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Abstract

Smile detection is a specialized task in facial expression analysis. As one of the
most important and informative expressions, smile conveys the underlying emotion
status such as joy, happiness, and satisfaction. Smile detection has many applica-
tions in practice such as camera photo capture, computer games, monitoring status
of patients, etc. Normally smile detection is approached as a binary classification
problem. Although many existing classifiers such as Support Vector Machine can
perform well for the binary classification task, the required time for training and/or
prediction may exceed the requirement for real-time applications. In this paper,
an efficient smile detection approach is proposed. The faces are first detected and
a holistic flow-based face registration is applied which does not need any manual
labeling or key point detection. The Extreme Learning Machine (ELM) is used
for training the smile detection classifier and predicting the state of a given face.
The proposed smile detector is tested with different feature representations. The
proposed approach is validated using not only the faces from controlled databases
but also a real-life smile database. The comparisons against benchmark classifiers
suggest that the proposed method using ELM is both efficient and effective with
different feature descriptors.

Key words: Facial expression analysis, smile detection, Extreme Learning
Machine, classification, feature extraction.

1 Introduction

Facial expression analysis plays a significant role in understanding human emo-
tions and behaviors. The varying facial expressions are considered the most
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Figure 1. Two AUs (AU 6 and AU 12) that account for smile.

important cues in the psychology of emotion [1]. Analyzing facial expressions
accurately has broad applications in areas such as human behavior analy-
sis, human-human interaction, and human-computer interaction. Automatic
recognition of emotion from images or videos of human facial expression has
been a challenging and actively studied problem for the past few decades [2].

Six basic facial expressions and emotions that are commonly referred include
anger, surprise, disgust, sadness, happiness and fear. To quantitatively study
various facial expressions, facial action coding system (FACS) has been devel-
oped [3]. In total 44 Action Units (AUs) are defined to describe all possible
and visually detectable facial changes.

Among different facial expressions, happiness, as usually demonstrated in a
smile, frequently occurs in a person’s daily life. Smile involves two parts of
facial muscle movements, namely Cheek Raiser (AU 6) and Lip Corner Puller
(AU 12), as shown in Figure 1. Smile conveys the emotion indicating joy, hap-
piness, satisfaction, etc. As a consequence, some research has been dedicated
to smile detection [4] [5] [6]. Although accurate smile detection can be achieved
in a laboratory controlled database, smile detection for real-life face images is
still challenging due to the variations in pose, illumination and image quality.
Figure 2 shows some smile and non-smile real-life face images.

In this paper, we focus on detecting smiles from face images that contain either
a smile or non-smile facial expression. The discriminative classifier is trained

Figure 2. Sample faces with smiles (top row) and neutral faces (bottom row).
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in an efficient manner using Extreme Learning Machine (ELM) [7]. ELM is
a recently proposed learning framework which has very low computational
cost without the hassle of parameter tuning in contrast to the other learning
methods. ELM has been previously applied to different tasks such as image
super-resolution [8], genome analysis [9], human action recognition [10], face
recognition [11], face emotion recognition [12], etc. Before training the clas-
sifier, we use a standard face detector [13] to detect faces from the images.
The faces are registered using a flow-based affine transformation automati-
cally without any manual labeling or key-point detection. The trained model
by ELM is then used to predict the smile status of a given face. Experiments,
on a collection of laboratory controlled database and a real-life database, us-
ing various feature representations show that the proposed approach achieves
high accuracy and efficiency compared to the benchmark classifiers.

The reminder of this paper is organized as follows. In Section 2 related work is
reviewed. The proposed method for smile detection is presented in Section 3.
Section 4 is dedicated to the experimental results. Finally, we conclude this
paper in Section 5.

2 Related Work

For facial expression recognition, mainly two directions have been explored:
geometric-based approaches and appearance-based approaches.

Geometric-based approaches track the facial geometry information over time
and infer expressions based on the facial geometry deformation. In [14] a set
of points as the facial contour feature is defined, and an Active Shape Model
(ASM) is learned in a low dimensional space. In this way the mismatch due to
non-linear image variations is avoided. Lucey et al. [15] use Active Appearance
Model (AAM)-derived representation for expression recognition together with
normalization techniques to improve the recognition performance. A particle
filtering scheme is used to track the fiducial facial points in a video for facial
expression recognition in [16]. In [17] the geometrical displacement of certain
grid nodes on face landmarks placed manually by users is used as input to the
multi-class Support Vector Machine (SVM) for facial expression recognition
in image sequences.

Appearance-based approaches emphasize on describing the appearance of fa-
cial features and their dynamics. Bartlett et al. [18] use a bank of Gabor
wavelet filter to decompose the facial texture and the AdaBoost and SVM are
used for subsequent classification. In [19] the dynamic texture, which com-
bines the motion and appearance along the time axis, is used by extracting
the volume of local binary patterns (VLBP). Wu et al. [20] explore Gabor
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Motion Energy Filters (GME) as a biologically inspired facial expression rep-
resentation. Most recently, Yang et al. [21] propose a new image-based face
representation and an associated reference image called Emotion Avatar Image
(EAI), which aggregates the dynamics of the facial expression change into a
single image. The experiments show that the EAI is a very strong yet compact
cue for expression inference.

Apart from abundant literature for facial expression recognition, a few papers
are dedicated to smile detection. In [22], smile detection is achieved by using
Fisher weight map (FWM) and higher-order local auto-correlation (HLAC).
In [6] a real-world image collection of thousands subjects is introduced. Com-
prehensive studies are conducted by examining different aspects such as size of
database, effect of image registration, image representation and classifier. Re-
sults show that human-level expression recognition accuracy can be achieved
using current machine learning methods. Recently, Shan [5] proposes using
pixel intensity difference as features for smile detection. AdaBoost is used to
choose the weak classifiers and a strong classifier is formed by combining the
chosen weak classifiers. This approach achieves state-of-the-art results on a
real-life smile detection database.

Besides image-based approach, some methods integrate multi-modal informa-
tion for smile detection. Ito et al. [23] detect smile using an image-based facial
expression recognition combined with an audio-based laughter sound recogni-
tion method. In [4] audio features from the spectogram and the video features
extracted by estimating the mouth movement are used in stacked sequential
learning for smile detection.

For commercial applications, some software tools have been developed for
smile detection, such as VDFaceSDK [24] and Omron’s smile measurement
and analysis software [25].

3 Technical Approach

The system pipeline of the proposed approach is shown in Figure 3. Before face
registration, the faces are extracted from the original images using a standard
face detector. The detected faces are registered using a fully automated flow-
based registration method without the manual labeling of key points. The
facial features are then extracted from the registered faces. The ELM is used
to train the smile/non-smile binary classifier and the learned model is used to
predict the smile status of a given face for testing. In the following each step
will be explained in detail.
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Figure 3. The pipeline of the proposed method for smile detection. After faces are
detected from the original images, a flow-based face registration is performed to
align the faces. Then the features are extracted from the registered faces as input
to the ELM. With the learned model, the ELM classifier is able to predict the smile
status of a given face.

3.1 Face Detection

The faces from original images are extracted using Viola-Jones face detec-
tor [13] implemented in OpenCV which is suitable for real-time processing.
The Viola-Jones face detector performs well and the detection accuracy is
very high at low false alarm rate. The detected faces are normalized to a
certain image size using the bicubic interpolation.

3.2 Face Registration

Face registration/alignment normally requires the knowledge of the facial key
points such as the locations of the eyes, nose, and mouth. Facial points lo-
calization is either performed through manual labeling or by an automated
detector (e.g. [26]). When the image is noisy or of low-resolution, the key
points detection is prone to error. In our approach, we apply a holistic flow-
based face registration method to automatically align the detected faces. No
facial points need to be located in this way and the registration produces the
smooth output that is robust to minor out-of-plane head rotations. The face
registration involves two steps: SIFT flow computation and flow-based affine
transformation.

3.2.1 SIFT Flow Computation

SIFT flow [27] was originally designed for image alignment at the seman-
tic level. This higher level alignment is achieved by matching local, salient
and transform-invariant image structures. The SIFT flow algorithm robustly
matches dense SIFT features between two images, while maintaining spatial
discontinuities. The local gradient descriptor, SIFT [28], is used to extract a
pixel-wise feature component. For every pixel in an image, its neighborhood
(e.g. 16 × 16) is divided into a 4 × 4 cell array. The orientation of each cell
is quantized into 8 bins, generating a 4 × 4 × 8 = 128-dimension vector as
the SIFT representation for a pixel, or the so called SIFT image. For face
registration, the goal is to register an input face to a reference face with the
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desired pose and view.

After obtaining the SIFT descriptors for every pixel in the input face image
and the reference face image, a dense correspondence (SIFT flow) is built
between these two images. The objective energy function to be minimized is
defined as:

E(w) =
∑
p

min(‖s1(p)− s2(p + w(p))‖1 , t)+ (1)∑
p

η(|u(p)|+ |v(p)|)+ (2)∑
(p,q)∈ε

min(α |u(p)− u(q)| , d)+

min(α |v(p)− v(q)| , d) (3)

where p = (x, y) is the grid coordinates of the images, and w(p) = (u(p), v(p))
is the flow vector at p. u(p), v(p) are the flow vectors for x direction and y
direction respectively. s1 and s2 are two SIFT images to be matched. ε contains
all the spatial neighbors (a four-neighbor system is used). The data term in (1)
is a SIFT descriptor match constraint that enforces the match along the flow
vector w(p). The small displacement constraint in (2) allows the flow vector to
be as small as possible when no other information is available. The smoothness
constraint in (3) takes care of the similarity of flow vectors for adjacent pixels.
In this objective function, the truncated L1 norm is used in both the data term
and the smoothness term with t and d as the thresholds for matching outliers
and flow discontinuities, respectively. η and α are scale factors for the small
displacement and smoothness constraint, respectively. The dual-layer loopy
belief propagation is used as the base algorithm to optimize the objective
function. Then, a coarse-to-fine SIFT flow matching scheme is adopted to
improve the speed and the matching result.

3.2.2 Flow-based Affine Transformation

After the SIFT flow is computed, instead of detecting key points on the input
face (e.g., eye corners, mouth center) and inferring affine transformation from
them, we use the SIFT flow information to estimate an affine transformation
from the input face image to the reference face. In homogeneous coordinates,
we represent the pixel location of a target frame and a reference frame by
p = (x, y, 1) and p′ = (x′, y′, 1), respectively. Given the target frame pixel
location and its corresponding flow vectors, the reference frame pixel location
can be written as x′ = x+ u(p), y′ = y+ v(p). Thus, we can model the affine
transformation for all N pixels in a image as follows:
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To suppress the outliers from the flow vectors, we solve for the maximum
likelihood estimates of this overdetermined system robustly by iteratively
reweighted least squares (IRLS) [29].

The reference face is obtained by averaging all of the frontal faces in the CK+
database [30]. The SIFT flow based registration from an input face to the
reference face is illustrated in Figure 4. Note that the original flow vectors are
discontinuous, and the corresponding warping result using the discontinuous
flow vectors has strong artifacts. The affine transformation makes the flow
vector field continuous and the warping result using the affine transformed
flow vector field is smooth without artifacts. Figure 5 shows some sample
results of face registration.

Figure 4. SIFT flow based face registration. The SIFT flow is first computed between
the input face and the reference face. Affine estimation is used to transform the
original discontinuous flow vector filed to a smooth flow vector field. The aligned
face using smoothed flow vector field contains much less artifact compared to the
aligned face using the original flow vector field.

3.3 Feature Extraction

To extract feature representations for faces, various feature descriptors have
been proposed. In the experiments, We adpot three most popular feature de-
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Figure 5. Samples of faces before and after registration.

scriptors: Local Binary Pattern (LBP) [31], Local Phase Quantization (LPQ) [32],
and Histogram of Oriented Gradients (HOG) [33]. The operation of each fea-
ture descriptor is explained in the following sections. In addition, the raw pixel
intensity values are also used as a baseline feature descriptor.

3.3.1 LBP

Local Binary Pattern (LBP) [31] and its derivatives are among the most popu-
lar choices for facial feature representations. The basic LBP feature for a pixel
is obtained by comparing its intensity value to the eight immediate neigh-
bors and the generated LBP code is converted to an integer value between
0-255. The LBP descriptor for the whole image is generated by building up
the histogram for the LBP code for each pixel. Figure 6 shows the basic LBP
operator.

Figure 6. The basic LBP descriptor.

In the experiments, an extended version of uniform and grayscale invariant
LBP is used [34], as represented by LBP u2

P,R. u2 denotes the uniform property
and the LBP operator works in a circularly symmetric neighborhood with P
pixels on the circle of radius R. The uniform pattern reduces the 256 possible
basic LBP patterns to 59. The image is divided into 10 blocks and in each
block a histogram is built by accumulating the occurrence of various patterns.
The final feature descriptor for the whole image is obtained by concatenating
the histograms from each block.
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3.3.2 LPQ

The LPQ descriptor is originally proposed in [32] as a blur insensitive feature
representation. The merit of blur insensitivity of LBP comes from the property
that the phase of the original image and the blurred image has invariant phase
when the point spread function (PSF) is centrally symmetric. At each pixel
location x = [x1, x2]

T in a neighborhood Nx of the image f(x), the local spectra
are computed using a discrete short-time Fourier transform (STFT) by

F (u,x) =
∑
y

f(y)w(y− x)e−j2πu
Ty (4)

At each pixel position we obtain a vector

F(x) = [F (u1,x), F (u2,x), F (u3,x), F (u4,x)] (5)

where u1 = [a, 0]T , u2 = [0, a]T , u3 = [a, a]T , and u4 = [a,−a]T , where a is a
small scalar to ensure that H(u) > 0 and w(x) defines the neighborhood Nx.
The local Fourier coefficients are computed at four frequency points and the
phase information is recorded by a binary quantizer that observes the signs
of the real and imaginary parts of each component in F(x). The resulting
binary coefficients are then represented as integer values between 0-255. For
each image block, a histogram is generated from the calculated integer values.
The final feature descriptor for the entire image is obtained by concatenating
all the histograms from different blocks.

3.3.3 HOG

HOG was originally proposed for human detection with success [35]. Recently
it has been applied to face recognition [33]. HOG operates by first computing
the image gradients in horizontal and vertical directions of an image. The
image is then divided into blocks and for each block, the orientation for each
pixel is binned into evenly divided orientation channels spreading from 0-180
or 360 degrees. The final descriptor is the concatenations of HOG histograms
from each block. Since the HOG is a local-region based descriptor, it tolerates
some geometric and photometric variations. Figure 7 illustrates the basic idea
of HOG feature computing.
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Figure 7. The generation of HOG features.

3.4 ELM for Smile Detection

ELM was initially developed for single-hidden-layer feed-forward neural net-
works (SLFNs) [36]. According to ELM theory, the hidden node parameters
can be generated before seeing the training data, which is contrary to the
conventional learning methods. The output function of ELM is designed as:

fL(x) =
L∑
i=1

βihi(x) = h(x)β (6)

where β = [β1, β2, ..., βL]T is a vector consisting of the output weights between
the hidden layer and the output node. h(x) = [h1(x), h2(x), ...hL(x)]T is the
output of the hidden layer given input x. Function h(x) maps the original
input data space to the L-dimensional feature space.

According to [7], ELM does not only aim at reaching the minimum training
error but also the smallest norm of the output weights, which would yield a
better generalization performance. Thus, in ELM the following quantities are
minimized

minimize

‖Hβ −T‖2

‖β‖
(7)

where T contains the training target value and H is the the hidden-layer
output matrix

H =


h1(x1) · · · hL(x1)

...
...

h1(xN) · · · hL(xN)

 (8)

In the implementation, the minimal norm least square method is used instead
of standard optimization method [36]. ELM has several advantages over the
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other classifiers: 1. ELM can be applied in both multi-class classification and
regression problems with various types of feature mappings; 2. Compared to
other classifiers such as Support Vector Machine (SVM), ELM has milder
optimization constraints; 3. ELM requires much less computation compared
to SVM or Neural Networks (NN); 4. In the training process the hassle of
parameter tuning is avoided and the generalization performance of ELM is
not sensitive to the number of hidden nodes as tested in [7]. These merits
make ELM very efficient and user-friendly in different learning schemes such
as batch mode learning and online incremental learning.

The features extracted from both smile and non-smile faces are used as training
data. The training data and their corresponding labels (smile and non-smile)
are fed to ELM to learn the discriminative binary classifier. We use the basic
version of ELM with randomly generated hidden nodes. Sigmoid function is
chosen as the activation function. The only parameter to be defined is the
number of hidden neurons, which is determined through cross-validation. The
training is performed off-line and after training the ELM learning model is
saved. For smile detection, features from a given face are extracted and ELM
classifier is used to predict its smile status.

4 Experiments

In the experiments two databases are used. One database, referred as the
MIX database, is generated as a collection of smile and non-smile images
from several publicly available databases. A more challenging database, the
GENKI4K database [37] containing real-life smile and non-smile images, is
also used for validating the proposed approach. The experimental setup and
the results are reported in the following subsections.

4.1 Databases

4.1.1 MIX Database

We collect a set of images called MIX database from four publicly available
databases: FEI [38], Multi-PIE [39], CAS-PEAL [40], and CK+ [30]. The FEI
database is a Brazilian face database containing images of participants who are
between 19 and 40 years old. The Multi-PIE database contains images of 337
subjects with different poses and facial expressions. The CAS-PEAL database
is a Chinese face database that involves 1042 subjects. The CK+ database is
an extensive database for action unit and emotion specified facial expression.
In total we select 1534 smile faces and 2035 non-smile faces from these four
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databases to construct the MIX database. The detected faces are normalized
to 200 × 200 and converted to gray-scale images. The diversity of the MIX
database is addressed by the wide range of age, ethnicity, imaging condition,
occlusions (e.g., glasses), etc. Some sample images from the MIX databases are
shown in Figure 8. In the experiments four-fold cross-validation is performed
on this database, meaning that each time 75% images are randomly selected
as training images and the rest 25% images are used for testing.

Figure 8. Sample images from the MIX database as a collection of images from
FEI [38], Multi-PIE [39], CAS-PEAL [40], and CK+ [30] databases. Smile faces
(top row) and non-smile faces (bottom row) are shown.

4.1.2 GENKI4K Database

The GENKI4K database [37] contains 4000 face images of a wide range of
subjects with different age and race in real-life pictures with varying pose,
illumination and imaging conditions. Among these 4000 images, 2162 images
are labeled as smile and the rest 1828 images are labeled as non-smile. This
database represents the real-life scenarios for smile detection which is more
challenging than detecting smiles in laboratory-controlled databases. Figure 9
shows some sample images from the GENKI4K database.

In our experiments the detected faces from the original images are converted
to gray-scale images with the size normalized to 100 × 100. Four-fold cross-
validation is performed on this database, meaning that each time 3000 images
are randomly selected as training images and the rest 1000 images are used
for testing. Table 1 summaries the aforementioned two databases used in the
experiments.
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Figure 9. Sample images from GENKI4K [37] database. Smile faces (top row) and
non-smile faces (bottom row) are shown.

Database Total Size Smile Faces Non-Smile Faces Image Dimension

MIX 3569 1534 2035 200× 200

GENKI4K [37] 4000 2162 1828 100× 100

Table 1
Two databases used in the experiments.

4.2 Parameter Settings

For LBP, LPQ and HOG, the image is divided into 10 × 10 blocks. In LBP,
LBP u2

8,2 is used as suggested in [31] for face representation. The parameters
for LPQ are set to M = 7, α = 1/7 and ρ = 0.9. For HOG, the number
of orientation bins is set to 15. Besides these three feature descriptors, the
raw pixel intensity values are also used as a baseline feature descriptor. The
dimensionality of the extracted feature vectors is reduced to 500 using PCA.
For ELM, the number of hidden neurons are set to 600 by cross-validation.
For SVM, the soft margin parameter C is set to 10 by cross-validation.

4.3 Benchmark Classifiers

The proposed method using ELM is compared with two benchmark classifiers:
Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM).
These classifiers are commonly used in classification tasks. For the SVM clas-
sifier, its linear version is used.
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4.4 Detection Performance

The detection accuracy for the MIX and GENKI4K databases are shown in
Table 2 and Table 3. Compared to the results by LDA and SVM, ELM achieves
better or similar performance. By using different features we observe the same
performance trend. LPQ combined with ELM achieves the best detection ac-
curacy of 94.6% for the MIX database and HOG+ELM gives the best re-
sult of 88.2% for the GENKI4K database. For the MIX database, even with
pixel intensity values as features, the detection rates using different classi-
fiers are above 90% and using more advanced features brings the detection
rate to nearly 95%. The high detection accuracy on the MIX database indi-
cates that for the lab-controlled databases, the current framework works very
well. For the real-life scenario database, using advanced features help improve
the detection rate significantly yet the best accuracy is still lower than the
laboratory-controlled database. Both SVM and ELM outperform LDA on the
two databases.

Feature → Pixel Values HOG LBP LPQ

Classifier ↓

LDA 90.8 93.2 92 92.1

SVM 92.9 94.2 93.9 94.3

ELM 93.1 94.4 94.2 94.6

Table 2
Smile detection accuracy for the MIX database (in %).

Feature → Pixel Values HOG LBP LPQ

Classifier ↓

LDA 74.7 85.7 76.6 78.5

SVM 79.4 87.1 84.2 84.4

ELM 79.3 88.2 85.2 85.2

Table 3
Smile detection accuracy for the GENKI4K database (in %).

The ROC curves for the MIX and GENKI4K databases with different feature
descriptors are shown in Figure 10 and Figure 11. The performance of ELM
and SVM is quite similar at different false positive rates and both of them
outperforms LDA.

The Area Under Curve (AUC) for the ROC curves in Figure 10 and Figure 11
is given in Table 4 and Table 5. As a performance measure for classifiers, AUC
indicates the probability that a classifier will give a higher rank to a randomly
chosen positive sample than a randomly chosen negative sample. Although
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Figure 10. The ROC curves for the MIX database with different feature descriptors.
(a) Pixel values. (b) HOG. (c) LBP. (d) LPQ.

Feature → Pixel Values HOG LBP LPQ

Classifier ↓

LDA 0.961 0.983 0.979 0.976

SVM 0.978 0.987 0.985 0.987

ELM 0.976 0.986 0.985 0.987

Table 4
Area Under Curve (AUC) for the MIX database.

Feature → Pixel Values HOG LBP LPQ

Classifier ↓

LDA 0.815 0.927 0.851 0.866

SVM 0.877 0.947 0.923 0.925

ELM 0.87 0.946 0.921 0.923

Table 5
Area Under Curve (AUC) for the GENKI4K database.
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Figure 11. The ROC curves for the GENKI4K database with different feature de-
scriptors. (a) Pixel values. (b) HOG. (c) LBP. (d) LPQ.

overall the AUC for SVM is slightly higher than that of ELM with different
feature descriptors, the AUC values for both SVM and ELM are very close.
This indicates that as a binary classifier, ELM is very competitive compared
to SVM.

Table 6 shows the comparison between the best result by the proposed method
and the most recent result on the GENKI4K database [5]. In [5], pixel differ-
ence is used as the feature descriptor and AdaBoost is used for feature selection
and classification. The experiments in [5] are also carried out with four-fold
cross-validation. The detection rate by our method is very close to that in [5].
Note that in [5] the faces need to be manually registered based on eye locations
and in our method no manual registration is required. In addition, in [5] the
500 features are selected by AdaBoost algorithm while in our case the stan-
dard HOG features are used and the features after PCA dimension reduction
are not further refined. For the proposed approach, different feature descrip-
tors including pixel difference can be used to further improve the detection
performance.
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Method Features Dimension Classifier Detection Accuracy

Shan [5] Pixel difference 500 ELM 89.7%

Proposed HOG 500 AdaBoost 88.2%

Table 6
Comparison to the method in [5] on the GENKI4K database.

4.5 Computational Cost

The computational cost for the smile detection using ELM is compared against
SVM and LDA classifiers. The required times for training and prediction are
shown in Figure 12 and Figure 13 for the MIX and GENKI4K databases. The
non-optimized codes are implemented in MATLAB on a desktop with 3GHz
CPU and 8GB of RAM. For SVM, the LIBSVM 1 package is used. Compared
to SVM, ELM is significantly faster with time for training and prediction
reduced by factor over 30. Note that in this case the ELM is fully implemented
in MATLAB and the SVM is implemented in C++ with MATLAB interface.
The time cost for LDA is comparable to ELM. However, the performance of
LDA is inferior to ELM. The efficiency and accuracy of ELM make the smile
detection using ELM reliable and possible for large-scale or real-time practical
applications.

4.6 Impact of Number of Hidden Neurons

In the experiments, the only parameter to be determined for ELM is the
number of hidden neurons. Figure 14 and Figure 15 shows the detection rates
with different number of neurons for the MIX and GENKI4K databases. As
can be seen, with a small number of neurons, the detection rate is very low for
both databases. The detection rate keeps improving as the number of neurons
increases from 100 to 600. Adding more neurons does not help to further boost
the performance as the number of neurons goes beyond 600. This supports our
choice of 600 neurons for ELM in the experiments.

5 Conclusions

Smile, as one of the most frequent and important facial expressions, conveys
emotion for happiness and joy. Smile detection has many potential applica-
tions in practice. In this paper, a fully automated smile detection approach
using Extreme Learning Machine (ELM) is proposed. The face registration in

1 http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Figure 12. Computational cost for the MIX database. (a) Training time (in s). (b)
Prediction time for one face (in ms).

our approach is performed automatically in a holistic manner and no manual
labeling or key-points detection is required. For the classification, the ELM
reduces the computational time significantly compared to the other bench-
mark classifiers such as the Support Vector Machine. Experiments on both
lab-controlled database and real-life database show that the proposed ELM-
based smile detection is very competitive in terms of detection performance
with very low computational cost, which enables the potential for real-time
applications. The proposed approach is adaptable with any feature descriptors
and can be further improved with additional processing steps such as image
enhancement and feature selection.
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