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 

Abstract— Mild traumatic brain injury (mTBI) appears as low 

contrast lesions in magnetic resonance (MR) imaging. Standard 

automated detection approaches cannot detect the subtle changes 

caused by the lesions. The use of context has become integral for 

the detection of low contrast objects in images. Context is any 

information that can be used for object detection but is not 

directly due to the physical appearance of an object in an image. 

In this paper new low level static and dynamic context features 

are proposed and integrated into a discriminative voxel level 

classifier to improve the detection of mTBI lesions. Visual 

features, including multiple texture measures, are used to give an 

initial estimate of a lesion. From the initial estimate novel 

proximity and directional distance contextual features are 

calculated and used as features for another classifier. This 

feature takes advantage of spatial information given by the initial 

lesion estimate using only the visual features. Dynamic context is 

captured by the proposed posterior marginal edge distance 

context feature, which measures the distance from a hard 

estimate of the lesion at a previous time point. The approach is 

validated on a temporal mTBI rat model dataset and shown to 

have improved dice score and convergence compared to other 

state-of-the-art approaches. Analysis of feature importance and 

versatility of the approach on other datasets are also provided. 

 
Index Terms— Magnetic Resonance Imaging, Traumatic Brain 

injury, Low Contrast, Dynamic Context. 

 

I. INTRODUCTION 

wareness of mild traumatic brain injury (mTBI) has 

increased dramatically in recent years. Causes of mTBI 

include sports injuries, automobile accidents, blast injuries in 

the military, and falls in the workplace [1]. The long term 

effects of mTBI are just being recognized, leading to the need 

for quantitative techniques to characterize and measure the 
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injured tissue. 

Clinical evaluation of mTBI has been too qualitative by 

relying on the Glasgow Coma Scale, to assess loss of 

consciousness, loss of memory, alteration in mental status, and 

focal neurological deficits. When imaging is used to assist in 

diagnosis, MR imaging or computed tomography (CT), a 

quantitative measurement of the size and location of injury is 

typically obtained. The primary focus of imaging is only to 

assess for the presence of a hematoma [1]. Various clinical 

studies have used manual quantitative analysis to evaluate TBI 

in MRI [2-4]. These studies identified the size and location of 

the lesions and linked them to long term neurological effects. 

Manual analysis has some major downfalls; hours per scan of 

ROI extraction, a trained operator it requires and difficulty in 

interpreting multiple modalities. Inter and intra operator error 

can become significant in low contrast images. Inter operator 

error has been shown to be significant even in higher contrast 

tumors [5]. However, manual segmentation is considered the 

“gold standard” and is used as the ground-truth. 

Some computational approaches have been proposed for 

quantifying lesions in moderate to severe TBI [6], which on 

MRI have high contrast, but these have been unsuccessful 

when attempting to evaluate the subtle MR signature of mTBI. 

Lesions caused by mTBI appear as small low contrast regions 

(Figure 1) in both T2 weighted images and T2 maps. The T2 

values within these lesions often fall within the range of 
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Figure 1: T2 weighted MR image of half a coronal slice 

from the rat model dataset. A) Original T2 weighted image. 

B) Manual detection of the mTBI lesion (highlighted in 

red). This illustrates the low contrast appearance of mTBI 

lesions. The manual lesions have been verified by histology 

in [13]. 
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normal tissue values. Therefore, the T2 value of a voxel 

cannot be used by itself. In [7] it was shown that there are 

significant texture changes in brain tissues as a result of mTBI, 

which provides a measure of the underlying structure of the 

tissue. Therefore, our proposed approach uses multiple texture 

measures to improve the discriminative ability of mTBI 

detection from MR images. 

There has been research into advanced MR techniques for 

detecting mTBI, mainly susceptibility weighted imaging 

(SWI) [8-10] and diffusion tensor imaging (DTI) [10-12]. SWI 

utilizes the phase to estimate the magnetic susceptibility in 

tissue. It has been shown to be more sensitive to blood than 

CT. However, SWI tends to overestimate a lesion and can give 

too sharp a contrast leading to hard determination of low-

contrast brain structures [9]. DTI measures the “flow” of water 

in the brain, and has been used to estimate white matter (WM) 

tracts. Signification changes in WM tracts have been found in 

patients with mTBI, but it requires multiple imaging time 

points or a baseline image [14]. It becomes difficult to 

evaluate it due to inter patient variations in tractography. This 

rules out DTI for voxel based classification. We utilize T2 

weighted imaging, a traditional imaging technique as 

described above. 

A measure of contrast within the lesion can be obtained by 

calculating the contrast-to-noise ratio (CNR). The manually 

segmented regions are used to calculate the CNR, and a CNR 

of 6 on average is obtained. Rajin et al. [15] made noise 

measurement from MRI to estimate the noise variance.  

To estimate the mTBI lesion we use a discriminative 

approach comprised of voxel level classification utilizing 

visual and contextual features. Both static and dynamic 

contextual features are proposed. Static contextual features, 

proximity and directional, are calculated from local 

neighborhood information of the posterior marginal estimated 

by a preceding classifier. The dynamic context (posterior 

marginal edge distance) is calculated from the maximum 

posterior marginal of the cascade of classifier of a previous 

time point and then used to estimate the current lesion. Adding 

these contextual features overcomes the low contrast nature of 

the lesions.  

The paper is organized as follows: Section 2 presents the 

related work and the contributions. Section 3 discusses the 

technical approach. Section 4 describes the experiments and 

finally Section 5 provides the conclusions. 

II. RELATED WORK AND CONTRIBUTIONS 

A. Related Work 

Context has been an active are of research in computer 

vision and can be used to overcome low contrast detection 

problems. Context is defined [16] as, “any information that 

might be relevant to object detection, categorization and 

classification tasks, but not directly due to the physical 

appearance of the object, as perceived by the image 

acquisition system.” Context types that have been described 

include: local pixels, 2D scene gist, 3D geometric, semantic, 

photogrammetric, illumination, weather, geographic, temporal, 

and cultural [17]. Context can be split into two types local and 

global: a) Local context includes spatial relationships learned 

at the pixel/region level. It is used in conditional random fields 

[18] and auto-context [19], and b) Global context can be 

thought of as an estimation of the spatial location of an object. 

In this paper we exploit low (voxel) level context. Our 

previous approach [20] uses a contextually driven generative 

model to estimate the lesion location. 

As a starting point algorithms for Multiple Sclerosis (MS) 

are examined due to similar low contrast lesions being present 

in MR images. The approaches for detecting MS lesions [21- 

22] use texture features and take advantage of the knowledge 

that MS occurs in a specific tissue type, which is consistently 

located in similar anatomical regions. This is a type of context 

(anatomical context) that can be exploited easily for MS, but 

mTBI lesions do not have this advantage since mTBI can 

occur in different tissue types. 

Recently [19] proposed autocontext is a way to model 

context at the voxel level. The main premise is to estimate an 

object with a discriminative classifier and use a sampling of 

the estimated posterior probability as an additional feature to a 

subsequent classifier. It is able to take information from far 

away (across the brain) compared to other methods like 

conditional random fields (CRF) [18] which are local. The 

context features in this case are a sparse sampling of a distant 

neighborhood around every pixel. This can lead to overfitting 

due to the very specific locations and this can be seen in one 

of the examples in [19]. Other methods that exploit this type 

of context include [23], which has similar pitfalls as 

Figure 2: Overview of the proposed system. Context 

information is sent from one classifier to the next. After 

each classifier the static contextual features are extracted. 

The output of the N
th

 classifier is the final estimate of the 

lesion for the given time point. The dynamic contextual 

features are estimated from the final posterior marginal of 

the preceding time point.  
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autocontext.  These methods have been shown to segment 

rigidly positioned objects well, such as organs or body parts. 

In this paper we adopted the idea of cascading classifiers, but 

developed features that are more generalizable and integrate 

temporal information, which has not been addressed in [19].  

B. Contributions 

The contributions of our paper are: 1) development of three 

new contextual features to be used with a cascade of 

classifiers. These features include a proximity feature, a 

directional feature, and a maximum a posteriori edge distance 

feature. 2) Use of a temporal sequence of MR images to 

provide context from a previous time point, capturing the 

dynamics of the injury progression automatically. 3) Analysis 

of multiple contextual feature configurations on a rat 

controlled cortical impact (CCI) mTBI model dataset.  

III. TECHNICAL APPROACH 

A. System Overview 

A discriminative approach is taken where classifiers are 

used to directly estimate the posterior probability of lesion and 

normal appearing brain matter (NABM) voxels (Note the 

ground-truth is obtained from segmentation of the mTBI 

lesion by a domain expert). The discriminative approach 

performs well when there is a large amount of training data 

and it can be used for a complex decision space. A voxel level 

classifier has a large amount of data considering the 3D nature 

of MR images. The appearance of lesions in MRIs can be very 

complex, which leads to a complex decision space.   

Here a cascade of classifiers is used for estimating the 

detected lesion at each time point (shown in Figure 2), where 

information from a previous time point is propagated forward. 

The first classifier in the cascade estimates the lesion using 

only the visual features. Then context features are formed 

from the posterior probability map estimated by the classifier. 

These features are recalculated for each iteration in the 

process, for a given number of classifiers shown as a column 

of classifier for a single time point in Figure 2. Spatial 

information is propagated by the contextual features leading to 

improved classification. This process was introduced by [19] 

for static images. The contextual features used by [19] were 

point samplings of the posterior estimates. Their features 

demonstrated good segmentation performance on objects that 

were rigid in shape, when that shape was distorted their 

performance faltered. We propose two new features that 

generalize the static contextual information so it will work 

with amorphous objects. 

Dynamic contextual features are calculated from the final 

classifier at a single time point.  These features also in our 

approach are used by classifier at the subsequent time point, 

and they make use of spatial and lesion growth information. 

Note that [19] proposed using spatio-temporal volumes with 

their basic point features in the higher dimensional space. 

Their approach would require extreme amounts of data and the 

entire sequence to be known before segmentation. Our 

approach only considers pairs of brain volumes at a time, 

which allows for estimation at every time point. 

B. Visual Features 

Due to the low contrast nature of the unimodal MR images 

and the mild nature of the TBI, texture features are used to 

increase the discrimination in our approach. Four types of 

texture features are used: uniform local binary pattern (ULBP) 

local histograms [24] in the coronal plane (59 features), local 

statistics (mean, variance, skewness, kurtosis) of a Gabor filter 

bank [25] with 8 orientations and 4 scales in the coronal plane 

(128 features), basic histogram of oriented gradients in the 

coronal plane [26] (9 features), and local neighborhood 

statistical features (mean, variance, skewness, kurtosis, range, 

entropy, gradient magnitude xyz) (9 features). This gives a 

total of 205 visual features. This wide variety of features 

provides many different characteristics without being too 

specific (i.e., they will generalize well). The size of the local 

neighborhood used is 5x5 voxels [33], where the feature size 

is chosen to be the one that maximizes the Bhattacharyya 

distance between the two classes and gives a bound on the 

Bayesian error [27]. Examples of the visual features are shown 

in Figure 3. 

C. Static Contextual Features 

The contextual features come from the posterior probability 

 
Figure 3: Examples of the visual features on coronal slices. The features from left to right, top to bottom: local mean (A), 

variance (B), skewness (C), kurtosis (D), a bin from the histogram of oriented gradients (E-F), a bin from the LBP histogram 

(G), and example gabor features (H-J). 
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estimated by an already learned classifier. Previous 

approaches [13] have directly sampled a dense neighborhood 

around an observed voxel, making each location a potential 

feature. This method can lead to large feature sizes and can 

cause overfitting due to the specific locations that are learned. 

In this paper, two new static features are proposed to 

overcome this problem. One incorporates a sense of the 

surrounding without a known direction, while the other gives a 

general sense of direction. 

 

The first feature, shown in Figure 4A, gives the average 

posterior probability at various distances around the observed 

voxel. This can be thought of as a proximity feature where: 

what is a close, medium and far away in distance are 

estimated. The distance function used here is the Manhattan 

distance allowing for a cuboidal region. These features are 

directionally invariant and can lead to better generalization 

since they describe a general area. By having a nesting of 

boxes the integral image can be utilized for quick computation 

of the features. In 3D only 8 points are needed to find the 

average of a cuboidal region, using integral images [28]. 

Equation 1 provides these features, where      is the proximity 

feature,              are square neighborhoods around the 

voxel at xyz and size(*) is the size of the bounding box. 

 

      (∑       ∑     )(
 

    (     )      (     )
) (1) 

 

Directional information is important for classification since 

the objects are rigidly registered to a naïve animal. The second 

contextual feature describes the posterior probability in 

various directions from the observed voxel. Rays are sampled 

at various distance ranges and angles from the observed voxel 

(see Figure 4B). From the distance ranges along the rays the 

mean is calculated. This gives a refined sense of the 

surrounding. An example would be what is close and above 

the observed voxel. The integral image is also used to 

calculate these features. Both features can be computed at 

coarse or fine distance bins without a significant increase in 

computational time. Equation (1) can also be used for the 

direction context features, the shape of the features are 

changed to be that of Figure 4B. 3The features are rectangles 

with width one and the 45 degree features can be estimated 

using the rotated image. 

D. Dynamic Contextual Feature 

We propose the posterior marginal edge distance (PMED) 

feature is the distance a voxel is from the perimeter of objects 

of a class found by the maximum posterior marginal (MPM) 

estimate. To create this feature first the MPM at a voxel is 

obtained from the output of a classifier. This gives a binary 

image for each class. The distance transform is applied to the 

image and the inverse image and the feature is given by 

equation 2. 

      (   )   (    ) (2) 

           
 

 (     ) (3) 

 

Here d(*) is the Euclidean distance transform. This gives an 

image that is increasing as the voxels become farther away 

from the edge and smaller (more negative) as the voxels get 

further into the object. In eq. (3) ω is the estimated class, c is a 

specific class (lesion or normal brain in our case), and   is the 

feature set at a given voxel (see Figure 5). 

E. Classifier Cascade Selection 

The base classifier in the cascade of classifiers has to be 

able to deal with a large number of features, a complex 

decision space and be able to give a posterior estimate. The 

primary classifier being used is adaboost [29] with small 

decision trees as base classifiers. Using small trees as a weak 

classifier (h(*)) allows for inherent feature selection, meaning 

erroneous features are disregarded. It is also not sensitive to 

feature normalization. In each iteration (t), the best classifier is 

selected and weighted with α. During the training process a 

cost matrix (4) is used where the top row represents the cost of 

normal appearing brain matter (NABM) and the bottom row 

the cost of Lesion voxels, such that the priors are offset to be 

even. This is done to account for the large disparity, in the 

number of training samples between the classes. Algorithm 1 

describes the flow of adaboost. 

 
Figure 5: A) Example MPM estimate. B) Corresponding 

PMED feature. Note that the values become more 

negative towards the center of the object and more 

positive farther away from the object. 

BA

 
Figure 4: A) Illustration of the proximity feature. V is the 

observed voxel and the feature is the average probability 

of the regions (R1, R2, R3). B) Illustration of the distance 

features. V is the observed voxel and an example feature 

is the average probability between P1 and P2 along the 45° 

ray. 
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It has been shown that the posterior marginal can be 

estimated using logistic regression [30] given by equation 5.  

 (           )  
   (    )

∑    (    ) 
   

 (5) 

  (    )   ∑     (    )
 

   
 (6) 

Other classifiers such as the popular support vector machine 

(SVM) approach are also able to estimate the posterior 

marginal [31]. SVM is a strong classifier, but it does not have 

inherent feature selection and is sensitive to feature 

normalization. SVM tends to perform well with a small 

number of strong features. An example of the iterative training 

process for a single time point is shown in Figure 6. Notice 

that the estimate improves the greatest between classifier 1 

(Figure 6B) and classifier 2 (Figure 6C). During training each 

successive classifier will have a performance greater than or 

equal to its predecessor, since the posterior marginal is one of 

the features.  

IV. EXPERIMENTAL RESULTS 

A. Contribution of Features in a Temporal mTBI Dataset 

Our temporal data set uses Sprague Dawley rats subjected 

to a single impact controlled cortical impact (CCI) as an 

animal model of mTBI [13, 32]. The CCI model results in a 

focal injury. Briefly, a craniectomy (5mm) was performed 

over the right hemisphere (3mm lateral, 3mm posterior to 

bregma) where a mild CCI was induced using an 

electromagnetically driven piston (4mm diameter, 0.5mm 

depth, 6.0 m/s). The incision made for the craniectomy is 

sutured after the injury is induced.  

The animals were imaged in vivo at 3 time points post 

injury: acute (1
st
 day), sub-acute (8th day), and chronic (14th 

day). There are a total of 6 sequences, each with 3 time points. 

MRI data were acquired using a Bruker Advance 4.7T for T2 

weighted images (T2WI; TR/TE/FA=3453 ms/20 ms/20°, 

25x1 mm slices) with a 256x256 matrix and 3cm field of 

view. Each voxel has a dimension of 0.12x0.12x1mm. The T2 

weighted images were converted to T2 maps. ROIs were 

manually segmented using Cheshire image processing 

software (Hayden Image/Processing Group, Waltham, MA) 

and included the right and left hemispheres and injured tissue 

volumes that were defined as abnormal (hyper/hypo-intense) 

signal intensities within the cortex with the remaining tissues 

designated as NABM. The injuries have been verified with 

histology in [32] at the end points of experiments. A direct 

comparison to the results of histology is not possible due to 

the deformations that occur in the histological staining 

process. 

We examine the effect of the proposed features and effect 

of the dynamic information. For the training/testing split 

leave-one-out validation is used where a whole sequence is 

left out (resulting in 6 cross-folds). Three temporally 

consecutive volumes were left for testing and the rest were 

used for training. The parameters used were: 300 weak 

learners, learning rate 1, and 4 cascaded classifiers. Three 

approaches were tested: the original autocontext features [19], 

the proposed approach with only the proposed static features, 

and the proposed approach with the static and dynamic 

features. 

To evaluate the segmentation results of the proposed 

approach the dice coefficient is used, given by equation (7),  

      
   

(     )  (     )
 (7) 

  

where TP is true positive, FP is false positive, and FN is false 

 
Figure 6: Example probability maps after each classifier. 

A) T2 map. B-E) Classifier output probability map for the 

training of classifier 1-4 respectively. (F) Manual 

Segmentation where yellow denotes the lesion. This 

shows the convergence of the algorithm to the manually 

segmented injury. 
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ALGORITHM I 

ADABOOST 

   1: Input(x,y) where x is the set of all training features and  

features and y is the class label. 

2: T = number of weak classifiers 

3: Initialize D1 = 1/m where D is the weight of each training 
example and m is the number of training examples. 

4: For t = 1 to T 

5:                        // Base Classifier 

 where     ∑  ∑            (    ( )) //Error 

6:    
 

 
  (

    

  
) // Classifier Weight 

7:       
       (      ( ))

 
 // Reweight the examples 

 Where Z is a normalization term. 

8: Exit if                    //exit if error is small 
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negative. The dice coefficient gives the ratio of the 

intersection between the detected object and the target object 

to the size of the objects. The Dice gives a better idea of the 

intersection between the two objects because it does not 

consider the true negatives, which will be large with the 

unbalanced class size. The output of the classifier at each time 

point (acute, sub-acute, and chronic) shown in Figure 2, is 

thresholded to get a hard classification. 

From Figure 7 it is clear that the proposed dynamic 

approach outperforms the other methods. This shows it is 

important to use the dynamic information. The original 

autocontext tends to over fit due to the specific locations the 

features represent. The same features locations proposed in 

[19] were used for the original autocontext testing. During the 

training phase it obtains a dice score above 0.9, but it does not 

generalize well to the testing data. From the testing, our 

proposed static features give a good generalization compared 

to the original autocontext. The output from the original 

autocontext approach is patchy with many false negatives 

leading to an under-estimation of the injury. This is due to the 

fact that it looks at specific locations for the context features. 

 The proposed approach has a very flat dice curve, so it is 

not sensitive to a chosen threshold on the output probability 

map. This makes the selection of a threshold less critical. 

From the qualitative results (Figure 8) it is clear that the 

results of proposed approach work on small to medium size 

lesions. The qualitative results also show that false positives 

are only close to the majority of the lesion mass without 

having erroneous spatial outliers. It is also apparent that the 

approach has some difficulties at the edges of the lesions. This 

could be rectified by using shape constraint on the thresholded 

probability map. 

In [20] a similar dataset was used for analysis except 

repeated contralateral injuries were also considered. The 

average dice score using a high level contextual model was 

0.35 and 0.07 using probabilistic SVM alone. This is similar to 

our dice score using the proposed static features with an 

average dice score of 0.36 and it far exceeds the results of a 

probabilistic SVM. The dynamic features increase the dice up 

to 0.41. The method proposed here does not use any extra 

patient information as it has been done in [20]. 

B. Convergence Rate of the Features 

We evaluate the strength of the individual features. The 

same dataset from section IV.A is used in this section. To 

determine the strength of the features the rate of convergence 

of the cost function during training is observed. 

In Figure 9 the training cost after each tree during the 

training of adaboost is given. Both the autocontext and the 

proposed static features have the same results from the initial 

classifier utilizing only visual features. This is due to the 

proposed static features being able to generalize in the 

surrounding area better. 

To understand the convergence of each classifier in the 

cascade one must observe the output training cost after adding 

each tree during the training of adaboost. In Figure 10 the 

convergence of the training using only the static features is 

observed. Convergence using only the visual features takes a 

while compared to with the static contextual features. After 

the second classifier, the improvement over the number of 

trees is less pronounced. Not much information is gained after 

the second classifier. 

Also in Figure 10 we can observe the convergence of the 

classifier using the dynamic and static context features. It is 

apparent that the convergence is very fast for Classifier 1 

when the dynamic context features are used, compared to the 

case when no dynamic information is used in the first 

iteration. Information is still gained by the static features but at 

a slower rate. 

C. Feature Importance Evaluation 

An important question to ask when using adaboost is, 

“which features are being chosen and when?” Here those 

questions are answered by looking at the percent of features 

chosen throughout the adaboost training process. In the case of 

the static features alone, Figure 11 shows first 50 trees are 

almost exclusively context features. This shows that the 

contextual features hold the most information for 

discrimination. The visual features start being used after the 

information from the contextual features is nearly all used. In 

the end 40-50% of all the features are contextual. 

A similar pattern occurs when the dynamic features are used 

(shown in Figure 11). The contextual features in Classifier 1 

are used early on in the learning process, and then the visual 

features almost exclusively take over. In Classifier 3 nearly 

60% of the features are chosen as contextual features. This 

shows that the dynamic information plays a vital role in the 

classification.  

D. Static Feature performance on the BRATS dataset 

To show the versatility of the proposed approach the static 

features were tested on a brain tumor dataset. The dataset is 

from the MICCAI 2012 Multimodal brain tumor segmentation  

 
Figure 7: Dice coefficient after thresholding the posterior 

probability map at the end of each cascade of classifier 

(i.e. at each time point). This is the average of all the tests 

in the leave one out validation. 
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Figure 8: Qualitative results of the proposed approach using dynamic and static contextual features. Each coronal slice is 

from a separate volume. Color code: yellow = true positive, black = true negative, green = false negative, red = false 

positive. 
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(BraTS) challenge. Here a subset of the data was used that 

included 15 High grade glioma patients. The volumes included 

the following MR modalities, T1, post-Gadolinium T1, T2, 

and FLAIR. Each modality has been co-registered, skull-

stripped and resampled to be 1mm isometric voxels. A mode 

shift was used to normalize the histogram across subjects. For 

this testing the edema and core tumor are considered to be a 

single class. The visual features used were the individual 

modalities, the same local neighborhood statistics as the mTBI 

dataset on the FLAIR channel, and LBP on the FLAIR 

channel. Since there is a single time point database only the 

static contextual features are used. Testing was done using 5 

fold-cross validation.  

For this testing an average dice score of 0.71 was obtained. 

The best scores reported during the BraTS challenge were 

between 0.7 - 0.8, for the high grade glioma cases. Note that 

the other approaches [33, 34] used symmetry features. These 

features can be directly used by the proposed approach. This is 

another type of context that can be exploited. Another feature 

used in the challenge were long range context features [35]. 

These features sample the value around an observed voxel. 

The parameter space for these features is extremely large and 

 

 
Figure 10: Top: Convergence of classifier training using 

only the static contextual features. Bottom: Convergence 

of classifier training using both dynamic and static 

contextual features. Lower cost is better. 
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Figure 9: Training cost after each tree for the proposed 

static features versus the original autocontext. This is the 

training cost of the second classifier i.e. the input to both 

methods is the results after using visual features only. 

Lower cost is better. 
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Figure 11: Top: The percentage of the static contextual 

features chosen versus the current number of trees. 

Bottom: The percentage of dynamic and static contextual 

features chosen up to a number of trees. Note in Classifier 

1 only the dynamic contextual features are used. 
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requires random sampling of the space via decision forests 

[36]. The other features used by the winners of the challenge 

[35] were based on generative modeling of the tissue types. 

These features can also directly be used by the approach 

proposed here.  

V. CONCLUSIONS 

A fully automated method for detecting mTBI lesions that 

integrates low-level static and dynamic context is proposed. 

Three novel features are proposed that describe the posterior 

probability of classifier outputs in a cascade. These features 

were shown to have good qualitative and quantitative results 

on an mTBI dataset. The proposed approach outperformed the 

original autocontext [19], by being able to generalize and 

integrate dynamic information. The context features were 

shown to be the most important features in the training 

process. Adding the dynamic context features lead to fast 

convergence during training leading a smaller number of trees 

being needed. The generality and flexibility of the proposed 

approach allows it to be applied to other brain lesion 

problems. 
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