems where the view
details are known. GM can also be used for predicting the
matching subjects in multimodal biometric systems as the mod-
ality information of the test subjects is obviously available (e.g., it
will be known if the test image is a fingerprint, palm print, etc.).
The MM is suited for the multiview situations where the view
details of the test subject are not known in advance. This can
occur, for example, in surveillance systems where multiple views
of a non-cooperative subject are matched against all the views
present in a database. The flow chart in Fig. 1 shows how to choose
the appropriate model based on the problem. Our prediction
models are validated on a variety of publicly available databases
of fingerprints, faces, palms, and irises.

When data from different biometric samples or modalities
are available, an overall recognition result is typically obtained
by fusing the individual results [4]. Therefore, the experimental
results in this paper are compared with fusion results.

The paper is organized as follows. Section 2 describes the related
work and our contributions. Section 3 describes the technical
approach which begins with an overview and is followed by the
detailed descriptions of both the proposed statistical models.
Section 4 describes the results of our experiments on five different
databases and Section 5 concludes the paper.

2. Related works and contributions

2.1. Related work

Typically, the different aspects of performance of a recognition
system are predicted by modeling either the similarity scores or
the feature space. A summary of the representative research in
these areas is provided in this subsection.

Many researchers have used binomial probability distributions
for modeling the similarity scores. Wayman [8] used them under
the assumption of independence of errors, to estimate the prob-
ability that a false match never occurs. The paper derived equa-
tions for error rate. Daugman [9] described the use of binomial
models for predicting whether the given distance metric belongs
to the same iris or different irises. This is achieved by noting that
the distance metric for similar and dissimilar pair of irises falls into
two distinct binomial distributions. However it has been reported
in [10] that the models proposed by [8,9] predicted exponential
decrease in recognition rate when the database size increased
while in reality the decrease is linear in the logarithm of the
database size.

The face recognition vendor test report 2002 [10] provided another
model for predicting the identification rate using the moments of
the match score distribution. But the model underestimated the

identification rates. The model was based on the assumption that
the similarity scores are independent and identically distributed. In
practice this assumption needs not to be valid. Jhonson et al. [11]
presented a method to estimate recognition performance for large
galleries of individuals using data from a significantly smaller gallery.
This was achieved by modeling the CMC curve using binomial
distribution. The same problem has been addressed in a different
way by Wang and Bhanu [12] for fingerprint recognition with the
additional assumption that the match and nonmatch score distribu-
tions remain the same when the gallery size is increased. Grother and
Phillips [13] presented the prediction of the recognition performance
of large sized biometric galleries using a binomial model under the
assumption that the match score distribution and the nonmatch
score distribution are independent. Dass et al. [14] predicted con-
fidence regions based on the Receiver Operating Characteristic (ROC)
curve. This was accomplished by estimating genuine and imposter
distributions of similarity scores through Gaussian copula models.

In contrast to the above, Wang et al. [15] presented an approach
where performance prediction was used to increase the recogni-
tion rate which is the theme of this paper as well. Even though
their method is generic, the increase in the recognition rate is
achieved by discarding poor quality test subjects from the testing
process. The poor quality test subjects are identified using a SVM
classifier. In comparison, the work presented in this paper, builds
statistical models for predicting matching subjects and achieves a
higher recognition rate compared to the underlying matching
algorithm by using all test subjects.

The research related to performance prediction where the
feature space is modeled is described below. Schmid and O’Sulli-
van [16] described a framework for determining the performance
of physical signature authentication based on likelihood models.
Vectors of features extracted from the signatures were modeled as
realizations of random processes. These random processes and the
resulting distributions on the measurements determined bounds
on the performance, regardless of the implementation of the
recognition system. Boshra and Bhanu [17] presented a different
approach to predicting probability of correct recognition by
modeling the uncertainty, clutter, and occlusion of the 2D feature
vectors of a subject which was verified on synthetic aperture radar
data. In [18], Aggrawal et al. proposed a framework for predicting
the success and failure of an algorithm in a face verification
scenario. This method is specific to face recognition. Pankanti
et al. [19] studied individuality of fingerprints, meaning they
estimated the probability that two fingerprints from two different
fingers are considered to be the same. Tan and Bhanu [20]
provided an improvement over [19] with a two-point model and
a three-point model to estimate the error rate for the minutiae
based fingerprint recognition. The approach measured minutiae's
position and orientation, and the relations between different
minutiae to find the probability of correspondence between
fingerprints. They allowed overlap of the uncertainty area of any
two minutiae.

2.2. Contributions

1. The paper develops novel and generic statistical models,
which are independent of the biometrics and the matching
algorithm, for predicting the matching subjects in a multi-
biometric recognition system. In our preliminary work [21],
we used the geometric model for predicting indexing
performance.

2. The paper shows that using the proposed framework
enhances the recognition rate of the underlying matching
algorithm for different biometrics.

3. The proposed prediction model is validated on several publicly
available databases of face, fingerprint, iris, and palmprint.

Multibiometric Data

Multimodal or
Multview?

Geometric
Model
(GM)

View Details?
Multinomial
Model
(MM)

Geometric
Model
(GM)

Multimodal

Multview N

Y

Fig. 1. Which model (GM or MM) to use for prediction?
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3. Technical approach

3.1. Overview

Given a multibiometric recognition system, the objective is to
predict the possible matching subjects corresponding to a given
test subject, from a database of subjects. This subsection describes
the organization of the database, the process of generating the
similarity scores, and the testing procedure for the proposed
models. How the models are trained is described in detail in
Sections 3.2 and 3.3.

Consider the case where a multinomial model (MM) is used (see
Fig. 1). A single database is used to store subjects corresponding to V
views of each of the subjects. If the database contains subjects
corresponding to G different subjects, it will have G�V subjects in
it. All views of the same subject are stored in consecutive positions
in the database. Fig. 2 shows the organization of the database for
V¼3. It contains frontal, half left and half right face images of three
subjects. When a subject is to be identified from this database,

V views of a test subject are given and all of them are matched
against G�V subjects present in the database generating G� V � V
similarity scores. It may be noted that at the time of testing, the
specific view to which the given test subject belongs to, need not be
known. Note that in the set of GV2 similarity scores, V of them are
match scores and the remaining are nonmatch scores.

As seen from Fig. 1, the geometric model (GM) is used in two
different situations and, therefore, V may represent either the
number of views or the number of different modalities used. In
both cases, V different databases of subjects are maintained. Each
database contains the subjects corresponding to a specific mod-
ality or a specific view. The subjects are kept in the same order as
the subjects in all the V databases. When a subject is to be
identified, V views of the subject are available and each of them
are matched against all the subjects in the corresponding database
only and the process generates G�V similarity scores per data-
base. Fig. 3 shows the organization of the database for V¼3. There
are three different databases where each one contains the face,
palm print and iris images of three subjects.

subject 1 subject 2 subject 3

Fig. 2. Organization of database for multiview systems, G¼3, V¼3.

subject 1 subject 2 subject 3

Database 1

Database 2

Database 3

Fig. 3. Organization of database for multimodal systems, G¼3, V¼3. There are three different databases where each one contains a particular modality from all subjects.
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After training (details described in Sections 3.2 and 3.3), the
multinomial and geometric models generate V pairs of index
bounds. In the case of the multinomial model, the index bounds
are of the form f½bl1; bu1�;…; ½blv; buv�g. When the geometric model
is used, there are V different databases and each database
produces an index bound of the form ½1; bui� where 1r irV . Note
that the lower bound of the index is always 1 in the case of the
geometric model. As could be expected, the index bounds do not
change once the training is over.

The validation process in the case of multinomial model is
described below. As mentioned earlier in this section, G� V � V
similarity scores are produced by V views of a test subject. These
similarity scores are sorted in the ascending order. In this paper, we
assume that lower the similarity score, the better the match is. The
models presented in the paper are applicable in the opposite case also
by appropriately modifying the similarity score values. We assume
that an instance of the test subject is present in the database (closed
recognition system [13]). The sorted similarity scores and the index
bounds f½bl1; bu1�;…; ½blv; buv�g predicted by the multinomial model
are given to the prediction integrator as shown in Fig. 4(a).

The prediction integrator examines the subject identities (ids) of
the similarity scores falling in the intervals f½bl1; bu1�;…; ½blv; buv�g.
As the database has V views of the same subject, the prediction

integrator output may contain the same subject identity (id) multi-
ple times. The output of the prediction integrator is given to the
majority voter as shown in Fig. 4(a). The majority voter sorts the
subject ids in the descending order of frequency of occurrence.
Thus, the output of the majority voter represents the predicted
matching subjects in the decreasing order of ranks. The first subject
id in this list is the rank 1 output of the prediction system, the
second one in the list is the rank 2 output, and so on. This process is
illustrated in Fig. 4. With a set of test subjects, by noting the rank of
the matching subject id in the output of the majority voter, a CMC
curve is plotted. If the corresponding subject id is not present in the
output, the prediction is deemed a failure.

In the case of geometric model, there are V databases and V
predicted bounds for each database in the form ½1; bui�;1r irV .
When V test subjects are given, each one is compared against all
subjects present in the corresponding database and a set of G
sorted similarity scores are produced. Note that in each of these G
scores only one score is the match score and the remaining are the
nonmatch scores. The prediction integrator receives the sorted
similarity scores from all the V databases and the V predicted
bounds f½1; bu1�;…; ½1; buv�g. From now on, the process is exactly
similar to that for the MM system. A comparison of both models is
given in Table 1.

Test Object

1 2 3 4 5 6 7 8 9

[bl1,bu1] = [ 1,2] [bl2,bu2] = [ 4,5] [bl3,bu3] = [ 7,8]

Subject identities corresponding to sorted similarity scores

Output of the prediction integrator

3 times

Rank 1

2 times

Rank 2

1 time

Rank 3

Output of the majority voter

Fig. 4. (a) The block diagram representation of the validation process. Note that in the case of geometric model the value of bli is always 1. (b)–(d) Illustration of the
validation process for multinomial model for G¼3, V¼3. The bounds predicted by the model were f½1;2�; ½4;5�; ½7;8�g. (b) Subject ids corresponding to the sorted similarity
scores from the recognition system. (c) Output of the prediction integrator obtained by examining the bounds f½1;2�; ½4;5�; ½7;8�g in Ss from (b). (d) Output of the majority
voter sorted in the increasing order of ranks which is same as the decreasing order of frequencies. In this figure, the subject ids are represented by their frontal faces for
easiness of illustration.
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Since the GM based approach is modular, it is not necessary
that V views or modalities of the test subject be available for
identifying the subject. The process described in the paper would
work without any modification, even if only less than V views and
modalities are known at the time of testing.

3.2. Training the multinomial model

Fig. 5 shows steps in training the Multinomial model. The
purpose of the model is to predict the index bounds within which
the matching subject is likely to be present, in a sorted set of
similarity scores Ss. For accomplishing this, we will model the
index of the match score (ri) or equivalently the count of the
nonmatch scores present between the match scores (xi). The ri and
xi are pictorially shown in Fig. 6. Let us assume that ris are
instances of a random variable Ri. Let us identify the properties
of Ri in order to model them. First we note that, it takes integer
values ranging from 1 to NV. Here N is the total size of the database
(N¼GV for multinomial and N¼G for geometric models). If we
assume that the recognition system being modeled behaves closer
to an ideal system, the values of ri would still range from 1 to a
number greater than or equal to V. Nothing more can be said about
the properties of Ri and hence it is difficult to model them.
However if we assume xi to be an instance of the random variable
Xi it has an important property that its value is always small (zero
for an ideal system) except for xV þ1. The properties of the random
variable Xi are given below. Let xi be observed instances of Xi and Z

be the set of integers.

Property 1. xiAZ.

Property 2. In a recognition system, the value of xi would be small
compared to VðN�1Þ, the total number of non-match scores except in
the case of xV þ1.

Property 3. ∑V þ1
i ¼ 1 xi ¼ VðN�1Þ.

Properties 1 and 2 suggest that xi is a small integer valued
random variable which could be modeled using the Poisson

distribution. The Poisson random variable is typically used to
model the number of misprints in a book or the number of
accidents taking place at a particular location in a given time,
etc. [22]. Our situation is similar in the sense that the values of xi
would be very small, zero ideally, compared to the maximum
possible value of VðN�1Þ except in the case of xV þ1. The suitability
of Poisson distribution can also be justified by visually comparing
the Poisson distribution and the distribution of Xi obtained in our
experiments as shown in Fig. 7. Note that there are other
distributions which fit these properties as well, however we
choose the Poisson random variable due to its simplicity. Next
we describe, how the joint distributions of Xi could be obtained.

3.2.1. Modeling the joint distribution of Xi

As described in the previous section, we assume that Xi's are
independent of the Poisson random variables. Xi's have an inter-
esting property that their sum is a constant (Property 3). Using
this, it can be shown that the joint distribution of X1;…;XV þ1 is
multinomial [24].

f X1 ¼ k1;…;XV þ1 ¼ kV þ1 ∑
V þ1

i ¼ 1
Xi ¼ VðN�1Þ

 !�����
 !

¼ ðVðN�1ÞÞ!
k1!…kV þ1!

pk11 …pV þ1
V þ1 ð1Þ

where

pi ¼
λi

λ1þ⋯þλV þ1
; 1r irVþ1 ð2Þ

This is an important property which enables us to use the Poisson/
Multinomial distribution for our problem. The multinomial dis-
tribution is a generalization of binomial distribution. It is used in
chemical engineering applications where the possible outcome
could be in more than two categories (temperature¼{high, med,
low}). Multinomial systems are a useful analysis tool when a
“success–failure” description is insufficient to understand a che-
mical engineering system [25]. The mixture of multinomial models
is extensively used in text classification [26].

Table 1
Comparison of Geometric and Multinomial models.

Geometric model Multinomial model

1 V different databases (see Fig. 3) One database (see Fig. 2)
2 V views or modalities per subject for training V views per subject for training
3 V or less than V biometrics per subject are required for testing Exactly V biometrics per subject are required for testing
4 Each database contains subjects corresponding to the same view or modality All views of the same subject are stored in subsequent positions in the database
5 V test subjects produces G similarity scores per database and altogether GV

similarity scores from all databases
V test subjects produces GV2 similarity scores

6 One bound predicted per database and thus a total of V bounds predicted V bounds are predicted
7 The bounds are of the form ½1; bui�;1r irV The bounds are of the form ½bli ;bui�;1r irV
8 The view/modality of subjects must be known at the time of testing The view information of test subjects is not required
9 V different recognition systems may be used if multimodal data is used Only one recognition system is used

Gallery
Training
Objects

Xi Extractor
Similarity
Scores

Multinomial
Parameter
Estimator

Index
Bounds
Estimator

{ [bli ,bui]}

Fig. 5. Training the multinomial model.

Fig. 6. Ordering of match and non-matched scores in Ss.
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With the sorted similarity scores being available, we first
estimate the probability pi that a given non-match score will fall
between match scores with index ri and ri�1. This is done under
the assumption of cumulative odds probability model [27]. We
note that a non-match score can be above or below the ith match
score, i¼ 1;…;V . The cumulative odds for a non-match score
relative to the ith match score, θi; i¼ 1;…;V , are

θi ¼
p1þp2þ⋯þpi

piþ1þpiþ2þ⋯þpV þ1
ð3Þ

We define

log θi ¼ βi ð4Þ

From (3), we get

log θ1 ¼ log
p1

p2þ⋯þpV þ1
¼ log

p1
1�p1

¼ β1 ð5Þ

Hence p1 ¼
eβ1

1þeβ1
¼ θ1

1þθ1
ð6Þ

Similarly, from (3) we have

log θ2 ¼ log
p1þp2

1�p1�p2
¼ β2 ð7Þ

Thus,

p1þp2 ¼
eβ2

1þeβ2
¼ θ2

1þθ2
ð8Þ

Extending the above, we get

p1þ⋯þpV ¼ θV

1þθV
ð9Þ

pV þ1 ¼
1

1þθV
ð10Þ

3.2.2. Estimation of the multinomial cumulative odds model
parameters

We want to estimate the parameters θ1;…;θV . From (6), (9),
and (10)

pi ¼
θi

1þθi
� θi�1

1þθi�1
; i¼ 2;…;V ð11Þ

From Eq. (1), the likelihood function, ignoring terms that do not
involve θi is

L¼ θ1

1þθ1

� �x1 θ2�θ1

ð1þθ1Þð1þθ2Þ

� �x2

⋯
θV �θV �1

ð1þθV Þð1þθV �1Þ

� �xV 1
1þθV

� �xV þ 1

ð12Þ

Differentiating the logarithm of the likelihood function w.r.t. θi and
equating to zero we find

x1
θ̂1

� x2
θ̂2 � θ̂1

�x1þx2
1þ θ̂1

¼ 0 ð13Þ

x2
θ̂2 � θ̂1

� x3
θ̂3 � θ̂2

�x2þx3
1þ θ̂2

¼ 0 ð14Þ

⋮
xV

θ̂V � θ̂V �1

�xV þxV þ1

1þ θ̂V

¼ 0 ð15Þ

Solving equations from (13)–(15) we get the maximum likelihood
estimate of θi as

θ̂i ¼
∑i

k ¼ 1xk
∑V þ1

k ¼ iþ1xk
ð16Þ

Substituting for θi in (6), (10), (11) we get the estimates of
probabilities.

Fig. 7. Visual comparison of the probability mass function (PMF) of Xi with Poisson distribution. The PMF of x1 ;…; x3, generated from the color FERET database [23] and the
PMF of Poisson distribution. Note the similarity of the PMFs of xi with that of Poisson distribution. The horizontal axes have different scales as each distribution is
characterized by a different value of the parameter λ.
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3.2.3. Predicting the index of the ith match score
The probability that ri is the index of the ith match score is the

same as the probability that ∑i
k ¼ 1xk ¼ ri� i non-match scores are

present before ri. The probability that a non-match score will be
before ri is p¼∑i

k ¼ 1pk. Thus, the required probability can be
expressed as a binomial probability

Pri � i ¼
VðN�1Þ
ri� i

 !
pri � ið1�pÞVðN�1Þ� ðri � iÞ ð17Þ

3.2.4. Estimating the bounds of the indices
The 95% confidence interval, the bounds ½bl; bu�, for ri can be

obtained by solving for bl and bu in the following equations [22]:

∑
kl

k ¼ 0

n

k

� �
pkð1�pÞn�k � 1�Fðp; bl;n�bl�1Þ ¼ 0:025 ð18Þ

∑
n

k ¼ ku

n

k

� �
pkð1�pÞn�k � Fðp; bu�1;n�buÞ ¼ 0:025 ð19Þ

where Fðx;α;βÞ is the cumulative distribution of the incomplete
beta function

Fðx;α;βÞ ¼ ðαþβþ1Þ!
α!β!

Z x

0
tαð1�tÞβ dt ð20Þ

The bounds for any other confidence level C may be calculated by
replacing the right hand side of Eqs. (18) and (19) with ð1�CÞ=200.

3.2.5. Robust estimation of the multinomial model parameters
During the training of the multinomial model, it was observed

that a very small fraction of the Xi values were unusually large and
from Eq. (16), it is clear that one such large value of Xi alone can
push the estimated bounds farther from where it should be. The
large values of Xi were the results of poor registration of images or
because of the unusually high noise present in the data. Such large
values of Xi are called outliers and outcomes of traditional
statistical methods can possibly be distorted by such outliers
[28]. In order to reduce the influence of outliers in the estimation
of pi (Eq. (2)), another estimation approach was used. Instead of
estimating pi using Eqs. (11) and (16), the Poisson parameter λi of
Xi;1r irVþ1 were estimated using robust estimation methods
and they were substituted in Eq. (2). The robust estimation of the
Poisson parameter was carried out using the glmrob function of
the R statistical package [29]. It was found that the results
obtained using robust estimation approaches were superior to
that obtained from using maximum likelihood estimation, as
outliers are common phenomena in real world scenarios.

3.3. Training the geometric model

Fig. 8 shows steps in training the geometric model. Unlike the
multiview case where a single multinomial model and a single
database are used, V different models and V different databases are
used when the geometric model is used for prediction (see
Table 1). If V different modalities are used, there could be V
different recognition systems as well.

Each database contains a specific view/modality of all the subjects.
We are given V test subjects to identify a subject. Our objective is to
find out how many top matches must be searched, in the ranked list
of subjects returned by the recognition system to locate the correct
matching subject for each of the V test subjects. Let k be the number
of top ranking subjects that one should search to locate the matching
subject. Then the bounds ½bl; bu� take the form ½1; k� as we are
searching all the k top matches. As we have V databases, we need to
predict V bounds of the form f½1; bui�;1r irVg.

As described in Section 3.2, this is best achieved by modeling the
count of the nonmatch scores that appear before the match score, in
the sorted list of similarity scores produced by the recognition system
when a test subject (one among the V test subjects) is given, instead
of directly modeling the position of the match score in Ss. Here also
we assume a closed-set identification system [13].

Let Y be a random variable representing the count of the non-
match scores present in a sorted set of similarity scores before the
match score. If the recognition system is ideal, the value of Y
would be zero. In order to build a statistical model, we present the
properties of Y

1. YAZ

2. YA ½0;N�1�.
3. Many times Y may have value equal to zero. Often, for a

recognition system, the correct match score is the first one in
the set of sorted similarity scores.

Considering the above properties one can see that Y can be
modeled using geometric distribution [21]. Geometric distribution
models the number of trials needed before the first success in
repeated Bernoulli trials [30]. In our case, each element in the
sorted set of similarity scores can be assumed to be coming from
a Bernoulli trial (a given similarity score may be a match score or
a non-match score) and if the score is a match score, we denote it
as success and if the score is a non-match score, we denote it as
failure. Thus, geometric distribution can model the number of
non-match scores present before the match score. Besides, our
requirement of high probability for very small values of Y is also
satisfied by the geometric distribution. Note that while there are
other distributions which might fit these properties as well, we
choose Geometric distribution due to its simplicity.

The random variable Y is a waiting-time random variable (we
wait till the match score is obtained) and the geometric distribu-
tion is a natural candidate model to describe the waiting-time
random variable.

The suitability of geometric distribution can also be visually
verified by observing the PMF of Y obtained from experiments and
the PMF of a geometrically distributed random variable as shown
in Fig. 9.

It may be noted that in the case of multiview systems (Section
3.2) the number of nonmatch scores was modeled as a Poisson
random variable. Even though the random variables in both
situations look similar, there are some key differences. In the
multiview situation, we have V random variables whose sum has
to be a constant. No such conditions exist in the present situation.
Besides, the value of Yi in the multiview case needs not to be zero
for all i and at least YV þ1 would be a large in practice.

3.3.1. Estimation of geometric distribution parameter
Let Y be a geometrically distributed random variable. Then

PðY ¼ yÞ ¼ pð1�pÞy
where y¼ 0;1;… ð21Þ

Let y1; y2;…; yT be the realizations of T independent and identically
distributed geometrical trials described by the model in Eq. (21).
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Fig. 8. Geometric model training.
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It can be shown that the value of p can be estimated using
maximum likelihood approach.

p̂ ¼ 1þ1
T

∑
T

i ¼ 1
yi

 !�1

ð22Þ

3.3.2. Estimating the value of k for a given confidence
The CDF of the geometric distribution is given by

FðyÞ ¼ 1�ð1�pÞyþ1 ð23Þ
We need to find out the range of values of y which occur in 95% of
the experimental trials. As Y is modeled as a geometric random
variable, lower bound of y is obviously zero. The upper bound (bu)
is given by the equation

FðbuÞ ¼ 1�ð1�pÞbu þ1 ¼ 0:95 ð24Þ
If there are bu non-match scores before the first match score, then

k¼ buþ1¼ log 0:05
log ð1�pÞ ð25Þ

Thus the predicted bounds for a given confidence C would be

1;
log 1� C

100

� �
log ð1� p̂Þ

" #
ð26Þ

4. Experimental results

We used the following five databases for our experiments:
(1) Color FERET Database [23], (2) NIST-14 Ten-print Fingerprint
Database [31], (3) The IIT Delhi Iris Database [32], (4) The IIT Delhi
palmprint image database [33] and (5) NIST Biometric Scores Set –
Release 1 (BSSR1) [34]. These datasets are chosen to demonstrate

the ability of our method to handle different types of biometrics.
Additionally, as our goal is to show how the proposed theory can
be applied independent of the underlying algorithms, in most
cases we chose the scores provided by the dataset providers as our
baseline. However, in some cases we find that these datasets have
not been used under the same experimental conditions as ours.
For these cases only it is not possible to provide a direct
comparison with exiting work.

In [4,5], it was reported that the best multiview/multimodal
results were obtained by fusing individual scores by adding them.
Therefore, sum fusion results are used as the baseline for all of our
experiments. As reported in [5], the scores were first normalized
in the range [0, 100] and then added.

The experimental results are reported by plotting the CMC
curves. Each figure contains the best and worst CMC curves of the
individual view/modality, the results of multinomial model with
and without robust estimation, geometric model and that of the
sum fusion. Only the best/worst individual view/modality CMC
curves are shown to avoid clutter in the figures.

In all the experiments the confidence is taken as 95% and
10-fold cross validation is used. A summary of the experiments
conducted with various databases is shown in Table 2.

4.1. Results on color FERET database [23]

This database [23] contains a total of 11,338 facial images. They
are collected by photographing 994 subjects at various angles, over
the course of 15 sessions between 1993 and 1996. Sample images
from this database are shown in Fig. 11. From this we select 231
subjects where each subject has five views available (frontal, half
left, half right, profile left, and profile right) and at least two
different instances of each of these views are available so that one
instance can go into the database and the other instance can go
into the test set. These images are first cropped to contain only the

Fig. 9. PMF of Y, the number of non-match scores present before the match score. The first three figures show the PMF from the view 1, 2, 3 of the color FERET database. The
last figure shows the PMF of geometric distribution obtained with p¼0.8. Note the visual similarity between the PMFs. The horizontal axis has different scales as each
distribution is characterized by a different value of the parameter p.
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face regions and then resized to 200�200. To align the facial
features consistently for each view, each image is registered to a
level 4 Avatar image [35]. The level 4 Avatar image for a view is
computed from the database images for that view alone. After the
registration, each image is split into 25 square blocks of size
40�40. Local Binary Pattern (LBP) histogram for each of the blocks
is calculated and all 25 histograms are concatenated to form a
single vector. LBPs are computed using 8-neighborhood. Match
score between two images is calculated as the histogram inter-
section between their concatenated LBP histograms. This database
is used for predicting matching subjects in the multiview scenario.

The results of our experiments are shown in Fig. 12. The figure
shows the CMC curves of the best and worst single views: the
frontal view and profile left, the results of using MM, MMR, GM
and that of fusion. The rank 1, 10, 15 results are shown in Table 3.
The experiments are repeated without the frontal view. The results
are shown in Fig. 13 and in the tabular form in Table 4. The results
show that the proposed models provide much better accuracy
than the best single views and fusion (except in one case).

The non-robust multinomial model (MM) performs poorly in
both experiments as underlying match scores have a significant
number of outliers. However, the proposed robust approach
(MMR) overcomes this limitation.

4.2. Results on NIST-14 ten-print fingerprint database [31]

This database [31] consists of mated fingerprint card pairs of
ten-print fingerprints from 2700 individuals. A mated fingerprint
card pair means two cards from the same individual. Sample
images from the database are shown in Fig. 10(a). The match score
between two fingerprints is obtained by using NIST Biometric
Image Software [36]. MINDTCT – a minutiae detector is used to
locate and record ridge ending and bifurcations in a fingerprint
image. This is fed to BOZORTH3 – a minutiae based fingerprint
matching algorithm to generate the similarity scores. This data-
base is used to carry out prediction experiments in the multiview
scenario.

The results on the NIST-14 fingerprint database are shown in
Fig. 14. The results are summarized in tabular form in Table 5. The
GM approach gives almost 100% results on this database. Cappelli
et al. [37] use the NIST-14 dataset to characterize indexing
performance for subset of fingerprints and it only considers
pairwise matching. While our approach gives less than 1% error
for less than 1% penetration rate, Cappelli et al. [37] report error
rate of approximately 9% at 1% penetration rate. This comparison
provides good motivation for the use of multiple fingerprints in
recognition.

Table 2
Summary of the experiments and the databases used.

No Exp. type Database G V N Results

1 Multiview Color FERET 231 5 1155 Fig. 12
2 Color FERET without frontal face 231 4 924 Fig. 13
3 NIST-14 Fingerprints 2700 10 27,000 Fig. 14
4 IIT Delhi Iris 112 2 224 Fig. 15
5 IIT Delhi Palm 116 2 232 Fig. 16
6 Multi-modal/view BSSR1 Left index finger, Face C 517 2 Fig. 17
7 BSSR1 Left index finger, Face G 517 2
8 BSSR1 Right index finger, Face C 517 2
9 BSSR1 Left index finger, Face G 517 2

10 BSSR1 Left and Right Index Fingers 517 2 Fig. 18

Fig. 10. Sample images from (a) NIST-14 Database [31], (b) IIT Delhi Iris Database [32], and (c) IIT Delhi Touchless Palmprint Database [33].
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4.3. Results on the IIT Delhi iris database [32]

This database mainly consists of the iris images collected from
the students and staff at IIT Delhi, New Delhi, India. This database
is from 224 users and all the images are in bitmap (n.bmp) format.
Sample images from the database are shown in Fig. 10(b). The

details of the similarity score generation are given in [38]. This
database is used for multiview experiments. Two iris images are
considered to be the left and right iris images of the same
individual. The value of G is thus halved to 112.

The CMC curves of the proposed prediction models are shown
in Fig. 15. The results are summarized in tabular form in Table 6.

Fig. 11. Sample images from the Color FERET Dataset.
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Fig. 12. CMC curves for the color FERET database. Frontal gave the best single view
result and profile left gave the worst single view result. The figure shows the CMC
curves of MM, multinomial model with robust estimation (MMR), and GM. Results
are summarized in the tabular form in Table 3 (231 subjects).

Table 3
Rank 1, 10, 15 results on color FERET database. Bold entries show the best results
and entries with underline are the second best results in each row. For a graphical
representation see Fig. 12 (231 subjects).

Rank Frontal Profile left Fusion MM MMR GM

1 95.2 63.2 79.7 25.1 73.1 80:5
10 97:4 74.0 90.5 75.3 94.3 98.7
15 98.2 76.6 91.8 84.4 100 98:7
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Fig. 13. CMC curves for the color FERET database without the frontal view. Half left
gave the best single view result and profile left gave the worst single view result.
The figure shows the CMC curves for MM, MMR, and GM and fusion. Results are
summarized in the tabular form in Table 4 (231 subjects).

Table 4
Rank 1, 10, 15 results on color FERET database without the frontal view. Bold entries
show the best results and entries with underline are the second best results in each
row. For a graphical representation see Fig. 13 (231 subjects).

Rank Half left Profile left Fusion MM MMR GM

1 67.9 63.2 70.9 0.4 69:7 69.3
10 80.0 74.0 80.9 12.1 83:5 85.7
15 83.5 76.6 81.4 17.3 84:4 85.7
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MM achieves 100% success at rank 3 and MMR achieves 100%
success at rank 2. Results for IIT Delhi Iris dataset are available in
the open-set identification setup in terms of a ROC curve [38]
which cannot be compared with closed set identification setup
used in our work.

4.4. The IIT Delhi palmprint image database [33]

This database [33] consists of the hand images collected from
the students and staff at IIT Delhi, New Delhi, India. The database
has images from 233 users in the bitmap (n.bmp) format. Sample
images from the database are shown in Fig. 10(c). The details of the
similarity score generation are given in [39]. This database is used
for multiview experiments where two palmprint images are
considered to be the left and right palm images of the same
individual. The value of G is thus halved to 116.

The CMC curves of the proposed models and that of individual
palms are shown in Fig. 16. The results are shown in the tabular
form in Table 7. The predictive models perform better than the
individual views and fusion. Note that MM achieves 98.7% recog-
nition rate at rank 7 and MMR achieves 97.4% success at rank 3.

4.5. NIST Biometric Scores Set – Release 1 (BSSR1) [34]

This is a multimodal biometrics database from the NIST [34].
It contains raw output similarity scores from face and fingerprint
systems. This score set has three sets of scores. Set 1 is comprised
of face and fingerprint scores from the same set of 517 individuals.
For each individual, the set contains one score from the compar-
ison of two right index fingerprints, one score from the compar-
ison of two left index fingerprints, and two scores (from two
separate matchers denoted as Face C and Face G) from the
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Fig. 14. CMC curves for the NIST-14 ten-print Fingerprint Database. Finger 3 gave
the best single view result and finger 10 gave the worst single view result. The plot
shows the CMC curves of MM, MMR, GM and that of fusion. The prediction models
outperform the individual views. For a tabular representation of the results see
Table 5 (2700 subjects).

Table 5
Rank 1, 10, 15 results on NIST-14 ten-print. Bold entries show the best results and
entries with underline are the second best results in each row. For a graphical
representation see Fig. 14 (2700 subjects).

Rank Finger 3 Finger 10 Fusion MM MMR GM

1 92.8 72.6 99:0 81.9 97.1 99.4
10 95.2 79.7 99:6 95.3 98.9 99.7
15 95.5 80.9 99:7 96.1 99.4 99.9

2 4 6 8 10

92

94

96

98

100

Rank

R
ec
og
ni
tio
n
R
at
e

Iris 1
Iris 2
Fusion
MM
MMR
GM

Fig. 15. CMC curves with IIT Delhi iris database. CMC curves for individual irises,
MM, MMR, GM, and that of fusion. The results are summarized in the tabular form
in Table 6 (112 subjects).

Table 6
Rank 1, 10, 15 results on IIT Delhi iris database. Bold entries show the best results
and entries with underline are the second best results in each row. For a graphical
representation see Fig. 15. Note that MM achieves 100% success at rank 3 and MMR
achieves 100% at rank 2 (112 subjects).

Rank Iris 1 Iris 2 Fusion MM MMR GM

1 94.6 95.5 99:1 95.5 91.0 100
10 97.3 99.1 100 100 100 100
15 97.3 100 100 100 100 100

Table 7
Rank 1, 10, 15 results on IIT Delhi palm database. Bold entries show the best results
and entries with underline are the second best results in each row. For a graphical
representation see Fig. 16. Note that MM achieves 98.7% recognition rate at rank
7 and MMR achieves 97.4% success at rank 3 (116 subjects).

Rank Palm 1 Palm 2 Fusion MM MMR GM Kumar and
Shekhar [39]

1 87.1 84.5 92.2 63.8 78.4 97:4 98.92
10 93.9 91.4 98.3 98:3 97.4 97.4 Z99:9
15 96.6 93.1 99:1 98.3 97.4 97.4 Z99:9
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Fig. 16. CMC curves with IIT Delhi palm database. CMC curves for individual irises,
MM, MMR, GM, and that of fusion. The results are summarized in the tabular form
in Table 7 (116 subjects).
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comparison of two frontal faces. The fingerprint images and the
face images from which these scores are computed belong to the
same person. The non-matching scores from the full cross-
comparison are also included. As two different face and finger
print similarity scores are available, we conduct four different
multimodal experiments by combining one index finger score with
one face score.

Set 2 is comprised of fingerprint scores from one system run on
images of 6000 individuals. For each individual, the set contains
one score from the comparison of two left index fingerprints, and
another from two right index fingerprints. The non-matching
scores from the left vs. left and right vs. right cross-comparisons
are also included. Both of them together are used for multimodal
experiments.

The results of the multimodal experiments using BSSR1 Set
1 are shown in Fig. 17. The results are shown in the tabular form in
Table 8. The geometric model outperforms the fusion results
and the individual view results in all the four experiments. These
results may be compared with the recently published results on
the same score set by Kumar et al. in [39]. They have presented
two nonlinear weighted rank methods exp(1) and exp(2), which
combine the ranks of different matchers non-linearly. However
the weight assigned to each matcher is empirically computed, the
details of which are not reported. Even though the face and
fingerprint scores may be combined in four different ways, it is
not clear which combination of face and finger print scores is used
in that work. In contrast, the proposed method does not use any
empirical constants and the results on all the four combinations
are shown in Fig. 17 and Table 8. The average recognition rates of

the two methods reported in [39] are 99.56%, 99.59%, and 100% for
Rank 1, 2, 3 recognition, respectively. The method proposed in this
paper outperforms these results (Rank 1 recognition rate of 99.8%
for right index finger and face G combination).

Using BSSR1 set 2 database one more multimodal experiment
was conducted. The results are shown in Fig. 18. The results are
shown in the tabular form in Table 9. The results are compared
with fusion and those published recently in [39]. The results
obtained using the GM are better than those reported in [39]
and better than fusion for rank 2 and rank 3 but not for rank 1.

2 4 6 8 10
80

85

90

95

100

Rank

R
ec
og
ni
tio
n
R
at
e

Finger Left Index
Face C
Fusion
Geometric

2 4 6 8 10

85

90

95

100

Rank

Finger Left Index
Face G
Fusion
Geometric

2 4 6 8 10

88

90

92

94

96

98

100

R
ec
og
ni
tio
n
R
at
e

Finger Right Index
Face C
Fusion
Geometric

2 4 6 8 10

85

90

95

100

Rank Rank

R
ec
og
ni
tio
n
R
at
e

R
ec
og
ni
tio
n
R
at
e

Finger Right Index
Face G
Fusion
Geometric

Fig. 17. NIST BSSR1 Set 1 – CMC curves of multimodal database for the four different combinations of face and fingerprint similarity scores. Note that the geometric model
outperforms the fusion approach. (a) Left Index Finger and Face C, (b) Left Index Finger and Face G, (c) Right Index Finger and Face C, (d) Right Index Finger and Face G.

Table 8
Rank 1,2,3 results on NIST BSSR1 – Set 1, Fingerprint and Face database (517
subjects).

Modalities Rank Finger Face Fusion GM

Left Index Finger and Face C 1 86.5 88.4 87:6 99.2
2 88.0 91.3 88:3 99.4
3 88.4 92.3 89:9 99.4

Left Index Finger and Face G 1 86.5 85.7 92:8 99.0
2 88.0 87.4 94:6 99.2
3 88.4 88.9 95:2 99.2

Right Index Finger and Face C 1 93.0 88.4 93:6 99.6
2 94.0 91.3 94:6 99.8
3 94.4 92.3 94:9 99.8

Right Index Finger and Face G 1 93.0 85.7 96:5 99.8
2 94.0 87.4 97:3 99.8
3 94.4 88.9 98:1 99.8
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4.6. Discussion of experimental results

The geometric model performs better in our experiments for
two reasons. First, the view information is available. This is an
extra knowledge for GM which is not available for MM. Second, as
there are V different databases, each test subject corresponding to
specific view or modality is matched against only G database
subjects in contrast to GV subjects in the MM case. Clearly, in cases
where view details are available and/or modalities of biometrics
are different, the geometric model should be preferred over the
multinomial model. On the other hand, the multinomial model can
be used in more unconstrained environment where view details of
the object are unknown.

5. Conclusions

Two novel statistical models which can lead to the prediction of
the matching subjects for multibiometric systems are presented.
It is shown through a variety of experiments that the prediction
framework enhances the recognition rate of the underlying
matching algorithm. Ten different experiments are conducted with
five different publicly available databases. Results of these experi-
ments show that using the proposed generic predictive models,
the recognition can be improved for variety of multibiometrics
such as multiple face views, fingerprints, palm prints and irises
using the same modeling framework.
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Table 9
Rank 1, 2, 3 results on NIST BSSR1 - Set 2 database containing right and left index
finger scores (6000 subjects).

Rank LI RI Fusion GM Kumar and Shekhar [39]

1 86.5 93.0 93.9 91:7 89.5
2 88.0 94.0 94:7 95.6 94.2
3 88.4 94.4 95.2 97.5 95:2
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