
1090 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

Discrete Cosine Transform Locality-Sensitive
Hashes for Face Retrieval

Mehran Kafai, Member, IEEE, Kave Eshghi, and Bir Bhanu, Fellow, IEEE

Abstract—Descriptors such as local binary patterns perform
well for face recognition. Searching large databases using such
descriptors has been problematic due to the cost of the linear
search, and the inadequate performance of existing indexing
methods. We present Discrete Cosine Transform (DCT) hashing
for creating index structures for face descriptors. Hashes play the
role of keywords: an index is created, and queried to find the im-
ages most similar to the query image. Common hash suppression
is used to improve retrieval efficiency and accuracy. Results are
shown on a combination of six publicly available face databases
(LFW, FERET, FEI, BioID, Multi-PIE, and RaFD). It is shown
that DCT hashing has significantly better retrieval accuracy and it
is more efficient compared to other popular state-of-the-art hash
algorithms.

Index Terms—Discrete Cosine Transform (DCT) hashing, face
indexing, image retrieval, Local Binary Patterns (LBP), Locality-
Sensitive Hashing (LSH).

I. INTRODUCTION

F ACE retrieval is an important technology used in many
different applications, from organizing photo albums to

surveillance [1]. In its most common form, a database of images
of individuals, one or more images per individual, called the
gallery is available. There is also a set of images, called probes,
taken of individuals who are to be recognized. The task is to
identify which probe and gallery images correspond to the same
individual. For example, in the recent event of Boston marathon
bombings, images of the suspects taken from street surveillance
cameras were matched against government databases to help
identify the suspects [2]. In this paper, we assume closed-set re-
trieval, where every probe individual has one or more matching
images in the gallery.
In the most common face retrieval approach, the probe de-

scriptor is compared with each one of the gallery descriptors
using an associated distance measure, and the closest images
are retrieved as the answer to the query. While this technique

Manuscript received July 23, 2013; revised October 14, 2013 and December
29, 2013; accepted January 05, 2014. Date of publication February 11, 2014;
date of current version May 13, 2014. This work was supported in part by Na-
tional Science Foundation grants 0905671 and 0915270. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Jing-Ming Guo.
M. Kafai is with Hewlett Packard Laboratories, Palo Alto, CA 94304 USA

(e-mail: mehran.kafai@hp.com).
K. Eshghi is with Google Inc., Mountain View, CA 94043 USA (e-mail:

kave@google.com).
B. Bhanu is with the Center for Research in Intelligent Systems, University

of California at Riverside, Riverside, CA 92521 USA (e-mail: bhanu@cris.ucr.
edu)
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2014.2305633

is robust and works well, it requires a linear search of all the
gallery images, which can be expensive if the number of gallery
images is large.
We investigate the use of locality-sensitive hash functions,

applied to the commonly used face descriptors such as Local
Binary Patterns (LBP) [3], to generate an indexing structure for
nearest neighbor search. This approach has the advantage that
no face specific indexable features need to be developed. We
show that by using the Discrete Cosine Transform (DCT) hash
function [4], excellent retrieval performance can be achieved
compared to the baseline, which is to use a linear search. We
compare our results with six other hashing methods: LSH [5],
LSH [6], KLSH [7], min-hash [8], KSH [9], and K-means

codebooks [10], andwe show that DCT hashing outperforms the
other hash functions on retrieval accuracy and computational
efficiency.
A common technique in nearest neighbor search is to use the

locality sensitive hashes to find a set of candidates for matching.
This set is then matched against the probe using the original dis-
tance function.We show that with DCT hashes, a small (order of
50) set of candidates suffices for almost perfect nearest neighbor
search. What is more, the size of the candidate set does not need
to be increased with gallery size. In fact, retrieval time is domi-
nated by the time taken to generate the hash set of the probe and
re-rank the results, which are constant with increasing gallery
size. Our experiments show that for practical purposes, retrieval
time is near constant with increasing gallery size.
Our goal is to provide an effective algorithm for face re-

trieval using existing feature descriptors. To this end, we eval-
uate our approach with three face descriptors: LBP [3], Local
Phase Quantization (LPQ) [11], and Histogram of Oriented Gra-
dients (HOG) [12]. The main contribution of this paper is to
demonstrate that using the DCT hash function is an effective
way to create an index for these descriptors.
In the rest of this paper, Section II discusses the related

work and contributions of this work. Section III describes the
technical approach. Section IV introduces the face databases
and presents the experimental results. Section V concludes this
paper and discusses the challenges in DCT retrieval. In the
Appendix, we provide the mathematical justification for using
the randomized DCT transform for computing the projection
vectors. For better understanding, we define the symbols used
in this paper in Table I.

II. RELATED WORK AND OUR CONTRIBUTIONS

A. Related Work

There has been extensive research in image and video re-
trieval to create index structures that eliminate the need for

1520-9210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KAFAI et al.: DISCRETE COSINE TRANSFORM LOCALITY-SENSITIVE HASHES FOR FACE RETRIEVAL 1091

TABLE I
DEFINITION OF SYMBOLS

linear search [13]. Although, indexing techniques for biomet-
rics [14], [15], [16] and image retrieval [17], [18] have received
a lot of attention recently, face retrieval has been less explored.
Chen et al. [14] use feature embedding and SVM rank

learning for indexing and recognition of 3D objects. Bhanu
et al. [16] introduce novel features based on minutiae triplets
for fingerprint indexing. Dey et al. [15] propose to use Gabor
energy features for iris data indexing, and to generate a multi-di-
mensional index key for iris templates. Classical approaches
for image retrieval such as k-D trees [19], [20] and R-trees [21]
suffer from the curse of dimensionality. Of the more recent
approaches, the most notable is the Bag of Words (BoW)
technique [22], [23].
Gyaourova et al. [24] propose to use reference images for

multibiometric indexing. In their approach, an index code is cre-
ated for the probe and gallery images by comparing them to a set
of reference images. An index code is a vector of match scores
resulting from the comparison of the gallery/probe image to the
reference images. This approach is simple and reduces the re-
trieval time, however, retrieval is sublinear in the size of the
gallery.
Wu et al. [25] present a technique where face specific visual

words that rely on an identity set are used to create an index
structure for face images. Using the index, they retrieve the list
of most likely answers to a probe, and then re-rank the results,
based on a different descriptor, to find the images most similar
to the probe. The re-ranking relies on having a relatively large
number of images per individual in the gallery to be reliable.
This method is time consuming for large galleries due to the
fact that local feature voting has linear complexity.
Retrieval via hashing is commonly used in computer vision

applications [26]. Hashing techniques can be divided into
two main categorizes; data-independent and data-dependent
approaches. A family of data-independent approaches that use

random projections for hashing are Locality-Sensitive Hashing
(LSH) based methods [6], [27], [28]. The algorithms described
in [6], [27] work by mapping each data point to a hash key (a
binary-valued vector) by projecting the data points into low-di-
mensional hamming space. LSH-based methods are commonly
used for image retrieval.
LSH methods have a common limitation that they require

the data points to have an explicit vector representation. Kulis
et al. resolve this issue by proposing the Kernelized-LSH [7]
which is able to capture the similarity between points without
the knowledge of their vector representation by utilizing a single
kernel function. In other words, given a kernel function (e.g.,
Gaussian radial basis function kernel) and a gallery of images,
KLSH finds the approximate nearest neighbor to a query image
in terms of the kernel function. Min-hash [8] is another LSH-
based method used for image retrieval. A min-hash is a single
number with the property that two sets have a similar min-hash
with the probability equal to their similarity. Min-hashes are
grouped into sketches, and near-duplicate candidates are those
with a certain number of common sketches. In [29] an algo-
rithm is proposed that computes the min-hash signatures faster
than the original min-hash while performing similarly in terms
of accuracy.
Data-dependent hashing methods such as semantic hashing

[30], geometric hashing [31], kernel-based supervised hashing
[9], spherical hashing [32], and codebook-based hash functions
(e.g., K-means codebooks [10]) have also been used for image
retrieval. They need an expensive preprocessing step such as
clustering to create the index structure. For example, K-means
codebooks, described in [10], performs K-means clustering of
the database descriptors times, with on the order of thou-
sands and on the order of tens. Spectral hashing [33] demands
that the hash keys be uncorrelated and balanced, and it over-
comes the problem of long binary hash keys; however, for ap-
plications with high dimensional data (e.g., face retrieval) it has
proven to be ineffective [34]. Heo et al. [32] propose using hy-
perspheres to partition the data for generating the binary codes,
rather than using hyperplanes.
Joly et al. [17] introduce a data-dependent hashing method

that generates independent hashing functions in any kernel
space. An important difference between [17] and LSH-based
methods is that instead of increasing the collision probability
of similar points, the collision probability of dissimilar points
is minimized by performing data scattering. He et al. [26]
propose a hashing algorithm which can perform using any
similarity, kernel, and proximity function with compact hash
codes. Similar to [17], the proposed approach in [26] focuses
on finding independent projections.
Liu et al. [9] propose kernel-based supervised hashing, a su-

pervised data-dependent hashing method that effectively learns
the kernel-formulated hash functions using the supervised in-
formation from the data. Heo et al. [32] propose using hyper-
spheres to partition the data for generating the binary codes,
rather than using hyperplanes.
Data-dependent hashing techniques work well for short

codes; however they are not as effective when the code length
increases [17]. Lin et al. [18] propose a hashing method which
overcomes this shortcoming by creating similarity preserving
sparse representations.

1092 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

Lu et al. [35] investigate the problem of near duplicate image
detection (for the purpose of copyright enforcement) through
a geometric distortion-resilient image hashing scheme. In their
approach, salient points are detected, a mesh is generated on the
salient points using Delaunay triangulation, and each triangle
is hashed using their proposed distortion resilient hashing algo-
rithm. Unlike their approach, our hash algorithm does not op-
erate on the elements of the image directly; rather, it is applied
to the descriptors extracted from the image (e.g., LBP features).
We rely on the underlying features (e.g., MLBP [36]) to gen-
erate descriptors that are resilient to geometric distortions.

B. Contributions

The contributions of this paper are:
1) In the appendix, we prove a theorem that justifies the
use of the randomized DCT transform for computing the
projection vectors. This theorem has applications beyond
hashing. It can be used whenever random projections are
used in combination with cosine similarity.

2) The analysis framework for collision probability based on
the tail probabilities of the bivariate normal distribution is
novel. It provides a deeper understanding for the reasons
behind the good performance of the hash function.

3) This paper introduces an effective indexing structure for
face retrieval using a training-free hash function. It pro-
poses DCT hashing for approximate nearest neighbor face
retrieval. The proposed algorithm is compatible with de-
scriptors such as LBP [3], Local Phase Quantization (LPQ)
[11], and Histogram of Oriented Gradients (HOG) [12]
which have proven to be successful in the field of face
recognition.

4) To reduce the computational cost of the proposed algo-
rithm, a histogram-based approach is employed to rank
the gallery images rather than using a distance-based
approach. Multiple hashes are generated for each image
to increase the overlap probability and improve the
performance.

5) Our training-free approach is evaluated on a combina-
tion of six publicly available face databases to show its
ability to perform on face images under constrained and
unconstrained settings. We also compare DCT hashing
with other hashing algorithms (e.g., LSH, LSH, KLSH,
KSH, K-means codebooks). This comparison shows that
DCT hashing not only outperforms other hashing methods
in terms of nearest neighbor recall, but also it is so effec-
tive that the original distance function is only used for a
small percentage of the gallery images (for re-ranking),
and yet we achieve results that are essentially identical to
linear scan. To the best of our knowledge, there has been
no other training-free hash function that can achieve this.

III. TECHNICAL APPROACH

In the following, we describe the DCT hash function, as a
variant of the bivariate normal tail locality-sensitive hash func-
tion. We also discuss the distance measure on which it is based,
namely the cosine measure. We then present the retrieval frame-
work, and discuss how common hash suppression is used to im-
prove retrieval efficiency and accuracy.

A. The Bivariate Normal Tail Hash Function

Below we describe the theoretical basis for the Bivariate
Normal Tail (BNT) hash function, and discuss how DCT
hashing makes BNT computationally tractable. For the purpose
of computing the BNT hash, the randomized DCT projection
behaves similar to the normal projection in terms of the under-
lying bivariate normal variables (theorem 1). We provide the
mathematical proof and justification in the appendix.
The purpose of a locality-sensitive hash function is to gen-

erate, for each input vector, a set of hashes such that if two input
vectors are close in the chosen distance measure, their hashes
overlap strongly whereas if the two vectors are far from each
other, their hashes overlap weakly or not at all. The Bivariate
Normal Tail (BNT) hash function uses the cosine between two
vectors as the measure of distance between them. The intuition
behind the BNT hash function is that the expected size of the
overlap between the hash sets of two vectors is directly pro-
portional to the tail probability of a bivariate standard normal
distribution with correlation equal to the cosine of the vectors.
It turns out that this leads to a very good hash function for in-
formation retrieval.
In what follows, an input vector is a unit length column vector

.
Definition 1 (Bivariate Normal Tail Hash Set): Let be a

matrix of iid normal random variables and a
real number. For a given input vector , let . Then

(1)

is the BNT hash set of with respect to and .
According to the above definition, the universe from which

the hashes are drawn is , where is the number of rows
of . To be useful, such must be large, and a negative
number far enough from 0 so that the size of the hash set is a
small fraction of .
Let , be two input vectors where

. We zero-center the input vectors by sub-
tracting the mean. What we require of our hash function is
that the expected overlap between the hash sets of and
be a monotonically increasing function of . Let ,

. Let be an integer, . Let and
. Then it is easy to show that is an instance of

, the bivariate standard normal distribu-

tion with correlation . It follows that

where denote the cumulative distribution function
of the bivariate standard normal distribution with correlation .
Thus,

(2)

In other words, the expected size of the overlap between the
hashes of and is .
Let denote the cumulative distribution function for

, the standard normal distribution. Now,
, and . Using the techniques de-

scribed in [37], it is possible to prove that, for any given ,
is a monotonically increasing function for between

KAFAI et al.: DISCRETE COSINE TRANSFORM LOCALITY-SENSITIVE HASHES FOR FACE RETRIEVAL 1093

Fig. 1. Collision count comparison between BNT and DCT.

0 and 1. In fact, for , its value can be closely approximated
by:

(3)

i.e., the expected size of the overlap between the hashes of
and is an exponentially increasing function of their cosine
similarity.
As an illustration, for and , the values of the

expected overlap between the hash sets (to the nearest integer),
as we increase from 0 to 1 in 0.1 increments, is captured by
the following sequence: (0, 0) (0.1, 1) (0.2, 3) (0.3, 6) (0.4, 11)
(0.5, 19) (0.6, 31) (0.7, 47) (0.8, 72) (0.9, 111) (1, 227).

B. The Discrete Cosine Transform Function

One of the issues with the BNT function described above is
that performing the projection involves multiplications,
which is expensive, since is large. We use a variant where
the projection matrix is a randomized version of the Discrete
Cosine Transform matrix, the randomization achieved through
permuting the columns of the DCT projection matrix. The
advantage of this approach is that computing the projected
vector amounts to performing the discrete cosine transform,
which takes operations, a significant improvement
on the original function when . Also, instead of
using a fixed threshold, we sort the projected vector and use
the coordinates of the smallest values as the hash set. This
has the advantage that the number of hashes generated per
input vector is always the same, which makes the design of the
system simpler. We call the hash function based on the DCT
projection matrix the DCT hash function.
Figure 1 shows that these modifications of the hash algorithm

do not adversely affect the collision properties of the BNT algo-
rithm. The -axis denotes the cosine and the -axis represents
the number of collisions (i.e., overlapping hashes). For each
value of the cosine on the -axis we generated 2000 pairs of
mean-centered unit-length vectors with 1000 dimensions. We
computed the number of collisions using the BNT algorithm
and the DCT algorithm and plotted the results. Figure 1 demon-
strates that the number of collisions for DCT is similar to BNT
for all values of the cosine between the vectors. In this experi-
ment and .

C. The DCT Hash Function

The DCT hash function maps input vectors to a set of hashes
chosen from a universe , where is a large integer. We
use to denote the number of hashes that we require per input
vector. The input vectors are scaled s.t. their length is .

TABLE II
COMPUTING THE DCT HASH SET FOR INPUT VECTOR

TABLE III
MATLAB CODE FOR THE DCT HASH FUNCTION

Scaling the input will not change the result because we sort the
DCT transforms and pick the top elements.
The hash function takes as input a random permutation of

. Let be the dimensional input vector. It should be
emphasized that the random permutation is chosen once and
used for hashing all input vectors. Table II shows the procedure
for computing the DCT hash set.
Table III presents an implementation of the DCT hash func-

tion in Matlab.

D. The Cosine Measure

The DCT hash function is based on the cosinemeasure.When
cosine is used as a similarity measure, it is advantageous to sub-
tract the population mean from all the vectors. This amounts to
moving the center of coordinates to the centroid of the popula-
tion.We evaluate the effects of mean centering in Section IV-B4.
Before subtracting the population mean the center of coordi-
nates is way outside the cluster of the points, resulting in angles
between the vectors that are all very small. Thus, as a distance
measure, the angle between the vectors is not a very sensitive
measure, and the same is true of the cosine of the angle. When
the center of origin is moved to the centroid of the data points
(by subtracting the population mean) the angles between the
vectors become much more differentiated and cosine becomes
a more discriminative measure of similarity.

E. Retrieval Using Hashes

To retrieve the images most similar to the probe image, we
construct a reverse index that maps every hash to the identi-
fiers of the images in which it occurs. Thus, given a hash , the

1094 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

index returns a list of image identifiers. This
is the list of the identifiers of all the images whose hash set con-
tains .
To perform nearest neighbor search, the hash function is ap-

plied to the descriptor of the probe image, and the resulting
hashes are used to look up the entries in the index. This results
in , where is the number of probe hashes,
and each is a list of image IDs.
When index is constructed, the length of the lists for each

hash naturally vary; some hashes have more image IDs associ-
ated with them than others. An analogy is with keywords and
documents: some keywords are more common than others. The
more common a hash is, the less informative it is as a means of
discriminating between the images for the purpose of similarity
search. Moreover, the more common hashes impose an undue
computational cost in the retrieval process, since the lists asso-
ciated with them are long, increasing the cost of computing the
histogram. The suppressed hashes are those that occur in many
more images than average. To overcome this issue, we perform
Common Hash Suppression (CHS).
A threshold is imposed on the length of the ID list that dis-

qualifies some hashes from taking part in the retrieval process.
To compute the threshold, themean and the standard deviation
of the length of the lists associated with all the hashes in the

gallery are computed. We then choose as the threshold,
where is a constant. Section IV-B2 shows the impact of on
the retrieval efficiency and accuracy.
Stop words elimination in inverted indexing is a similar con-

cept; however, stop words are determined once and for all texts,
whereas common hash suppression is specific to a given collec-
tion of images. Common hash suppression is also analogous to
TF-IDF [38] in document similarity.
After common hash suppression some of the ’s are re-

moved. The remaining lists are concatenated. We call this list
the retrieval list. Next, a histogram that associates each image
ID with its frequency in the retrieval list is created. We call this
histogram the retrieval histogram. Thereafter, the histogram is
sorted, in descending order, by frequency. This results in a list

of image IDs which presents a subset of the gallery
images most similar to the query image sorted based on their
similarity. In other words, the aforementioned image ID list is
the actual final retrieval result; is the most similar image to
the query image, is the second most similar image to the
query image, and so forth.
Table IV presents the pseudocode for face retrieval using

DCT hashes.

IV. EXPERIMENTS

We evaluate DCT hashing with various parameter settings
and compare it with reference-based indexing [24], linear scan,
LSH [5], LSH [6], KLSH [7], KSH [9], min-hash [8], and
K-means codebooks [10]. For better comparison, both ranked
retrieval rate and Nearest Neighbor (NN) recall are used to eval-
uate the results. Rank-k retrieval accuracy represents the prob-
ability that the correct answer is within the top-k retrieved im-
ages. When computing the NN recall, the output of the NN clas-
sifier is the ground-truth.

TABLE IV
PSEUDOCODE FOR FACE RETRIEVAL USING DCT HASHES

Fig. 2. Sample images from LFW [44], FERET [40], RaFD [42], BioID [43],
FEI [41], and Multi-PIE [39].

A. Data

Experiments were performed with face images taken from six
publicly available face databases: Multi-PIE database [39], Fa-
cial Recognition Technology (FERET) database [40], FEI data-
base [41], Radboud Faces Database (RaFD [42]), BioID data-
base [43], and Labeled Faces in the Wild (LFW) [44].
The LFW database consists of a total of 13233 images gath-

ered from the web for 5749 people. The FERET face database
contains 14126 images of 1199 individuals and is commonly
used within the face recognition research community. The FEI
face database consists of a total of 2800 images representing 200
individuals (100 males and 100 females) under various poses.
The RaFD face database [42] includes 8040 images with various
camera angles, expressions, and gaze directions for 67 individ-
uals. The BioID [43] face database contains 1521 images of 23
subjects. The Multi-PIE database [39] contains 755370 images
of 337 individuals. Figure 2 illustrates sample face images from
all six databases.
Following face detection [45], the face images are cropped

and resized to pixels. Each image is divided into 49
regions with a size of pixels. For each region the uniform
LBPs with a radius of 1 and 8 neighboring pixels are computed,
and a histogram of 59 possible patterns is generated. Histograms
of all 49 regions are concatenated in a single histogram of length
2891 to describe the face image.
The setup of the experiments is as follows:
• Probes: 200 images are randomly chosen from LFW,
FERET, FEI, BioID, and RaFD databases.

• Gallery: 39500 images from LFW, FERET, FEI, BioID,
and RaFD are utilized as the gallery.

KAFAI et al.: DISCRETE COSINE TRANSFORM LOCALITY-SENSITIVE HASHES FOR FACE RETRIEVAL 1095

TABLE V
IMPACT OF HASH COUNT ON RETRIEVAL PERFORMANCE

• The random partitioning of the images into the gallery and
probe set is conducted 10 times and the average results are
reported in the plots.

• The experiments on scalability (Section IV-B6) includes
roughly 800,000 images from all six databases.

• An HP mobile workstation with Intel i7 processor and
8 GB of RAM was used to perform all the experiments.

The population mean, estimated by finding the mean of all
the gallery descriptors, is subtracted from all the gallery and
probe descriptors. The resulting set of vectors is used for com-
puting the DCT hash. For measuring Chi-square and Euclidean
distances the original LBP descriptors are used.

B. Evaluation Metrics and System Evaluation

In the following, we investigate how common hash suppres-
sion, re-ranking, mean centering, and the number of hashes per
descriptor affect the retrieval results. Also, DCT hashing is com-
pared with linear search and other hash algorithms. Finally, we
show that DCT hashing is compatible with other descriptors
such as LPQ [11] and HOG [12].
An important metric that we use for assessing the computa-

tional cost for retrieval is the Histogram Length Ratio (HLR).
As explained in Section III-E, the key computational step in the
retrieval process is to compute the retrieval histogram. The cost
of constructing this histogram is proportional to its length, and
as the size of the gallery increases, the average size of this his-
togram also increases. We calculate the average size of the re-
trieval histogram and divide it by the size of the gallery; this
gives a measure of the computational efficiency of the retrieval
process that is independent of the size of the gallery. We call
this measure the Histogram Length Ratio.
1) Hash Count Per Descriptor (): Table V presents the

impact of the parameter , the number of hashes generated per
normalized descriptor. For each hash count, the top-30 retrieval
accuracy and Histogram Length Ratio (HLR) are measured.
Hash counts above 100 increase the cost of retrieval with

little improvement in accuracy. As seen later, good results are
achieved with using CHS and re-ranking.
2) Common Hash Suppression (CHS): Figure 3 illustrates

how varying the common hash suppression factor has a large
impact on both the retrieval accuracy and HLR. Significantly,
it shows that increasing beyond a certain point actually de-
creases retrieval accuracy. From this chart it is clear that the
best combination of retrieval accuracy and HLR performance is
achieved when .
Table VI presents the impact of CHS on retrieval accuracy.

corresponds to the case where CHS is not performed.
The results show that CHS improves retrieval accuracy for all
experimented values of .
Table VII shows the impact of CHS on histogram length

ratio. Again, using CHS significantly improves histogram
length ratio.

Fig. 3. Histogram Length Ratio (HLR) and top-30 retrieval accuracy for dif-
ferent values of , with and .

TABLE VI
IMPACT OF CHS FACTOR ON TOP-30 RETRIEVAL ACCURACY

TABLE VII
IMPACT OF ON HISTOGRAM LENGTH RATIO (HLR)

Fig. 4. Impact of re-ranking. is the hash count, and is number of re-ranked
images (means no re-ranking was performed).

3) Re-Ranking: It is common in approximate nearest
neighbor search to re-rank the top results returned by the ap-
proximate solution using the original distance measure [6]. This
improves the retrieval accuracy, and when is small, imposes
only a minimal fixed cost on the retrieval process. The Cumu-
lative Match Characteristic (CMC) curve in Figure 4 depicts
the impact of re-ranking on retrieval accuracy. is a constant,

where is the gallery size, and Chi-square distance is
used for re-ranking. For smaller values of re-ranking has a
dramatic effect.
4) Mean Centering: Figure 5 illustrates how mean centering

affects retrieval accuracy. For both and ,
the top-30 retrieval accuracy with mean centering is almost the
same on average as without using mean centering. Figure 6
shows, for the same experiment, the corresponding HLR values.
For both hash values of , HLR decreases dramatically. In other
words, the hashes are more distinctive; therefore, fewer hashes
are required to obtain the same retrieval accuracy. This is due
to how mean centering increases the discriminating power of
the cosine similarity measure. Overall, performing mean cen-
tering on the feature vectors before generating the hashes, re-
sults in smaller retrieval histograms; thus, a more efficient in-
dexing structure.

1096 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

Fig. 5. Impact of mean centering on top-30 retrieval accuracy percentage.

Fig. 6. Impact of mean centering on histogram length ratio.

Fig. 7. DCT retrieval vs. linear scan.

TABLE VIII
HISTOGRAM LENGTH RATIO FOR DIFFERENT GALLERY SIZES

5) Comparison with Linear Scan: We compare the accuracy
of DCT hash-based retrieval with linear scan, which is our gold
standard. For linear scan, the results are shown (Figure 7) with
two distance measures: Chi-square and Euclidean. For DCT
hashing the parameters are chosen as , , and

. The CMC curves in Figure 7 present the results.
Figure 7 shows that DCT hashing, augmented with a small,

fixed number of Chi-square comparisons (used in re-ranking),
can achieve retrieval accuracy that is very close to the best result
with linear scan. Linear scan using Chi-square needs to calculate
the distance for each one of the gallery images.
These results confirm that using the DCT hash function, com-

bined with common hash suppression and re-ranking, is a sig-
nificantly more efficient way of performing similarity-based re-
trieval without having to sacrifice retrieval accuracy.
6) Scalability: Table VIII presents the average HLR per

probe for different gallery sizes.
The HLR is almost constant with the increase of gallery size,

and the cost of processing the histogram is very small, involving
one addition for each member of the retrieval list. That is why

TABLE IX
TOP-30 RETRIEVAL ACCURACY FOR DIFFERENT GALLERY SIZES

Fig. 8. DCT retrieval vs. reference-based indexing [24].

the cost of DCT retrieval is almost constant with gallery size; the
other costs (generating the LBP of the probe image, computing
the DCT hash set, re-ranking) dominate the cost of creating the
histogram. Even with a gallery of l,000,000 images, the average
size of this list would be roughly 30,000, i.e., only 30,000 addi-
tions are required to construct the histogram. This is far below
the number of operations required for preprocessing and feature
extraction.
Table IX shows how retrieval accuracy changes as the gallery

size increases. The accuracy for both linear scan and DCT re-
trieval slightly decreases with increasing gallery size; however,
the results show that DCT is an accurate approximation for
linear scan. These numbers confirm that retrieval via DCT
hashing is extremely scalable.

C. Comparison with Reference-Based Indexing [24]

The proposed DCT LSH-based retrieval is compared with
reference-based indexing codes [24] in Figure 8. The -axis rep-
resents penetration rate which denotes the average percentage of
gallery images that have to be retrieved. Images for this experi-
ments are randomly selected from the FERET database [40].We
adopt a 10-fold cross validation protocol where in each fold 760
individuals are randomly selected. For the index code method
two face matchers are utilized, FaceIt [24] and VeriLook [24].
The results show that DCT retrieval has a better performance
with lower penetration rate. It’s important to note that refer-
ence-based indexing requires that a set of reference images are
chosen from the test set for the indexing scheme, whereas DCT
retrieval does not have such a limitation.

D. Comparison with other Hash Algorithms

The proposed DCT hashing retrieval algorithm is compared
with other hashing algorithms including LSH [5], LSH [6],
Kernelized LSH (KLSH) [7], min-hash [8], Kernel-based Su-
pervised Hashing (KSH) [9], and K-means codebooks [10]. Pa-
rameters of all the algorithms are tuned so that they return 50
hashes per image, the same number as used for DCT hashing.
All hash functions are treated identically: we used common

KAFAI et al.: DISCRETE COSINE TRANSFORM LOCALITY-SENSITIVE HASHES FOR FACE RETRIEVAL 1097

Fig. 9. Rank-k retrieval accuracy comparison for different retrieval methods;
LSH [5], LSH [6], KLSH [7], min-hash [8], KSH [9], Codebooks [10], DCT.

Fig. 10. DCT vs. KLSH approximate nearest neighbor search performance.

hash suppression with , and re-ranking with .
Figure 9 presents the results.
In terms of retrieval accuracy, clearly, DCT hashing is su-

perior to the LSH [5], LSH [6], KLSH [7], min-hash [8],
KSH [9], and K-means codebooks [10]. The long binary hash
codes generated from multiple hash tables for LSH and LSH
have negative impact on the recall rates. On the other hand, if
shorter hash codes are generated to increase the recall rates, sub-
linearity in term of the gallery size would not be achieved, i.e., a
large portion of the gallery would have to processed to achieve
acceptable results. In the case of DCT hashing, only one hash
table is generated, and multiple hashes for each probe are re-
trieved; therefore, long binary hash codes are not required to
have high recall rates. Also, the cosine measure used in the DCT
retrieval algorithm is able to efficiently handle the high dimen-
sional face descriptors without having a negative effect on the
nearest neighbor recall rate.
Looking at the Approximate Nearest Neighbor (ANN)

problem as a binary classification problem where correct clas-
sification (hit) occurs when the nearest neighbor is within the
ANN retrieval results, we compare DCT hashing and KLSH
(which has the second best results in Figure 9) using multiple
evaluation metrics. Figure 10 demonstrates how DCT compares
to KLSH in terms of specificity vs. NN recall. Specificity is
defined as false alarm ratio, and NN recall ratio determines
how often the nearest neighbor is within the results returned
from the hashing algorithm. This simple yet objective plot
shows how close a retrieval algorithm is to the baseline nearest
neighbor algorithm. Figure 10 shows how DCT hashing out-
performs KLSH in ANN search performance.
The Expected Performance Curve (EPC) [46] in Figure 11

compares DCT and KLSH from the viewpoint of tradeoff be-
tween false alarm and false reject probabilities. The -axis rep-
resents where . The -axis corresponds to the
error rate defined as

(4)

Fig. 11. Expected Performance Curve (EPC); DCT vs. KLSH comparison.

Fig. 12. Detection Error Tradeoff (DET) plot; DCT vs. KLSH comparison.

where FAR is the false alarm ratio and FRR represents the false
reject ratio. DCT hashing reports lower error rate compared to
KLSH. More importantly, the error rate is almost constant for
all values of .
Figure 12 presents the Detection Error Tradeoff (DET) plot

comparing the decision error rate of DCT vs. KLSH. The per-
formance is characterized by the miss and false alarm probabil-
ities. Both and axes are scaled non-linearly by their stan-
dard normal deviates such that a normal Gaussian distribution
will plot as a straight line. The results show that DCT hashing
reports less miss probability with equal false alarm probability
compared to KLSH.

E. Other Feature Descriptors

In all the previous experiments we used LBP as the primary
descriptor, and we evaluated DCT hashing based on LBP de-
scriptors. In the following we show that DCT hashing is not a
descriptor-specific indexing method and it performs well with
other descriptors such as Local Phase Quantization (LPQ) [11]
and Histogram of Oriented Gradients (HOG) [12]. LPQ has
been adopted for blurred face recognition [11]. For LPQ we use
the parameter values , , and . For HOG,
which has been successfully utilized for face recognition [12],
we divide the images into 9 blocks and set the number of orien-
tation bins as 15.
Figure 13 shows how various hashing algorithms perform

with different descriptors. The -axis represents the area under
NN recall vs. specificity plot (Figure 10). The area has a value
between 0 and 1, with values closer to 1 meaning that retrieval
is closer to the nearest neighbor classifier in terms of accuracy.
In other words, a higher -axis value means a more accurate ap-
proximate nearest neighbor algorithm.
Figure 13 shows that DCT hashing has superior performance

compared to the other hashing algorithms for LBP, LPQ, and
HOG descriptors. Also, DCT performs almost equally well for

1098 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

Fig. 13. Approximate nearest neighbor performance using various descriptors.

Fig. 14. Expected Performance Curve (EPC) error rate for various descriptors.

LBP, LPQ and HOG. It is important to note that this plot does
not say that LBP, LPQ, and HOG have close retrieval results; it
shows that DCT hashing is an accurate ANN algorithm for each
descriptor regardless of how they perform in terms of accuracy.
Figure 14 evaluates how various hashing algorithms perform

with LBP, LPQ, and HOG in terms of area under the expected
performance curve. The -axis has values between 0 and 1,
with smaller values entailing smaller error rates. Similar to
Figure 13, DCT performs equally well for LBP, LPQ, and HOG
by reporting almost equal small error rates. Both Figure 13 and
Figure 14 show that DCT, similar to LSH, LSH, KLSH,
KSH, and K-means codebooks, is not a descriptor-specific
hashing algorithm.

F. Complexity and Processing Time

1) Complexity: Computing the hashes with the proposed
DCT hash function is in the order of , where is the
size of the hash universe. is a constant (in this paper 64 K);
thus, the query preparation cost is close to constant. The most
costly computational step in KLSH, however, is to compute the
matrix , over the kernel function , which is , with
being the number of data points forming the kernel matrix.

In order for KLSH to have sublinear retrieval time
should hold which decreases the NN recall (is the size of the
gallery). From this point of view, DCT retrieval tends to be
computationally cheaper.
Memory usage also affects the retrieval complexity. As-

suming that the DCT hash table fits in the main memory, the
space complexity is . Typically, all LSH-based hash
functions have a similar space complexity.
2) Processing Time: Processing time consists of offline and

online processing time. Offline processing time includes the
time to firstly generate the hashes for gallery images and sec-
ondly insert the generated hashes into the hash table. Generating
a hash set with 50 hashes for each gallery image takes 9 ms. In
total, generating hashes for the entire gallery with 39500 images
takes approximately 6 minutes, and inserting the hashes into the

Fig. 15. Retrieval time per probe for different gallery sizes.

hash table takes 7 minutes, which results in a total of 13 minutes
of offline processing for the entire gallery. These results were
obtained with non-parallel Matlab and code on an HP
mobile workstation with Intel i7 processor and 8 GB of RAM.
We have also addressed the question–how does the retrieval

time (online processing time) scale with the size of the gallery?
In order to answer this question, we ran experiments with dif-
ferent gallery sizes to measure the average time (in millisec-
onds) it took to answer a query (not including the time required
for preprocessing and computing the LBP). We evaluated the
following four methods: linear scan with Chi-square, linear scan
with Euclidean, KLSH (Gaussian RBF kernel function, ,

bits, 30 Gaussian approximation elements [7]), and
DCT hashing (.) Figure 15 shows the
results (note that the y-axis is logarithmic). The DCT retrieval
time includes the time needed to create the hash set, create the
histogram and sort the results, and perform re-ranking. LSH and
LSH are not evaluated due to their poor results in terms of

retrieval rate. -means codebooks requires clustering of the
gallery descriptors with in the order of thousands, an ex-
tremely expensive procedure, making it unsuitable for practical
face retrieval application with large gallery sizes; thus, it is not
included in this experiment.
As expected, the time for linear scan increases linearly with

the size of the gallery. The time for DCT retrieval, however, is
essentially constant, around 9 milliseconds per probe and ap-
proximately 11 milliseconds faster than KLSH.

V. CONCLUSIONS

We demonstrated that using DCT retrieval in combination
with LBP, LPQ, or HOG descriptors is scalable, with results
that are close to Chi-square linear scan and essentially constant
query processing time. The proposed DCT hashing algorithm
demonstrated superior performance compared to LSH, LSH,
KLSH, min-hash, KSH, and K-means codebooks. Our experi-
ments showed that current LSH-based methods (e.g., KLSH) do
not lend themselves well to face retrieval and perform poorly in
terms of NN recall rate. We demonstrated how DCT hashing in
conjunction with common face descriptors (e.g., LBP, LPQ, and
HOG) can be used to create a high performing indexing struc-
ture for accurate approximate nearest neighbor search for face
images.
DCT hashing is fast and computationally inexpensive;

retrieval time is constant (approximately 9 milliseconds per
probe) for any size gallery. The experiments were performed on
an HP mobile workstation with Intel i7 processor and 8 GB of
RAM using images from six publicly available face databases;

KAFAI et al.: DISCRETE COSINE TRANSFORM LOCALITY-SENSITIVE HASHES FOR FACE RETRIEVAL 1099

FERET, FEI, RaFD, LFW, Multi-PIE, and BioID. The most
challenging issue is the cost of computing the hash, which is

for the algorithm provided in the paper, where
is the size of the hash universe.

APPENDIX

We start by defining the symbols used in the statement of the
theorem and the proof. All the symbols and definitions used in
the appendix have local scope. We then present the main the-
orem in theorem 1.
Definitions:
• A vector is zero centered if the sum of its elements is zero.
• . We assume that and are zero centered.
Further, we assume that

•
• is an integer greater than . We prove our results in the
limit as

• are repeated vectors of and . See table II
for the definition of repeated vector.

• DCT is the Discrete Cosine Transform defined as

(5)

where and

(6)

• is the transformation matrix of the DCT.
• is the row of , is the column of
• , i.e., is the DCT of .
• , i.e., is the inverse DCT of .
• is an integer less than . stays constant as
• , , i.e., is a set of integers
between 2 and whose size is .

• is a random permutation of chosen uniformly.
• is the inner product of and .
Theorem 1: As , the set of pairs

(7)

tend to a set of independent, identically distributed bivariate
normal random variables with

(8)

Proof: By lemma 7, as , The distribution of the
variables in

(9)

tends to multivariate normal. Since a multivariate normal dis-
tribution is completely determined by its mean and correlation
matrix, we will next calculate the mean and correlations.
We note that all rows of except the first row are zero cen-

tered and unit length. Let . Then for some ,
or Thus by lemma 11 .

Let be both zero centered. Let . Let
and Then by lemma 4,

(10)

Since is an orthogonal matrix, if , i.e., the
right hand side of eq. (10) is 0. This means that for all pairs of
variables in where , their covariance is zero. Since is
multivariate normal in the limit, covariance of 0 means that in
the limit these variables are independent.
When , by orthogonality of . Thus, eq. (10)

can be rewritten as

(11)

We state without proof that when are repetitions of

(12)

This can be easily proved by definition of , , and repeated
vectors. Thus, by eq. (11) and eq. (12),

and .
Thus, the pair is a bivariate normal random

variable with and .

Lemma 1: Let such that and
. Then

(13)

Proof: For each permutation , there is a unique pair
such that . For each such pair, .
There are such pairs, and each is equally probable.
Therefore, the probability that is .
Lemma 2: Let .
Then
Proof:

Lemma 3: Let , . Then

Proof: We have

(14)

By lemma 1 . Thus,

(15)

1100 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

is zero centered; therefore, . So

(16)

Lemma 4: Let be unit length and zero centered,
and be zero centered. Then

(17)

Proof: Let . From lemmas 1 and 2 it
follows that

(18)

where is the identity matrix and is the matrix
of ones. We have

(19)

Since is zero centered and is all ones, we have
and . Thus,

(20)

Lemma 5: Let , where at most k elements of are
non-zero, , and . Let be the inverse

DCT transform of . Then , is zero centered,

, and .

Proof: By definition of inverse transform .

Transposing both sides, . Since is an orthog-

onal matrix, . So . Multiplying both

sides by , , i.e., .
is zero centered because is the DCT transform of and

.

Since, as we just proved, , for any ,

Since for all , at

most elements of are non-zero, and all elements of are

less than or equal to one, .

Finally, is an orthogonal matrix, thus, .
Lemma 6: Let have at most non-zero elements

each. Further, let , and

(21)

Then the distribution of tends to a normal distribution as
.
Proof: We have in the following cases:

(22)

(23)

(24)

But zero can be considered a normal random variable with
zero mean and standard deviation, so if any of we are
eqs. (22) to (24), we are done. The rest of this proof deals
with the case that none of eqs. (22) to (24) are true. Let

. Since eq. (22) is false, .
Thus, we can divide the two sides of eq. (21) by , getting

(25)

Let , , and . Then

(26)

We prove that the distribution of tends to normal distribution
as . This is sufficient to prove the lemma statement,
because is a constant and .
From the definition of and it can be immediately proved

that

(27)

From eq. (26) and lemma 5, by definition of DCT we can derive

(28)

By lemma 5 we have and ; thus, from
eq. (27) we have

(29)

We are going to use Theorem 3 in [47] to prove the lemma state-
ment. Consider the matrix , defined as

(30)

From eq. (28) it follows that . and
are zero centered by lemma 5. Also, and are zero centered
by assumption. Thus, all the rows and columns of are zero

KAFAI et al.: DISCRETE COSINE TRANSFORM LOCALITY-SENSITIVE HASHES FOR FACE RETRIEVAL 1101

centered. Therefore, by Theorem 3 in [47], the distribution of
tends to normal as if we can prove

(31)

Let , and . Define as

(32)
We know that (due to definition of repeated vector,
and the fact that). We also know from eq. (29) that

. Thus, by lemma 9

(33)

Since , . Thus, and
by eq. (33) . Let .
Substituting, we get

(34)

What we show next is that . First, we show that .

(35)

But , and by eq. (29) and lemma 8, so
. The only conditions under which are

(36)

or

(37)

But by lemma 8 and definition of cosine, eq. (36) implies that

(38)

Similarly, eq. (37) implies that

(39)

Since , and , eq. (38)
is excluded by eq. (23), and eq. (39) is excluded by eq. (24); thus,

. Thus, since , we can conclude that ,
i.e. . By eq. (34) . Therefore, since by
lemma 10 as , as . Now we
turn our attention to the numerator of eq. (31). Let

(40)

We show that for a constant , as . By definition

(41)

thus,

(42)

By lemma 5, for all

(43)

Let and . Then because

and are repetitions of and , for all

and (44)

Let us replace in eq. (42) with the upper
bounds of their absolute values from eqs. (43) and (44). This
gives us

(45)

Factorizing and simplifying we get . Now,
eq. (31) can be rewritten as

(46)

But we proved that as , and .
Since is a constant, eq. (46) follows.
Lemma 7: Let . As
, the distribution of the random variables in tends to a mul-

tivariate normal distribution.
Proof: It is sufficient to prove that any linear combination

of the variables in tends to a normal distribution. But a linear
combination of the variables in can be represented as

where , and

since (47)

and

non-zero elements in and (48)

We prove in lemma 6, that given eqs. (47) and (48), the distri-
bution of tends to a normal distribution as , which
proves the lemma statement.
Lemma 8: Let such that

(49)

Then and
iff
iff

Proof: Let , , and
. By Cauchy Schwarz inequality [48], and

iff for some scalar (50)

To determine the maximum of , we consider condition
eq. (50). Now, if , . Let . Thus
and from eq. (49). we have . From these two, we
can derive and . Thus, , and

. The maximum of under condition eq. (50).

is achieved when . But implies that ,

1102 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 4, JUNE 2014

which implies that or . But if ,
and if ,

Lemma 9: Let s.t. and

. Then

(51)

where , and .
Proof: Proof follows from expanding eq. (51). and then

summing the components separately.
Lemma 10: Let such that . Let

be the repetition of . Let . Then as , .
Proof: Since is a repeated vector,
, where is the integer division of and . But as

, proving the lemma statement.
Lemma 11: Let s.t. is zero centered. Then

.
Proof: Let . Then

.

REFERENCES

[1] A. Jain, B. Klare, andU. Park, “Facematching and retrieval in forensics
applications,” IEEE Multimedia, vol. 19, no. 1, Jan. 2012, 20 pp.

[2] The New York Times [Online]. Available: www.nytimes.com/
2013/04/19/us/fbi-releases-video-of-boston-bombing-suspects.html.

[3] D. Huang, C. Shan, M. Ardabilian, Y. Wang, and L. Chen, “Local bi-
nary patterns and its application to facial image analysis: A survey,”
IEEE Trans. Syst., Man, Cybern. C, vol. 41, no. 6, pp. 765–781, Nov.
2011.

[4] K. Eshghi and S. Rajaram, “Locality sensitive hash functions based on
concomitant rank order statistics,” in Proc. KDD, NewYork, NY, USA,
2008, pp. 221–229, ACM.

[5] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” in Proc. ICVLD, 1999.

[6] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” Commun. ACM, vol. 51,
no. 1, pp. 117–122, Jan. 2008.

[7] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 6, pp. 1092–1104,
Jun. 2012.

[8] O. Chum, J. Philbin, and A. Zisserman, “Near duplicate image detec-
tion: Min-hash and tf-idf weighting,” in Proc. BMVC, 2008.

[9] W. Liu, J. Wang, R. Ji, Y. G. Jiang, and S. F. Chang, “Supervised
hashing with kernels,” in Proc. CVPR, 2012.

[10] L. Paulevé, H. Jégou, and L. Amsaleg, “Locality sensitive hashing: A
comparison of hash function types and querying mechanisms,” Pattern
Recognit. Lett., vol. 31, no. 11, pp. 1348–1358, Aug. 2010.

[11] T. Ahonen, E. Rahtu, V. Ojansivu, and J. Heikkila, “Recognition of
blurred faces using local phase quantization,” in Proc. ICPR, Dec.
2008.

[12] O. Déniz, G. Bueno, J. Salido, and F. D. la Torre, “Face recognition
using histograms of oriented gradients,” Pattern Recognit. Lett., vol.
32, no. 12, pp. 1598–1603, 2011.

[13] X. Cheng and L. T. Chia, “Stratification-based keyframe cliques for
effective and efficient video representation,” IEEE Trans. Multimedia,
vol. 13, no. 6, pp. 1333–1342, Dec. 2011.

[14] H. Chen and B. Bhanu, “Efficient recognition of highly similar 3D ob-
jects in range images,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
31, no. 1, pp. 172–179, Jan. 2009.

[15] S. Dey and D. Samanta, “Iris data indexing method using Gabor en-
ergy features,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 4, pp.
1192–1203, Aug. 2012.

[16] B. Bhanu and X. Tan, “Fingerprint indexing based on novel features
of minutiae triplets,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25,
no. 5, pp. 616–622, May 2003.

[17] A. Joly and O. Buisson, “Random maximummargin hashing,” in Proc.
CVPR, 2011.

[18] Y. Lin, R. Jin, D. Cai, S. Yan, and X. Li, “Compressed hashing,” in
Proc. CVPR, 2013.

[19] K. He and J. Sun, “Computing nearest-neighbor fields via propagation-
assisted kd-trees,” in Proc. CVPR, Jun. 2012, pp. 111–118.

[20] T. Vikram, K. Chidananda Gowda, D. Guru, and S. Urs, “Face indexing
and retrieval by spatial similarity,” in Proc. Congr. Image and Signal
Processing, CISP, May 2008, vol. 1, pp. 543–547.

[21] P. J. Grother, G. T. Candela, and J. L. Blue, “Fast implementations of
nearest neighbor classifiers,” Pattern Recognit., pp. 459–465, 1997.

[22] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in Proc. ECCV,
2008.

[23] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in Proc.
CVPR, 2007.

[24] A. Gyaourova and A. Ross, “Index codes for multibiometric pattern
retrieval,” IEEE Trans. Inf. Forensics Security, vol. 7, pp. 518–529,
Apr. 2012.

[25] Z. Wu, Q. Ke, J. Sun, and H. Y. Shum, “Scalable face image retrieval
with identity-based quantization and multireference reranking,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 33, no. 10, pp. 1991–2001, Oct.
2011.

[26] J. He, R. Radhakrishnan, S. F. Chang, and C. Bauer, “Compact hashing
with joint optimization of search accuracy and time,” in Proc. CVPR,
2011.

[27] G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-NeighborMethods
in Learning and Vision: Theory and Practice (Neural Information Pro-
cessing). Cambridge, MA, USA: MIT Press, 2006.

[28] L. Bo and C. Sminchisescu, “Efficient match kernels between sets of
features for visual recognition,” in Proc. NIPS, 2009.

[29] O. Chum and J. Matas, “Fast computation of min-hash signatures for
image collections,” in Proc. CVPR, 2012.

[30] R. Salakhutdinov and G. Hinton, “Learning a nonlinear embedding by
preserving class neighbourhood structure,” in Proc. Int. Conf. Artificial
Intelligence and Statistics, 2007, vol. 11.

[31] V. D. Kaushik, A. K. Gupta, U. Jayaraman, and P. Gupta, “An efficient
indexing scheme for face database using modified geometric hashing,”
Neurocomput., 2012.

[32] J. P. Heo, Y. Lee, J. He, S. F. Chang, and S. E. Yoon, “Spherical
hashing,” in Proc. CVPR, 2012.

[33] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS,
2008.

[34] J. Wang, S. Kumar, and S. F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in Proc. CVPR, Jun. 2010.

[35] C. S. Lu and C. Y. Hsu, “Geometric distortion-resilient image hashing
scheme and its applications on copy detection and authentication,”
Multimedia Syst., vol. 11, no. 2, pp. 159–173, 2005.

[36] R. Davarzani, K. Yaghmaie, S. Mozaffari, and M. Tapak, “Copy-move
forgery detection usingmultiresolution local binary patterns,” Forensic
Sci. Int., vol. 231, pp. 61–72, 2013.

[37] O. A. Vasicek, “A series expansion for the bivariate normal integral,”
J. Computat. Finance, vol. 1, no. 4, pp. 5–10, 1998.

[38] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” in Proc. Information Processing and Management,
1988.

[39] R. Grossa, I. Matthewsa, J. Cohnb, T. Kanadea, and S. Bakerc, “Multi-
PIE,” Image Vision Comput., vol. 28, no. 5, pp. 807–813, 2010.

[40] P. Phillips, H. Moon, P. Rauss, and S. Rizvi, “The FERET evaluation
methodology for face-recognition algorithms,” in Proc. ICPR, 1997.

[41] C. E. Thomaz and G. A. Giraldi, “A new ranking method for principal
components analysis and its application to face image analysis,” Image
Vision Comput., vol. 28, no. 6, pp. 902–913, 2010.

[42] O. Langner, R. Dotsch, G. Bijlstra, D. Wigboldus, S. Hawk, and A.
Van Knippenberg, “Presentation and validation of the radboud faces
database,” Cognit. Emotion, vol. 24, no. 8, pp. 1377–388, 2010.

[43] BioID face database [Online]. Available: http://www.bioid.com/down-
loads/images.html.

[44] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments, Univ. Massachusetts, Amherst, MA, USA, Oct.
2007, pp. 07–49, Tech. Rep.

KAFAI et al.: DISCRETE COSINE TRANSFORM LOCALITY-SENSITIVE HASHES FOR FACE RETRIEVAL 1103

[45] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.
Comput. Vision, vol. 57, pp. 137–154, May 2004.

[46] S. B. Bengio, J. Mariéthoz, and M. Keller, “The expected performance
curve,” in Proc. ICML, 2005, pp. 9–16.

[47] W. Hoeffding, “A combinatorial central limit theorem,” Ann. Math.
Statist., vol. 22, no. 4, pp. 558–566, 1951.

[48] S. S. Dragomir, “A survey on cauchy-bunyakovsky-schwarz type dis-
crete inequalities,” J. Inequal. Pure Appl. Math., vol. 4, no. 3, pp.
1–142, 2003.

Mehran Kafai (S’11–M’13) received the M.Sc. de-
gree in computer engineering from Sharif University
of Technology, Tehran, Iran, in 2005, the M.Sc. de-
gree in computer science from San Francisco State
University in 2009, and the PhD degree in computer
science from the Center for Research in Intelligent
Systems (CRIS), University of California, Riverside
in 2013. His research interests are in computer vision,
machine learning, and data mining. He is currently a
research scientist at Hewlett Packard Laboratories in
Palo Alto, California, USA. His recent research has

been concerned with big-data analysis and retrieval.

Kave Eshghi is a software engineer at Google. He
received his Ph.D. in Computer Science from the
Imperial College of Science and Technology in 1986.
His early interests were Logic Programming and
Artificial Intelligence, but more recently he has made
contributions in storage technology, particularly in
the area of data deduplication. His other interests
include information retrieval, with an emphasis on
similarity based retrieval of images. Currently, he is
working on language modelling for large vocabulary
speech recognition.

Bir Bhanu (S’72–M’82–SM’87–F’95) received the
S.M. and E.E. degrees in electrical engineering and
computer science from the Massachusetts Institute
of Technology, Cambridge, MA, USA; the Ph.D.
degree in electrical engineering from the University
of Southern California, Los Angeles, CA, USA; and
the M.B.A. degree from the University of California,
Irvine, CA, USA. He was the founding faculty in the
College of Engineering, and the founding Professor
of electrical engineering with the University of
California (UCR), Riverside, CA, and served as

its First Chair from 1991 to 1994. Since 1991, he has been the Director of
Visualization, and Intelligent Systems Laboratory, UCR. Since 1991, 2006,
and 2008, he has been a Cooperative Professor of computer science, and

engineering, bioengineering, and mechanical engineering, respectively, with
UCR. He was a Senior Honeywell Fellow with Honeywell Inc., Minneapolis,
MN, USA. He has been with the Faculty of the Computer Science, University
of Utah, Salt Lake City, UT, USA, and with Ford Aerospace, and Communi-
cations Corporation, Newport Beach, CA, USA; French Institute for Research
in Computer Science, and Control (INRIA);, and IBM San Jose Research
Laboratory, San Jose, CA, USA. He is currently a Distinguished Professor of
electrical engineering, and serves as the Founding Director of the Interdiscipli-
nary Center for Research in Intelligent Systems, UCR. In addition, he serves
as the Director of the National Science Foundation (NSF) Interdisciplinary
Graduate Education, Research, and Training Program in video bioinformatics
with UCR. He has been the Principal Investigator of various programs for the
NSF, the Defense Advanced Research Projects Agency (DARPA), NASA,
the Air Force Office of Scientific Research, the Office of Naval Research, the
Army Research Office, and other agencies, and industries in the areas of video
networks, video understanding, video bioinformatics, learning, and vision,
image understanding, pattern recognition, target recognition, biometrics,
autonomous navigation, image databases, and machine-vision applications. He
is the coauthor of the books Computational Learning for Adaptive Computer
Vision (to be published), Human Recognition at a Distance in Video (Berlin,
Germany: Springer-Verlag, 2011), Human Ear Recognition by Computer
(Berlin, Germany: Springer-Verlag, 2008), Evolutionary Synthesis of Pattern
Recognition Systems (Berlin, Germany: Springer-Verlag, 2005), Computational
Algorithms for Fingerprint Recognition (Norwell, MA, USA: Kluwer, 2004),
Genetic Learning for Adaptive Image Segmentation (Norwell, MA, USA:
Kluwer, 1994), and Qualitative Motion Understanding (Norwell, MA, USA:
Kluwer, 1992). He is the coeditor of Computer Vision Beyond the Visible
Spectrum (Berlin, Germany: Springer-Verlag, 2004), Distributed Video Sensor
Networks (Berlin, Germany: Springer-Verlag, 2011), and Multibiometrics for
Human Identification (Cambridge, U.K.: Cambridge University Press, 2011).
He is the holder of 18 (five pending) U.S. and international patents. He has
more than 450 reviewed technical publications, including over 120 journal
papers and 43 book chapters. Dr. Bhanu is a Fellow of the American Associa-
tion for the Advancement of Science, the International Association of Pattern
Recognition, and the International Society for Optical Engineering. He has
served as the General Chair for the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), the IEEE Conference on Advanced Video and
Signal-Based Surveillance, the Association for Computing Machinery/IEEE
Conference on Distributed Smart Cameras, the DARPA Image Understanding
Workshop, the IEEE Workshops on Applications of Computer Vision (founded
in 1992 now Winter Applications of Computer Vision Conference), and the
CVPR Workshops on Learning in Computer Vision and Pattern Recognition,
Computer Vision Beyond the Visible Spectrum, and Multi-Modal Biometrics.
He has been on the Editorial Board of various journals and has edited special
issues of several IEEE TRANSACTIONS, such as the IEEE TRANSACTIONS
ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, IEEE TRANSACTIONS
ON IMAGE PROCESSING, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS–PART B: CYBERNETICS, IEEE TRANSACTIONS ON ROBOTICS
AND AUTOMATION, AND IEEE TRANSACTIONS ON INFORMATION FORENSICS
AND SECURITY. He served on the IEEE Fellow Committee from 2010–2012.
He was the recipient of the Best Conference Papers and Outstanding Journal
Paper Awards, and the Industrial and University Awards for Research Ex-
cellence, Outstanding Contributions, Team Efforts and Doctoral/Dissertation
Advisor/Mentor Award.

