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Abstract—This paper focuses on a challenging pattern recog-
nition problem of significant industrial impact, i.e., classifying
vehicles from their rear videos as observed by a camera mounted
on top of a highway with vehicles traveling at high speed. To solve
this problem, this paper presents a novel feature called structural
signature. From a rear-view video, a structural signature recovers
the vehicle side profile information, which is crucial in its classifi-
cation. As a vehicle moves away from a camera, its surfaces deform
differently based on their relative orientation to the camera. This
information is used to extract the structure of a vehicle, which
captures the relative orientation of vehicle surfaces and the road
surface. This paper presents a complete system that computes
structural signatures and uses them for classification of passenger
vehicles into sedans, pickups, and minivans/sport utility vehicles
in highway videos. It analyzes the performance of the proposed
system on a large video data set.

Index Terms—Image motion analysis, object recognition,
vehicles.

I. INTRODUCTION

V EHICLE classification is an important industrial applica-
tion of computer vision and pattern recognition technol-

ogy. Vehicle class information can be useful in traffic analysis,
class-based tolling, security applications, surveillance tasks,
and law enforcement. For a vehicle classification system to be
useful in a real-world application, it must be robust to illumina-
tion changes, shadows, partial detections, occlusion, tracking
failure, imaging system changes, camera viewpoint changes,
etc. Current vehicle classification methods that rely on blob
features or appearance features cannot meet these requirements.
Table I summarizes related publications.

Gupte et al. [1] use vehicle dimensions to classify their side
views in real time; however, the classification is only limited
to sedans and nonsedans. With a constellation model, Ma and
Grimson [3] classify sedans versus taxis and sedans versus
minvans in their edge-based approach. They use oblique side
views of vehicles in their work. Note that a side view of a
vehicle can be easily occluded on multilane roads. Additionally,
most of the cameras deployed along the road capture rear or
front views of a vehicle, reducing the applicability of side-view-
based techniques. Morris and Trivedi [7] also use side views
of vehicles and blob features to classify vehicles. Kafai and
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Bhanu [8] use a hybrid dynamic Bayesian network to classify
rear views of vehicles. They use features such as locations and
dimensions of landmarks (e.g., license plates and tail lights)
as well as their spatial relationships in the network. Detection
of these high-level landmarks is challenging under varying
environmental conditions.

Other work related to vehicle recognition focuses on recog-
nizing the make and model of a vehicle. Petrovic and Cootes [9]
compare various appearance features for identifying the make
and model of vehicles from their frontal views. Negri et al.
[10] use oriented contour features of frontal views to classify
vehicles. Pearce and Pears [11] use a recursive partitioning
scheme with Harris corner features to identify the class of a
vehicle. All of these approaches use appearance information,
which can widely change under varying environmental condi-
tions. Therefore, the applicability of these approaches in real-
world scenarios is limited.

All of these current methods either capture the appearance
or blob structure of a vehicle. None of these methods use
structural information that can be inferred from multiple views
in the classification. An incremental approach by Ghosh and
Bhanu [12] uses information from multiple video frames to
learn the 3-D model of a vehicle, which can be used for
vehicle classification. However, this approach is unsuitable for
real-time implementation. In view of the state of the art, the
contributions of this paper are as follows:

1) development of a vehicle classification system from the
rear-view video of a vehicle, which classifies vehicles
into three classes: sedan, pickup, and minivan/sport utility
vehicle (SUV);

2) introduction of a novel feature called structural signature
that captures side profile of a vehicle from rear-view
video data;

3) integration of information from multiple video frames in
the signature computation as well as in classifier decision
making;

4) validation with 1664 vehicle sequences extracted from
real-world videos.

A concise version of this paper appeared in [13].
This paper is organized as follows. Section II motivates

the structural signature approach. The technical approach is
outlined in Section III. The experimental results are presented
in Section IV and this paper is concluded in Section V.

II. MOTIVATION

Fig. 1 shows vehicle rear views from various categories. The
canonical vehicle surfaces visible from a rear view are either
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TABLE I
RELATED WORK

Fig. 1. (Top) Canonical structures for different vehicles. (Bottom) Rear views (black line: parallel to the road; white line: almost perpendicular to the road).
(a) Sedan. (b) Pickup. (c) Minivan. (d) SUV.

almost parallel or perpendicular to the road. As seen in the top
row in Fig. 1, these surface orientations alone are discriminative
enough to separate sedans, pickups, and minivans/SUVs. We
call these surfaces with different orientations structural sig-
natures. The challenge is to capture these surface orientations
reliably with minimal computational effort.

From the rear view, the structure of a vehicle can be charac-
terized along any vertical axis. The structure is almost the same
around the center of a vehicle image. We choose to encode the
structural signature along the axis of bilateral symmetry of a
vehicle due to the reasons given below.

1) All types of passenger vehicles exhibit strong bilateral
symmetry from the rear.

2) The axis of symmetry is robust to partial detection of a
vehicle as well as to spurious regions, such as shadows
being detected from the video as a part of the vehicle.

3) It is robust to illumination variation, body color change,
image resolution change, etc. Thus, the axis of symmetry
can be detected consistently and reliably.

Note that vehicle symmetry has been used in the past for
vehicle detection [14]–[17]. However, we establish symmetry
of the region of interest (ROI) instead of the entire image,
reducing the computational burden.

III. TECHNICAL APPROACH

By analyzing motion of an object with time, its structure can be
recovered. While this is the general principle of structure-from-
motion approaches, we would like to reduce the complexity of
the solution by imposing additional constraints of our problem.

A. Principle of the Technique

In a typical tolling or traffic monitoring scenario, a video
camera is mounted on the top of a lane, which observes vehicles
as they move away from the camera. In this scenario, we can
safely assume that the velocity of vehicles is negligible in the
direction perpendicular to the lane and almost constant along
the lane. We will characterize geometry of this scene in a
parallel projection where the projection plane is orthogonal to
the road plane as well as the camera image plane. Under this
projection, the road and image planes appear as lines.

As the vehicle surfaces hold a constant relationship with
the road independent of the camera, we choose to analyze the
surfaces with respect to their road projection instead of their
image projections.

Let an object on a plane be imaged by a camera. The object
is moving away from the camera. The motion of the object
is negligible along the direction of the horizontal scanlines of
the image. This adequately describes a vehicle moving on a
road that is being captured from the rear by a camera mounted
above the road. For simplicity, the object is assumed to be a
cuboid. The side view of this object at time instance t is shown
in Fig. 2. We analyze the horizontal and vertical faces of the
cuboid, which are represented by P1P2 and P1P3, respectively.

Theorem 1: The height of the projection of the surface
parallel to the road does not change with time.

Let the projection of the surface P1P2 at time t be α(t)d.
Since �ODP1(t)∼�OP0P

′
1(t), �ODP2(t)∼�OP0P

′
2(t).

Using properties of similar triangles

h− δ

h
=

DP1(t)

P0P ′
1(t)

=
DP1(t) + d

P0P ′
1(t) + α(t)d

=
1

α(t)
. (1)
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Fig. 2. Scene geometry of projection on the road.

Fig. 3. System for vehicle classification.

As α(t) is a constant, the height of the projection of the surface
parallel to the road does not change with time. �

Theorem 2: The height of the projection of the surface
perpendicular to the road changes with time.

Let the projection of the vertical line P1P3 at time t be σ(t)s.
Since ΔODP1(t) ∼ ΔOP0P

′
1(t), ΔODD′(t) ∼ ΔOP0P

′
3(t),

we get

P0P
′
3(t)

σ(t)s
=

x(t)

y(t)
. (2)

As ΔODD′(t) ∼ ΔP3(t)P1(t)D
′(t)

x(t)

y(t)
=

h− δ

s
. (3)

From (2) and (3), σ(t) = P0P
′
3(t)/(h− δ). As σ(t) changes

with time, the height of the projection of the surface perpendic-
ular to the road changes with time. �

Based on the properties of vertical and horizontal surfaces,
we develop an approach to compute the structural signatures
of vehicles, which are used in the vehicle classification system
shown in Fig. 3.

B. Road-to-Camera Mapping

To find the vehicle surface projection on the road, a rela-
tionship between the camera image plane and the road plane
has to be established. This relationship is a homography [18].
Homography H can be estimated with a minimum of four-point
correspondence, which can be easily established with existing
standardized pavement markings such as lane markings, as
shown in Fig. 4.

C. Bilateral Symmetry Detection

Before the axis of bilateral symmetry of a vehicle is estab-
lished, the vehicle is detected from the video with a moving-
object detection approach from [19]. For each ROI selected
by moving-object detection, the bilateral axis of symmetry is
established. The axis is established through a voting scheme.

Given the orientation of the ROI, the axis of symmetry is
assumed to be vertical, i.e., it corresponds to one of the ROI

Fig. 4. Estimating road-to-image homography from lane markings.

columns. To estimate the axis of symmetry, we first estimate
edge magnitudes and the orientation of the image using Gabor
filters. To avoid texture edges, we apply surround suppression
[20] to the Gabor response. We carry out nonmaximal suppres-
sion to get the final set of edges.

For a candidate axis location corresponding to the jth column
of ROI R with edge magnitude E and its quantized orientation
O, the votes are counted as

V (j) =
∑

∀i,j−,j+:(i,j+)∈R,(i,j−)∈R
v(i, j−, j+) (4)

where

v(i, j−, j+) =

{
min(Ei,j− , Ei,j+), Oi,j− = O′

i,j+

0, otherwise.

Additionally, j+ = j +Δ, j− = j −Δ, and O′
i,j = π −Oi,j .

For the candidate axis location j, Δ takes values from 1 to
min(j,width(ROI) − j). The axis of symmetry is assigned to
the column with the highest number of votes. A small rectan-
gular template around the axis of symmetry is selected, and it
is tracked in the subsequent frames using template matching.

D. Multiframe Matching

To establish the structural signature between two frames i
and j, only the templates from i to j are needed to be analyzed.
First, a row-to-row correspondence between the templates is
established. This can be achieved in two ways: 1) by matching
the template pairs of adjacent frames and then propagating the
matches and 2) by performing multiframe matching on all the
templates in a single operation.

Multiframe matching offers various advantages over frame-
to-frame matching as follows.

1) Multiframe matching provides more constraints on the
matching as multiple frames are involved.

2) The matching can recover in subsequent frames after
failure in a certain frame.

3) As errors and failures do not propagate, matches gener-
ated after each frame are independent.

4) Due to this independence, decisions such as classifica-
tion after each frame can be combined to improve their
accuracy.

We establish the following property, which can be used as a
constraint for multiframe matching.

Theorem 3: For a vehicle moving at a constant speed, under
the 1-D image projection centered at projection of the line at the



THAKOOR AND BHANU: STRUCTURAL SIGNATURES FOR PASSENGER VEHICLE CLASSIFICATION IN VIDEO 1799

Fig. 5. Scene geometry of projection on the camera image plane.

infinity, the inverse of the projection of a feature on the vehicle
linearly varies with time.

Fig. 5 shows the scene geometry. The optical center of the
camera is located at O. We treat this as the origin of the 2-D
camera coordinate system with the positive x-axis pointing
right and parallel to the road and the positive y-axis pointing
downward. The height of the camera from the road is h. The
focal length of the camera is f , and the depression angle with
respect to the x-axis is θ. The image plane of the camera
intersects with x- and y-axes at Ix ≡ (f/ cos θ, 0) and Iy ≡
(0, f/ sin θ), respectively.

Consider point P on a vehicle visible from the camera. At
time t, let the coordinates of P be (D(t), l). At time t, point P
is projected at P ′(t), which lies at the intersection of line IxIy
and line OP . Solving for this point yields

P ′
camera2D(t) =

(
fD(t)

D(t) cos θ + l sin θ
,

lf

D(t) cos θ + l sin θ

)
.

From the above, the projection of the line at the infinity is

lim
D(t)→∞

P ′
camera2D(t) =

(
f

cosθ
, 0

)
≡ Ix.

In the 1-D image coordinate system with Ix as the origin, the
projection is given by the distance between Ix and P ′(t), i.e.,

P ′
image1D(t) =

lf

cos θ (D(t) cos θ + l sin θ)
.

Taking the inverse of the projection and differentiating with
time t, we get

d

dt

1
P ′
image1D(t)

=
cos2 θ

lf

d

dt
D(t).

For a vehicle traveling at constant velocity ν, the above expres-
sion turns into a constant K. Thus

d

dt

1
P ′
image1D(t)

=
ν cos2 θ

lf
= K. (5)

Thus, the inverse of P ′
image1D(t) linearly varies with time. �

The real 2-D image coordinates can be easily converted to
the 1-D side-view image coordinates. First, the 1-D side-view

Fig. 6. Finding P∞ with the lane markings and the vanishing point.

Fig. 7. Constrained multiframe matching.

image coordinate system is aligned along the y-axes of the 2-D
image coordinates. Second, as shown in Fig. 5, the origin Ix
of the 1-D side-view image coordinate system is located on the
projection of the line at the infinity. Thus

P ′
image1D = P ′

image2D(y)− P∞

where P∞ is the y-coordinate of the image projection of the line
at the infinity.

Fig. 6 illustrates how the parallel lane markings and their
vanishing point can be used to find P∞. Generally, P∞ lies
outside the image and has a negative value. In the rest of this
section, we will use the 1-D side-view image coordinates.

Based on Theorem 3, we develop a constrained multiframe
matching approach. Consider frames i and j, where j − i > 1.
To match 1-D image location Y i in frame i with 1-D image
location Y j in frame j, a frame-to-frame matching cost can be
written as

CFF (Y
i, Y j) = g

(
IiN (Y i), IjN (Y j)

)
where IN indicates neighborhood image intensities, and g(·) is
a similarity function.

However, if Y i and Y j are matched, then they must follow (5)
and should also match certain locations in frames i+1 to j−1,
as shown in Fig. 7. We denote these constrained locations by
χi+1, χi+2, . . . , χj−1. We define a multiframe matching cost as

CMF (Y
i, Y j) = g

(
IiN (Y i), Ii+1

N (χi+1), . . . ,

Ij−1
N (χj−1), IjN (Y j)

)
(6)
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where intermediate locations χk’s are given by the discrete time
version of (5) as

χk =

(
1
Y i

+
k − i

j − i

(
1
Y j

− 1
Y i

))−1

. (7)

The goal of multiframe matching is to establish correspon-
dence between rows of templatesT i andT j. In terms of the rows

T i =
[
ri1, r

i
2, . . . , r

i
N

]
T j =

[
rj1, r

j
2, . . . , r

j
M

]
where rkl indicates the lth row of the window from the kth frame.
This correspondence problem can be solved with dynamic time
warping (DTW) [21] by minimizing a matching cost, i.e.,

Cp(T
i, T j) =

L∑
l=1

c
(
rinl

, rjml

)
(8)

where p is a warping path [21], where row rinl
corresponds with

row rjml
for l=1, 2, . . . , L, and c is a row-to-row matching cost.

In our formulation, we use the multiframe cost in (6) as the
row-to-row matching cost. As there is one-to-one mapping from
1-D side-view image coordinates to actual image y-coordinates
and to the corresponding rows in the selected window, we re-
write (6) in terms of rows as (with a slight abuse of the notation)

CMF (Y
i, Y j) =CMF (y

i − P∞, yj − P∞)

=CMF (y
i, yj) = CMF (r

i, rj).

Additionally, if the term IkN (Y k) returns row rk from the
window as the neighborhood of yk, (6) can be further reduced to

CMF (r
i, rj) = g(ri, ri+1, . . . , rj).

We define the following similarity function between rows
ri, ri+1, . . . , rj , which is the sum of element-wise variances

g(ri, ri+1, . . . , rj) = |r̄2 − (r̄)2| (9)

where

r̄ =
1

j − 1 + 1

j∑
k=i

rk

r̄2 =
1

j − i+ 1

j∑
k=i

rk · rkT .

Algorithm 1 shows the process of computation of cost matrix
D from (9), which can then be passed to a standard DTW
optimization algorithm to find optimal warping path p∗. Thus

p∗ = DTW(D).

Fig. 8 shows an example of frame-to-frame and multiframe
matching. The frames being matched are shown in Fig. 8(a)
and (b), with the templates marked by the rectangles. The
row-versus-row cost matrix is shown in Fig. 8(c) and (d). The
additional constraints on the multiframe cost show up as streaks
in the multiframe cost matrix, whereas the frame-to-frame cost
matrix only shows a rectangular block structure.

Fig. 8. Multiframe matching. (a) Frame 1. (b) Frame 8. (c) Frame-to-frame
cost for frames 1–8. (d) Multiframe cost for frames 1–8. In panels (c) and (d),
darker (cooler) colors indicate lower cost, whereas brighter (warmer) colors
indicate higher cost.

Algorithm 1: ComputeMultiFrameCostMatrix

Input: T i, T j ← Windows to be matched,
T i+1, . . . , T j−1 ← Intermediate windows,
P∞ ← Projection of the line at infinity.
Output: D ← Cost matrix.
for m ← 0 to yib − yit do

for n ← 0 to yjb − yjt do
yi = yit +m
ri ← GetRow(T i, yi)
Y i ← yi − P∞
yj = yjt + n
rj ← GetRow(T j , yj)
Y j ← yj − P∞
for k ← i+ 1 to j − 1 do

Find χk with (7).
yk = χk + P∞.
rk ← GetRow(T k, yk)

end
D(m,n) = g(ri, ri+1, . . . , rj)

end
end

The optimal path returned by DTW, i.e., p∗ = {p∗1, p∗2, . . . ,
p∗L}, is in terms of the column and row numbers of matrix D,
i.e., p∗l = (ml, nl). The path is transformed to 1-D side-view
image coordinates as

Y i
l =ml + yit − P∞

Y j
l =nl + yjt − P∞.
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Fig. 9. Example frames from the databases used for different vehicle types.

E. Structural Signature Computation

Before structural signatures for a vehicle can be generated,
candidates for vehicle surfaces are generated in the ith frame.
Generally, the surface on vehicles is separated by strong hor-
izontal edges. This property can be used to split the vehicle
in N surface elements. Alternatively, this can be achieved
by splitting the template into N surface elements of equal
heights. Let the rows corresponding to the edges separating
the surface elements be E1, E2, . . . , EN , EN+1. Each adjacent
pair of edges (En, En+1) forms a surface element Sn,n+1. The
projection of this surface element on the road is Pn,n+1, which
is computed using the camera-to-road homography. For a pair
of frames (i, j), the structural signature can be computed as

Si,j =

(
P i
1,2 − P j

1,2

P i
1,2

, . . . ,
P i
N−1,N − P j

N−1,N

P i
N−1,N

)
(10)

which represents the normalized change in the height of surface
projections.

Quantities in the above equation can be found using edge
locations, row-to-row mapping from frame i to frame j, and
camera-to-road homography H .

IV. EXPERIMENTAL RESULTS

A. Video Data and Calibration

The proposed system was validated with two video data sets.
In the first data set, videos were recorded at a freeway location
over several days during daytime. The data set contains 778

TABLE II
DESCRIPTION OF DATABASES USED

examples. For the second data set, videos were recorded at
two freeway locations over several days during daytime, and
it contains 886 vehicles. For both data sets, the camera was
set up on top of a freeway lane at the height of 22 ft with
depression angles of 8◦–10◦, capturing more than 200 ft of the
lane. All videos were captured at the 1600 × 1200 resolution
at 12 fps, allowing for more than 15 frames with complete
view of vehicles traveling at freeway speeds (∼60 mi/h).
Fig. 9 shows example frames from these videos. Table II shows
the distribution of different vehicle types for both databases.

For each camera view in the videos, a camera-to-road ho-
mography was established by detecting lane separation mark-
ings. These markings are typically a 10 ft white strip followed
by a 30 ft gap. Using the lane width of 12 ft, two additional
points were located on the solid white lane to estimate the
homography.

B. Symmetry Detection

Vehicles were detected at the 400 × 300 resolution with
a moving-object detection technique using a combination of
frame difference and optical flow [19]. This motion-based
technique can fail when two vehicles follow each other very
closely as they enter the camera view by detecting them as
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Fig. 10. Symmetry detection. (a) Vehicle ROI with shadow with detected axis of symmetry overlaid. (b) ROI with nonmaximally suppressed edges. (c) Voting.

a single vehicle. As the data were collected on a freeway
in our case, this problem did not arise. An appearance-based
vehicle detector (such as in [22]) can be used as an alternative
when such problem is common. Detected objects that did not
lie on the right lane or were not entirely in the frame were
discarded. Vehicles on the left lane are discarded as the rear
of a vehicle is not completely visible for most of the frames. To
process the vehicles in the left lane, either the camera can be
moved to cover both lanes or a separate system for the left (or
any additional) lane can be deployed. The full resolution ROI
was then processed to compute the structural signature. In the
very first frame where the vehicle was completely visible, the
axis of symmetry was established. The edge orientations and
magnitudes to vote for the axis of symmetry were found with
Gabor filters with orientations 0, (π/4), (π/2), and (3π/4).
Fig. 10(a) shows an example ROI detected by the moving-
object detection system. In addition to the vehicle, the ROI
includes the strong dark shadow cast by the vehicle with some
spurious regions. The detected edges in the ROI are shown
in Fig. 10(b). The outcome of the voting process is shown
in Fig. 10(c), which clearly shows the location of the axis of
symmetry. Fig. 10(a) shows the original ROI overlaid with the
axis of symmetry.

C. Structural Signature Computation

The structural signature depends on the number of surface
elements chosen. With a subset of database 1, we conducted
experiments by varying the number of surface elements. Fig. 11
showsclassificationaccuracyfor theseexperiments.Wechose the
number of surface elements to be 11 as it shows maximum accu-
racy as well as the minimal drop-off to the closest alternatives.

The quality of structural signatures depends on the successful
tracking of vehicles. We estimated smoothness of the tracking
results, and the tracks that deviated too far from the smooth
trajectory were identified. About 48% tracks for database 1 and
39% tracks for database 2 were identified as nonsmooth. This
suggests that database 1 is more challenging for classification
when compared with database 2.

Fig. 12 shows a histogram-like representation of structural
signatures. These are computed for data with smooth trajec-
tories alone. The brightness is proportional to the frequency
of occurrence. Fig. 12(a) represents sedan class signatures
for databases 1 and 2. As expected, values close to zero are
observed for vehicle top and trunk top, which are parallel to
the road. For other parts of vehicles, nonzero values are more

Fig. 11. Classification accuracy versus number of surface elements for the
subset of database 1.

frequent in the structural signatures. Thus, structural signatures
capture the canonical structure of the vehicles. It can be ob-
served that database 2 shows higher variation compared with
database 1. This is expected as database 2 was captured at two
locations with different camera settings. Similar trends can be
also seen for other classes in Fig. 12(b) and (c).

D. Classification

The structural signatures were used to train a support vector
machine (SVM) classifier with a radial basis function kernel.
We used the Library for Support Vector Machines (LIBSVM)
for the implementation of the SVM [23]. Experiments were
conducted with databases 1 and 2 and combining both with
twofold cross validation to obtain classification accuracy. We
also conducted experiments by using database 1 for training
and database 2 for testing, and vice versa. Structural signatures
were computed using frame-to-frame matching and multiframe
matching for comparative purposes. We also establish the base-
line performance by using structural signatures directly com-
puted using the image coordinates, i.e., without road projection
and normalization.

Table III shows classification accuracy when varying num-
bers of frames are used to compute the structural signatures.
When the number of frames used is low, the amount of
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Fig. 12. Structural signatures. The first column shows a representative image overlaid with a canonical structure pattern, where red indicates surfaces parallel
to the road, and green indicates other surfaces. The second and third columns show a histogram-like representation of structural signatures for databases 1 and 2,
respectively. Brightness is proportional to the frequency of occurrence. Arrows between the first and second columns show the correspondence between vehicle
surfaces and structural signatures. Rows: (a) sedans; (b) pickups; (c) minivans/SUVs.
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TABLE III
CLASSIFICATION ACCURACY

evidence collected is low, leading to lower quality of signatures
and lower classification accuracy. However, with only five
frames, the classifier performance levels out. This is possi-
bly due to the tracking errors introduced, which negate the
evidence being added. The performance of the classifier for
database 1 is lower compared with database 2, which was
expected due to the quality of tracking. For database 1, frame-
to-frame-matching-based signatures outperform multiframe-
matching-based signatures. For database 2 and combined data,
multiframe matching outperforms frame-to-frame-matching-
based signatures.

For the experiment where database 1 was used for train-
ing and database 2 was used for testing, the performance
drops more compared with the other-way-around scenario, as
database 1 shows lesser variation when compared with data-
base 2. It is also clear that the proposed structural signatures
outperform the baseline approach significantly.

E. Fusion of Classifiers

As seen in Table III, the accuracy of the classifier changes
with the number of frames used to compute the signatures. This
is due to the fact that, depending on the environmental condi-
tions, the tracking performance might vary. As the classification
decision can be made after each frame, a fusion scheme that
combines these outcomes might be more accurate. We compare
performance of decision-level fusion with simple voting and
weighted voting for frame-to-frame-matching- and multiframe-
matching-based signatures. In simple voting, the most frequent
classifier outcome is assigned as the class and ties are consid-
ered as a classification failure. In weighted voting, the votes
are weighted with training accuracy that eliminates the ties in
almost all the cases. Table IV shows classification accuracy
after fusion. The fusion classifier outperforms the single-frame
classifier for all of our experimental scenarios. The multiframe-
signature-based fusion classifier outperforms the frame-to-
frame-based classifier for all the databases. This is due to the
ability of multiframe matching to recover from failures.

F. Comparison With Other Methods

Vehicle blob properties such as width, height, and area
are commonly used for classification of vehicles. Contours
have been also used for the classification of vehicle profiles.
We compare these classification methods with structural-

TABLE IV
CLASSIFICATION ACCURACY WITH DIFFERENT FUSION SCHEMES

TABLE V
COMPARISON WITH OTHER METHODS

TABLE VI
CONFUSION MATRIX

signature-based classification in Table V. Additionally,
we apply edit-distance-based classification to the structural
signatures. The blob-based classifier faces difficulty as the
scale of the blob varies as the vehicle moves away from the
camera. Contour-based classifiers also have limited success
as the rear view of a vehicle offers minimal discrimination
among the classes. Although edit-distance-based classification
uses structural signatures, it fails to deal with variation in the
structural signatures.
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G. Discussion

Table VI gives the confusion matrix for the weighted fusion
classifier for the combined database. Pickups have the lowest
classification accuracy as their beds can carry items that can
deform their structural signature, leading to incorrect classifica-
tion. On the other hand, minivans and SUVs have the simplest
structures, and this results in the highest accuracy. Addition-
ally, some sedans such as hatchbacks and some pickup trucks
that carry camper shells have structural signatures similar to
minivans/SUVs, which result in misclassifications.

V. CONCLUSION

We have presented structural-signature features for the clas-
sification of rear-view videos of vehicles. The approach used
information from multiple video frames to infer the vehicle
structure. This is unlike the state-of-the-art approaches, which
use either blob features or appearance features from frame to
frame.

The structural signatures are independent of the appearance,
which makes them less susceptible to illumination changes and
imaging system variations. Use of the road projection allows
significant variations in camera angles. Incorporating symmetry
makes our system robust against shadows, partial detections,
and occlusions. The proposed system uses computationally
inexpensive techniques, such as change detection, edge-voting-
based symmetry, and template tracking to realize the structural
signatures.

Our OpenCV-based C ++ implementation of the classifica-
tion system runs at 20 fps on a computer with Intel Core i7-
2600 central processing unit at 3.4 GHz. Further optimizations
will make real-time implementation viable on general-purpose
computation platforms with graphics processing units and dig-
ital signal processors.

While sedans, pickups, minivans, and SUVs form the ma-
jority of the vehicles on the road, including the heavy good
vehicles, buses, and motorcycles in the classifier would give a
complete classification solution. In the future, we plan to amend
the structural signature classifier with a size-based classifier to
achieve this.
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