
Pattern Recognition 46 (2013) 3533–3547
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32
http://d

n Corr
E-m

ninadt@
journal homepage: www.elsevier.com/locate/pr
Learning small gallery size for prediction of recognition performance
on large populations

Rong Wang, Bir Bhanu, Ninad S. Thakoor n

Center for Research in Intelligent Systems, University of California, Riverside, CA 92521, USA
a r t i c l e i n f o

Article history:
Received 30 October 2012
Received in revised form
8 May 2013
Accepted 20 May 2013
Available online 7 June 2013

Keywords:
Biometrics
Distortion modeling
Learning
Optimal small gallery size
Performance bounds
Performance prediction
03/$ - see front matter & 2013 Elsevier Ltd. A
x.doi.org/10.1016/j.patcog.2013.05.024

esponding author. Tel.: +1 951 827 3954.
ail addresses: bhanu@cris.ucr.edu (B. Bhanu),
ucr.edu (N.S. Thakoor).
a b s t r a c t

This paper addresses the estimation of a small gallery size that can generate the optimal error estimate
and its confidence on a large population (relative to the size of the gallery) which is one of the
fundamental problems encountered in performance prediction for object recognition. It uses a general-
ized two-dimensional prediction model that combines a hypergeometric probability distribution model
with a binomial model and also considers the data distortion problem in large populations. Learning is
incorporated in the prediction process in order to find the optimal small gallery size and to improve the
prediction. The Chernoff and Chebychev inequalities are used as a guide to obtain the small gallery size.
During the prediction, the expectation–maximization (EM) algorithm is used to learn the match score
and the non-match score distributions that are represented as a mixture of Gaussians. The optimal size of
the small gallery is learned by comparing it with the sizes obtained by the statistical approaches and at
the same time the upper and lower bounds for the prediction on large populations are obtained. Results
for the prediction are presented for the NIST-4 fingerprint database.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recognition systems can classify images, signals, or other types
of measurements into a number of classes. In this paper, we
mainly focus on biometrics recognition systems. Biometrics can be
a fingerprint, a palmprint, a face image, gait, signature, speech, etc.
Depending on the application there are two kinds of biometric
recognition systems: verification systems and identification sys-
tems. Verification (also called authentication) is a one-to-one
matching problem [1]. A verification system stores users' bio-
metrics in a database. Then, it compares a person's biometrics
signatures with the stored representation to verify if this person is
indeed who she/he claims to be. The system can accept or reject
the claim according to the verification result. An identification
system is more complex than a verification system. In an identi-
fication system, for a given query, the system searches the entire
database to find out if there are any biometrics signatures that
match the query. It conducts a one-to-many matching. There are
two kinds of identification systems: the closed-set identification
systems and the open-set identification systems [2]. The closed-set
identification is the identification for which all potential users are
enrolled in the system. Alternatively, the open-set identification is
ll rights reserved.
the identification for which some potential users are not enrolled
in the system. The verification and the closed-set identification can
be considered to be special cases of the open-set identification.

In a practical recognition system, some important parameters
for characterizing the system are generally unknown [3]. We need
to predict these parameters from a set of available data. In this
paper, we provide a prediction model for performance of a closed-
set identification system. Since the recognition performance of an
algorithm is usually estimated based on limited data, it is difficult
to predict its performance for additional data: the limited test data
may, after all, not accurately represent a larger population. Before
we can evaluate and predict the performance of a recognition
algorithm on large populations, we need to answer some funda-
mental questions. When we use a small gallery to estimate the
algorithm performance on large populations, how can we find the
optimal size of the small gallery and how accurate is the estima-
tion? Since the prediction is based on the same recognition
algorithm, we can give the confidence interval for the performance
estimation on a large population [4]. The confidence interval [5]
can describe the uncertainty associated with the estimation. This
gives an interval within which the true performance of the
algorithm for a large population is expected to fall, along with
the probability that it is expected to fall there [6]. Bolle et al. [7]
presented a bootstrap based approach to compute the confidence
interval to evaluate the biometrics system performance.

In this paper, we address the problems associated with the
prediction of performance on large populations and the optimal
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small gallery size. The term small gallery is used to emphasize the
size of the gallery used during the design of a biometric system
which is small compared to the population. We use a generalized
prediction model for a closed-set identification system that
combines a hypergeometric probability distribution model with
a binomial model. Hypergeometric distribution is a discrete
probability distribution which captures the probability of picking
a certain number of good samples from a mix of good and bad
samples without replacement.

The prediction model takes into account distortions that may
occur in large populations. When a physical phenomenon is
observed and a quantity corresponding to its properties is mea-
sured, the measurement differs from the true underlaying value.
This discrepancy is called the distortion. The model also provides
performance measurements as a function of the rank, the large
population size, the number of distorted images, and match and
non-match score distributions.

We model the match score and the non-match score distribu-
tions as mixture of Gaussians and use the expectation–maximiza-
tion (EM) algorithm to estimate its parameters. Given limited data,
we can use parametric or nonparametric estimation methods
to estimate the data distribution. The expectation–maximization
(EM) algorithm [8], one of the parameter estimation methods,
assumes that the underlying distribution is known. It is an
iterative method to estimate the mixture parameters by maximum
likelihood techniques. We introduce learning by feeding back the
similarity scores (match scores and non-match scores) to increase
the small gallery size. In this way, we can find the optimal size of
the small gallery to predict the large population performance.

We also provide the upper and the lower bounds for the
prediction performance of a large population. We use two differ-
ent statistical methods—Chernoff's inequality and Chebychev's
inequality—to obtain the relationship between the small gallery
size and the confidence interval for a given margin of error.
In probability theory, inequalities such as Chernoff's and Cheby-
shev's are routinely used to provide bounds on the distribution
values when minimal information (e.g. mean and standard devia-
tion for Chebyshev's) regarding the distributions is available.

The specific contributions of the paper are:
(1)
 We use a generalized prediction model that combines a
hypergeometric probability distribution model with a bino-
mial model which takes into account distortions that may
occur in large populations. Our distortion model includes
feature uncertainty, feature occlusion, and feature clutter. In
the prediction model, we model the match score and non-
match score distributions as a mixture of Gaussians, use the
EM algorithm to estimate its parameters and find the number
of components of the distributions automatically.
(2)
 We find the optimal size of a small gallery by an iterative
learning process. We use the Chernoff inequality and the
Chebychev inequality to determine the small gallery size in
theory which is related to the margin of error and the
confidence interval. We find the upper bound and a good
lower bound on recognition performance on a large
population.
(3)
 Systematic experimental results are shown on a challenging
large data set of fingerprint images (NIST-4) with realistic
distortion models.
The paper is organized as follows. Related work is presented in
Section 2. The details of the technical approach are given in
Section 3. It includes the distortion model, the prediction model,
and the statistical methods to find the relationship between the
optimal small gallery size and the confidence interval. Experi-
mental results are provide in Section 4. The combined model with
learning is tested on the NIST Special Database 4 (NIST-4) which is
the rolled fingerprint database. Conclusions are presented in
Section 5.
2. Related work

Many researchers have used statistical approaches to estimate
the performance of recognition systems. Usually, these approaches
use prediction models based on the feature space or similarity
scores. Wayman [9] and Daugman [10] developed a binomial
model that used the non-match score distribution. This model
underestimates recognition performance for large populations
[11]. Phillips et al. [12] developed a moment model, which used
both the match score and non-match score distributions.

Pankanti et al. [13] presented a fingerprint individuality model
which was based on the feature space and derived an expression
to estimate the probability of false matching between two finger-
prints based on minutiae. The model measured the amount of
information needed to establish correspondence between two
fingerprints. Tan and Bhanu [14] presented an improvement over
[13] by providing a two-point model and a three-point model to
estimate the error rate for the minutiae based fingerprint recogni-
tion. Their approach measured minutiae's position and orientation
and the relations between different minutiae to find the prob-
ability of correspondence between fingerprints. They allowed
overlap of the uncertainty area of any two minutiae.

Johnson et al. [15] improved the moment model by using a
multiple non-match score set. They averaged match scores of the
entire gallery. For each match score, they counted the number of
non-match scores larger than the match score leading to an error.
They assumed that the match scores are distributed uniformly.
Grother and Phillips [11] introduced a joint density function of the
match score and the non-match score to estimate both the open-
set and the closed-set identification performance. Since the joint
density is generally impractical to estimate, they assumed that the
match score and non-match scores are independent and their
distributions are the same for large populations. They used the
Monte Carlo sampling method to linearly interpolate the match
score and the non-match score look-up tables. Tabassi et al. [16]
and Wein and Baveja [17] used the fingerprint image quality to
predict the performance. They defined the quality as an indication
of the degree of separation between the match score and non-
match score distributions. The farther these two distributions are,
the better the system performs.

Ju and Bhanu [18] predicted the gait recognition performance
by probabilistic simulation of different within-class feature var-
iance. They provided the upper bound for the recognition perfor-
mance with regard to different human silhouette resolutions.
Li et al. [19] developed an analytical performance characteristic
to predict the misclassification statistics of the resulting boosted
classifier. The analytic error characterization establishes the rela-
tionship between the misclassification statistics and the size of
training set and the true distribution parameters.

Wang et al. [20] trained a support vector machine from features
based on match and non-match scores to predict success and
failure of the face recognition. Scheirer et al. [21] analyzed
similarity surfaces to predict algorithmic failures in face recogni-
tion for various face recognition algorithms. Aggarwal et al. [22]
learned mapping from the image characterization space to the
score space to predict performance of face recognition algorithms
on unseen data.

Usually, for a biometrics recognition system, the performance
margin of error is prespecified. Consequently, providing the upper
and lower bounds for the performance is another important topic
in the recognition performance prediction. Lindenbaum [23]
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proposed a probabilistic method to derive bounds on the number
of features required to achieve successful recognition with a
certain degree of confidence. This method considered object
similarity, bounded uncertainty and occlusion. A similar approach
presented in [24] can be used to analyze object recognition with
uncertainty, similarity, and clutter. Guyon et al. [4] proposed
guaranteed estimators to determine the test set size which gives
statistically significant results. The analysis is done for two cases:
when the recognition errors are independently identically distrib-
uted and when the errors are correlated, along with the assump-
tion of the underlying probability distribution. Boshra and Bhanu
[25] presented a method to predict upper and lower bounds on
the recognition performance. They predicted performance by
considering feature uncertainty, occlusion, clutter, and similarity
simultaneously. In their method, performance is predicted in two
steps: first, compute the similarity between each pair of models
and then use the similarity information along with the statistical
model to determine upper and lower bounds for the object
recognition performance. Dass et al. [26] proposed a technique
which is based on parametric copula model to estimate the test
sample size for a predetermined ROC width.

In [27], we presented a binomial model to predict the large
fingerprint database recognition performance based on a small gallery.
In that work, the probability of false alarm is related with the match
score which is more reliable for the prediction of recognition
performance. In [28], we presented our early work on a generalized
two-dimensional model which integrated a hypergeometric probabil-
ity distribution explicitly with a binomial distribution. It considered
the distortion caused by sensor noise, feature uncertainty, feature
occlusion and feature clutter. Our paper [29] introduced the learning of
Table 1
Performance prediction approaches.

Authors Application Approach Comments

Lindenbaum [23] Object
recognition

Statistical model Bounds on
uncertainty

Lindenbaum [24] Object
recognition

Statistical model Approach s

Guyon et al. [4] Character
recognition

Statistical model Size of test
arguments

Wayman [9] Fingerprint Binomial model Non-match
Boshra and Bhanu [25] Object

recognition
Statistical model Similarity i

occlusion, a
Pankanti et al. [13] Fingerprint Feature space Probability
Daugman [10] Iris Binomial model Non-match

population
Phillips et al. [12] Face Binomial model Assumed m
Johnson et al. [15] Gait Binomial model Multiple no

uniform dis
Tan and Bhanu [14] Fingerprint Feature space Probability
Grother and Phillips
[11]

Face Binomial model The probab

Tabassi et al. [16],
Wein and Baveja [17]

Fingerprint Image quality Fingerprint

Ju and Bhanu [18] Gait Statistical model Prediction w
and body p

Li et al. [19] Face Statistical model Error chara
training set

Dass et al. [26] Fingerprint Copula model Estimated t
Wang et al. [20] Face SVM Features ba
Scheirer et al. [21] Face SVM Features de
Aggarwal et al. [22] Face Multi-dimensional scaling Mapping fr
Wang et al. [28], Wang
and Bhanu [29,27]

Fingerprint [27–
29] and ear [28]

Binomial [27–29] and
hypergeometric [28,29]
model

[27] presen
small galler
including u
large popul
estimated i
parameters

This paper Fingerprint Binomial & hypergeometric
model

Distortion i
Performanc
gallery size within the prediction framework as well as theoretical
bounds on the performance to validate the estimated bounds.
Additionally, underlying score distributions were modeled as a mix-
ture of Gaussians making them more flexible.

This paper is related to the shorter version of the work in [29]
which lacked in experiments. Distortion parameters used in
[29] were set arbitrarily and the validation for optimal gallery size
was conducted by resubstitution. In this paper, the entire set of
experiments is redone where unlike [29], distortion parameters are
learned from the data and the prediction is carried out with
unseen data. As a result the new results now reflect a practical
scenario in the real world.

We list the above approaches and our specific learning
approach proposed in this paper in Table 1.
3. Technical approach

While designing a biometric recognition system, two sets of
biometrics data are provided: a gallery and probes. The gallery is a
set of biometrics templates saved in the database. The probes are a
set of queries for the database. A large population is the unknown
data set for which the recognition performance of the biometric
system needs to be estimated. Based on the given gallery and
probes, we would like to estimate the recognition performance of
the biometric system on the large population.

Fig. 1 provides the conceptual diagram for the performance
prediction system. Fig. 1(a) shows the process of learning the optimal
small gallery size. First, we randomly select a small (compared to
population) gallery and its corresponding probes from the entire
the number of features were derived considering the object similarity,
, and occlusion
imilar to [23], considered the object similarity, uncertainty, and clutter

set which gives statistically significant results was determined using statistical

score distribution was used to derive error rate equations
nformation was used along with the statistical model combining uncertainty,
nd clutter
of false match was estimated based on minutiae position and orientation
score distribution was used; underestimates the performance for large
size
atch score and the non-match score are sampled independently
n-match score sets were used under the assumption that the match score has a
tribution
of error rate was estimated based on minutiae's position, orientation, and relation
ility of error was related with the match score

image quality was used as an indication for the performance prediction

as based on a simulation approach with different within-class feature variance
arts data
cteristics were obtained analytically which related the error with the size of the

he test sample size for a predetermined ROC width
sed on scores were used to train SVM to detect recognition failure
rived from similarity scores were used in analysis of similarity surfaces
om image characterization space to score space was used
ted model to predict the large population recognition performance based on a
y. Probability of false alarm was related with the match score. In [28], distortions
ncertainty, occlusion, and clutter were modeled for the performance prediction on
ations. The optimal small gallery size and bounds on performance were first
n [29]. However, the experiments were conducted with arbitrary distortion
and validated with re-substitution
n large populations is considered and optimal small gallery size is estimated.
e bounds and confidence in prediction are given



Fig. 2. Our proposed approach for optimal small gallery size selection.

Fig. 3. Our integrated statistical prediction model combined with the
distortion model.
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Fig. 1. Conceptual performance prediction system: (a) learning the optimal small
gallery size; (b) performance prediction on large populations.
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database. Then we select a subset of remaining dataset which will be
treated as large population. We apply the integrated statistical predic-
tion model proposed in this paper to predict the recognition perfor-
mance for the selected large population with the selected small
sample set (i.e., the small gallery and corresponding probes).

Meanwhile, we use the recognition algorithm to obtain the
actual performance for the selected population. We compare the
predicted performance and the actual performance. If the pre-
dicted performance is acceptable, then we increase the size of the
population and repeat the above process, else we increase the size
of the small gallery and repeat the above process. When the size of
the population cannot be increased, we stop learning and get the
optimal small gallery size.

We randomly choose optimal size small galleries to predict the
performance by the integrated statistical prediction model. We
obtain the performance bounds based on the performance pre-
dicted by these small galleries. This process is depicted in Fig. 1(b).

3.1. Methodology for determining the optimal small gallery size

Fig. 2 provides the detailed diagram for the implementation
of our approach to predict the optimal small gallery size. For a given
biometrics recognition system with data Q of N enrollees, we
randomly pick n enrollees from Q to form a small sample set q. By
authentication, we can get a set of match scores and non-match scores
for this small gallery. Then, we use the expectation–maximization
(EM) algorithm to estimate the parameters of themixture of Gaussians
distributions of the match score and non-match scores. Based on these
distributions, we use our prediction model, which combines a
hypergeometric probability distribution model with a binomial model,
to estimate the recognition system performance for a large population
Q1 with N1 enrollees which is a subset of Q \q. We assume that the
predicted performance on Q1 is p̂. From the recognition system, we
can obtain the match scores and the non-match scores for Q1 and
compute the actual recognition performance p for Q1. ~e is the error
between the predicted performance and the actual performance, i.e.,
~e ¼ jp̂−pj. The margin of error e is the maximum specified error
acceptable by the recognition system. If ~e is larger than the margin of
error e then we increase the small gallery size n and feed back match
scores and non-match scores to the EM algorithm to estimate the
parameters of the similarity score distributions again. Otherwise, we
increase the size of the large population Q1, and repeat this process
until Q1 includes the entire Q \q. We use the Chernoff and Chebychev
inequalities to find the relationship between the small gallery size and
the prediction confidence interval for a given margin of error.
The small gallery size which we got from the inequalities is used to
validate the learned optimal small gallery size. We will explain each
part of the diagram in detail in rest of this section.

3.2. Integrated statistical prediction model

Fig. 3 shows our integrated statistical prediction model com-
bined with the distortion model to predict the large population
performance. Our model integrates three different distributions:
mixture of Gaussians to model the match and non-match scores
distributions, hypergeometric distribution to model a mix of
distorted and undistorted images, and binomial distribution to
model the ranking process in the retrieval. The probability of
selecting “good” samples (undistorted images) from a mix of “good”
(undistorted images) and “bad” (distorted images) samples is given
by a hypergeometric distribution. The combinatorial nature of
ranking process leads to a binomial distribution.

Our two-dimensional prediction model considers the distortions
that occur in large populations. Assume we have two kinds of
biometrics images, group #1 and group #2 which differ in quality.
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Group #1 is a set of biometrics images without any distortion. Group
#2 is a set of biometrics images with distortions. Let the size of these
two groups be n1 and n2 enrollees respectively. We randomly pick n
enrollees from group #1 and group #2 to be our small sample set q.
Then, the number of enrollees with distorted images y which are
chosen from group #2 follows a hypergeometric distribution

f ðyÞ ¼ Cn1
n−yC

n2
y

Cn1þn2
n

ð1Þ

where n1 þ n2 is the total number of enrollees in these two groups
(which is same as the large population) and n−y is the number of
enrollees chosen from group #1.

For each of the n enrollees in the small sample set q, a pair of
images is available, one belonging to the gallery and another a
probe. We combine them into the small gallery and corresponding
probe set. For each image in the probe set, we compute the
similarity scores with the images in the gallery. We have one
match score and n−1 non-match scores for this image.

With all the similarity scores, we can use the EM algorithm to
estimate the parameters of match score and non-match score
distributions. From the above discussion, we know that the match
score and non-match score distributions depend not only on the
scores but also on the number of images with distortion. Let msðxjyÞ
and nsðxjyÞ represent the distributions of match scores and non-
match scores given the number of distorted images. If the similarity
score is higher, then the biometrics signatures are more similar. The
error occurs when a given match score is smaller than one or more
non-match scores corresponding to the same image. For a given
number of distorted images, the probability that the non-match score
is greater than or equal to the match score x is NS(x) where

NSðxÞ ¼
Z ∞

x
∑
n

y ¼ 0
nsðtjyÞf ðyÞ dt ð2Þ

Thus, the probability that a non-match score is smaller than a match
score is 1−NSðxÞ.

If the size of the large population is N, then for a probe image we
can have one match score and N−1 non-match scores. We rank the
match score and non-match scores in the descending order. For a
given number of images with distortion, the probability that the
match score x is at rank r is given by the binomial probability
distribution

N−1
r−1

� �
ð1−NSðxÞÞN−rðNSðxÞÞr−1 ð3Þ

Integrating over all the match scores, for a given number of images
with distortion, the probability that the match score is at rank r can be
written as

Z ∞

−∞

�
N−1
r−1

�
ð1−NSðxÞÞN−rðNSðxÞÞr−1msðxjyÞ dx ð4Þ

Since the large population has one match score and N−1 non-match
scores, we use ðN−1r−1 Þ instead of ð N

r−1Þ. By summing over the images
chosen from group #2, the probability that the match score is at rank r
can be written as

Z ∞

−∞

N−1
r−1

� �
ð1−NSðxÞÞN−rðNSðxÞÞr−1 ∑

n

y ¼ 0
msðxjyÞf ðyÞ dx ð5Þ
In theory, a match score can be any value within ð−∞; ∞Þ. The
probability that the match score is within rank r is

PðN; rÞ ¼ ∑
r

i ¼ 1

Z ∞

−∞

N−1
r−1

� �
ð1−NSðxÞÞN−iðNSðxÞÞi−1 ∑

n

y ¼ 0
msðxjyÞf ðyÞ dx

ð6Þ
Given that the correct match takes place above a threshold t, the
probability that the match score is within rank r becomes

PðN; r; tÞ ¼ ∑
r

i ¼ 1

Z ∞

t

N−1
r−1

� �
ð1−NSðxÞÞN−iðNSðxÞÞi−1 ∑

n

y ¼ 0
msðxjyÞf ðyÞ dx

ð7Þ
When rank r¼1 the prediction model with threshold t becomes

PðN;1; tÞ ¼
Z ∞

t
ð1−NSðxÞÞN−1 ∑

n

y ¼ 0
msðxjyÞf ðyÞ dx ð8Þ

In this model, we make two assumptions: match scores and
non-match scores are independent and large populations have
distortions which can be modeled with feature uncertainty,
occlusion, and clutter. We use a small gallery to estimate distribu-
tions of msðxjyÞ and nsðxjyÞ. These distributions are assumed to be
mixtures of Gaussians and the parameters for the mixture are
estimated using the EM algorithm.

3.2.1. Distortion model
Usually a biometrics recognition system consists of three

stages: image acquisition, feature extraction, and matching. Dis-
tortion often occurs at these stages and may be caused by sensor
noise, feature uncertainty, feature occlusion, and feature clutter.
The effects of sensor and image noise are reflected in the feature
uncertainty. Performance estimates derived from a small gallery
might fail to capture range of distortions that are present in the
large population. Thus, we choose to model the distortion expli-
citly. Our distortion model includes feature uncertainty, occlusion,
and clutter. Assume F ¼ ff 1; f 2;…; f kg is the feature set of the
biometrics image under consideration, where f i ¼ ðcol; row; oÞ, col
and row represent the feature's location, o represents the feature's
other attributes excluding the location, i¼ 1;2;…; k. The distor-
tions are modeled as the following:
(a)
 Uncertainty: The uncertainty arises due to perturbation of the
true positions of features during acquisition, digitization,
preprocessing, etc., of the image. Assume that the uncertainty
is uniformly distributed. It represents how likely each feature
is to be perturbed. We replace each feature f i ¼ ðcol; row; oÞ
with f ′i ¼ ðcol′; row′; o′Þ such that

col−Δx≤col′≤colþ Δx;
row−Δy≤row′≤row þ Δy;
ð1−εÞo≤o′≤ð1þ εÞo

where ε is a measure of uncertainty in a feature's other
attributes, 0≤ε≤1. Δx and Δy are the uncertainty area which
are measured in pixels.All uncertainty parameters ε, Δx, and
Δy are assumed to be distributed uniformly.
(b)
 Occlusion: The occlusion causes elimination of some features.
Assume that the number of features occluded is OC. By
assuming each feature is independently and equally likely
to be occluded, we choose OC features out of the k features
and remove them.
(c)
 Clutter: The clutter in features is caused by spurious features
which are incorrectly detected. We add CL additional fea-
tures, where each feature is generated by picking a feature
according to the clutter distribution from the clutter region
(CR) (the regionwhere clutter features are added). The clutter
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PDF determines the distribution of the clutter over the clutter
region. The clutter region depends upon the given model to
be distorted. We use a bounding box to define the clutter
region

CR¼ fðcol; row; oÞ; colmin≤col≤colmax;

rowmin≤row≤rowmax; omin≤o≤omaxg
where colmin and colmax represent the minimum and max-
imum value of col. Similarly rowmin, rowmax, omin, and omax

represent the minimum and maximum value of row and o
respectively. Features values are picked uniformly from the
clutter region.
The distortion model is applied to small gallery data before it is
used in the prediction model. Thus, estimates given by the
prediction model are affected by the distortion model.

3.3. Estimation of the small gallery size based on statistical
inequalities

In this section, we discuss the relationship between the pre-
diction confidence interval and the size of the small gallery which
could be used to validate the optimal small gallery size that we
obtain through the learning process. We use limited data to
estimate a large population recognition performance. Therefore,
the prediction value may or may not be accurate enough. We
assume that the risk of being wrong is 1−α. The risk should be
equal or greater than the probability that the error between the
predicted performance and the actual performance is greater than
or equal to the margin of error e of this system

Prfjðp−p̂Þj≥eg≤ð1−αÞ ð9Þ
where p̂ is the predicted performance for the recognition system
which can be obtained from our prediction model, p is the actual
performance of the recognition system, and α is the confidence. Since
Prfjðp−p̂Þj≥eg ¼ Prfp≥p̂ þ eg þ Prfp≤p̂−eg, Prfp≥p̂ þ eg≥0, and
Prfp≤p̂−eg≥0, inequality (9) can be written as

Prfp≥p̂ þ eg≤ð1−αÞ ð10Þ
or

Prfp≤p̂−eg≤ð1−αÞ ð11Þ
Here, we will solve inequality (10). Inequality (11) can be solved
similarly.

We assume that the system recognizes (authenticates) indivi-
duals with the probability PrfXi ¼ 1g ¼ t and PrfXi ¼ 0g ¼ 1−t,
where Xi ¼ 1 means an individual with a given biometrics Xi is
recognized correctly, Xi ¼ 0 means the opposite, 0≤t≤1. According
to the Chernoff inequality [30], let X1;X2;…;Xn be independent
random variables. We define a random variable

X ¼ 1
n

∑
n

i ¼ 1
Xi ð12Þ

For any ϵ≥0, we have

Pr
�
X≥EðXÞ þ ϵ

n

�
≤e−2ϵ

2=n ð13Þ

where E(X) is the mean of X, EðXÞ ¼ p̂. Comparing with inequality
(10), we can get

1−α¼ e−2ϵ
2=n ð14Þ

So

ϵ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
n lnð1−αÞ

2

r
ð15Þ
Thus, Eq. (13) becomes

Pr
�
X≥EðXÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
lnð1−αÞ

2n

r �
≤1−α ð16Þ

From inequality (10), we know that

e¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
lnð1−αÞ

2n

r
ð17Þ

Thus, we get

n¼ −lnð1−αÞ
2e2

ð18Þ

Eq. (18) is the relationship between the small gallery size and the
confidence interval under the given margin of error for the system
with the underlying distribution.

Above, we assume that the system can recognize biometrics
with a certain distribution. If we do not know the underlying
distribution of the recognition system, then we can use the
Chebychev inequality [30] which is distribution independent.
Assume X1;X2;…;Xn are independent random variables. We
define X as

X ¼ 1
n

∑
n

i ¼ 1
Xi ð19Þ

For any ϵ≥0, we have

PrfX−EðXÞ≥ϵg≤ s2

2nϵ2
ð20Þ

where s2 is the variance of X. Comparing with Eq. (10), we have

1−α¼ s2

2nϵ2
ð21Þ

From the above equation, we obtain

ϵ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nð1−αÞ

p ð22Þ

From Eqs. (20), (21) and (22), we have

Pr
�
X≥EðXÞ þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nð1−αÞ
p

�
≤ð1−αÞ ð23Þ

Then

e¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nð1−αÞ

p ð24Þ

So we have

n¼ s2

2ð1−αÞe2 ð25Þ

From Eq. (25), we obtain the relationship between the small
gallery size and the confidence interval under the given margin
of error for the system without the assumption of the underlying
distribution. It is known that the Chernoff inequality is much
tighter than the Chebychev inequality and the Chebychev inequal-
ity is distribution independent [31].

In this subsection, we provide a statistical estimation of the
small gallery size. Meanwhile, we learn the similarity score
distribution to find the optimal size of the small gallery. The small
gallery size which we get from the statistics can be used as a guide
for learning. Under the assumptions that the randomly chosen
small galleries can represent the distributions of similarity scores
for other galleries of the same size, we use different small galleries
with the learned optimal size to predict large population perfor-
mance. We randomly choose several small galleries of the optimal
size to predict the large population performance. Then, we obtain
the maximum and minimum prediction performance on the large
population. In this way, we can provide an upper bound and



Fig. 4. An example of feature extraction process: (a) original image; (b) image after background removal; (c) smoothed image with local orientation; (d) binarized image;
(e) thinned image; (f) feature image, features (endpoints and bifurcations) are marked with ‘+'s.
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a good lower bound for performance prediction on large
populations.

3.4. Actual recognition algorithms

3.4.1. Feature extraction
In fingerprint recognition systems minutiae are commonly

used as features which are endpoints and bifurcations in the
fingerprint ridges [32]. We use a template based approach for
minutiae extraction [33], which is based on learning templates by
the Lagrange method. Templates for endpoints and bifurcations
are learned in the off-line step. During the run time, the learned
templates are used adaptively to extract minutiae from fingerprint
images. It consists of the following key steps: remove background,
compute local orientation, smooth image adaptively, binarize and
thin image adaptively, and extract minutiae.
3.4.2. Fingerprint matching
The fingerprint matching algorithm we used is based on the

representation of fingerprint minutiae by triangles [34]. For every
fingerprint, we first extract minutiae. Then randomly choose any
three noncolinear minutiae to form a triangle. Thus one fingerprint
can yield thousands of triangles. The features we used to find the
corresponding triangles in two fingerprints are: minimum angle
αmin, median angle αmed, triangle handedness ϕ, triangle direction η,
maximum side λ, minutiae density χ and ridge counts ξ. The detail
of these features can be found in [35,36]. We estimate the
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Fig. 5. Fingerprint features distributions obtained from the NIST-4 image: median angle αmed (in degree), minimum angle αmin (in degree), maximum side λ

(in pixel), ridge count ξ (a number), minutiae density χ (a number), triangle direction η (a number), and triangle handedness ϕ (a number, clockwise¼0,
counterclockwise¼1).
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Fig. 6. Sample images from NIST-4 (‘f’ and ‘s’ represents different impressions of the same fingerprint).
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transformation parameters by minimizing the sum of the squared
distances between the transformed query fingerprint points and
their corresponding template points. Finally, we compute the
distance between the query points and the transformed models
points to find the corresponding triangles between the model and
query fingerprints.
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4. Experimental results

The experiments were conducted with the NIST Special Data-
base 4 (NIST-4) [34] consisting of 2000 pairs of fingerprints. The
experiments were carried out using programs written in C on a
Sun UltraSPARC II computer. Compared to [29], all the experiments
are redone by learning the distortion parameters from the data and
by carrying out prediction on unseen data to reflect a practical
scenario in the real world.
4.1. Actual recognition algorithms

4.1.1. Feature extraction
We use the template based approach which is described in

Section 3 to extract minutiae. An example of the feature extraction
process is shown in Fig. 4.
4.1.2. Fingerprint matching
For a typical fingerprint from the NIST-4, there are 78 minutiae

features and 8862 triangles for which the minimum angles ðαminÞ
are greater than 51 [34]. The distributions of these features (αmin,
αmed, ϕ, η, λ, χ, ξ) are shown in Fig. 5. Fig. 6 shows four pairs of
sample fingerprints from the NIST-4. Their matching results are
shown in Table 2. In Table 2, the values on the diagonal are match
scores, off diagonal values are non-match scores. The similarity
score is the number of triangles that match between the two
images. For the correct recognition, the match score should be
greater than the non-match score. For the fingerprint s0026_03,
the match score is 0, while the non-match score between
s0026_03 and f0006_09 is 3, obviously this is not correct. Note
from Fig. 6 the quality of s0026_03 is not good. It could not find
any corresponding triangle with f0026_03, while it found three
corresponding triangles with f0006_09.
Table 2
An example of similarity scores for sample test images matched with database
images.

Database f0006_09 f0015_01 f0026_03 f0031_02

Test
s0006_09 719 0 0 4
s0015_01 0 106 0 0
s0026_03 3 0 0 0
s0031_02 0 0 0 810
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4.2. Integrated statistical prediction model

4.2.1. Distorted data
Since distortions present in large populations might not be

reflected in the small gallery, we simulate the distortions in our
prediction model to estimate the recognition performance based
on small galleries. We randomly choose 300 pairs of fingerprints
to learn the probability of minutiae to be distorted. The transfor-
mation parameters which include scale (s), rotation ðθÞ, translation
ðtx; tyÞ are learned in [37]. The range of these parameters are:
0:9≤s≤1:1, −301≤θ≤301, −128≤tx≤128, −128≤ty≤128. We apply the
transformation parameters to the images denoted with ‘f’. We
denote the transformed images as ‘f ’, the number of minutiae as
Mf. We compare the transformed image with the corresponding
image which is denoted with ‘s’ to get the number of occluded
minutiae OC. We also get the number of cluttered minutiae CL. For
the 300 pair of images, we get the mean and variance of occlusion
and clutter probabilities. We repeat the above process five times
and the histograms of the probabilities of occlusion and clutter are
shown in Fig. 7.

The minutiae features used for the fingerprint recognition can be
expressed as f ¼ ðcol; row; classÞ, where col and row are the locations of
a minutiae, class is the class of the minutiae which represents whether
the minutiae is endpoint (0) or bifurcation (1). We add the distortion
to the 2000 pairs of fingerprints. For each fingerprint, we randomly
generate the probabilities of occlusion, and clutter according to their
mean and variance which are shown in Fig. 7. Using these probabil-
ities, we randomly choose OC minutiae to occlude and CL minutiae to
add. Finally, we randomly distort minutiae locations and add the
uncertainty uniformly to these. The uncertainty region is chosen as

fðcol′; row′; class′Þ; col−6≤col′≤colþ 6; row−6
≤row′≤rowþ 6; class′∈fclass;1−classgg

Fig. 8 shows examples of the simulated distortion along with the
original data.

4.2.2. Prediction results
We randomly choose 50 pairs of fingerprints from two kinds of

fingerprint pairs (with and without distortion) as our small gallery
following a hypergeometric distribution. For this small gallery, we
get 50 match scores and 2450 non-match scores. After we obtain
these similarity scores, we use the EM algorithm [38] to estimate
the parameters of the match score distribution and the non-match
score distribution. The EM algorithm used [38] can find the
number of components automatically and for each component
the EM algorithm finds its mean, covariance, and weight. In this
paper, the similarity scores are the number of matched triangles
between two fingerprints, the match scores are positive integers
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ter. (a) μ¼ 0:073, s2 ¼ 0:012. (b) μ¼ 0:020, s2 ¼ 0:015.
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and the non-match scores are nearly 0. Table 3 shows the
estimation of the match score distribution when the small gallery
size is 50. The distributions are represented by the Gaussian
mixture model. For each component, we have its mean, covariance
matrix, and weight. Fig. 9 shows the match score distribution
curve with the small gallery size n¼50.
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Fig. 8. Examples of the minutiae in the original images an
By applying the prediction model, we can estimate the finger-
prints recognition performance on 2000 pairs of fingerprints
based on these 50 pairs of fingerprints. We repeat the experiment
seven times by randomly choosing the 50 sample images. Then,
we average the results to obtain the prediction performance which
is shown in Fig. 10. Here, we choose the subset size N1 ¼ 100 and
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d the distorted images (□: endpoint, +: bifurcation).
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Table 4
Match score distribution parameters estimated by the EM algorithm for three
different small gallery size.

Small gallery size Component # Mean Variance Weight

100 4 12.716639 162.708165 0.589401
86.767241 605.757816 0.195997
282.570467 8906.413460 0.168444
808.569072 27 579.158267 0.046110

200 3 12.295530 165.625889 0.580879
85.899347 711.041188 0.158269
367.882901 58 819.934339 0.260768

300 6 18.705816 125.831947 0.260355
78.448414 627.877959 0.173790
198.259075 2180.769105 0.118167
1.184599 2.518164 0.255349
351.612984 3496.592673 0.081996
595.801606 54 014.280937 0.110343
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the margin of error e¼0.06. From this curve, we can see that for
the large population size 100, the error between the prediction
performance and the actual performance is 0.159 which is larger
than the margin of error.

Now, we apply learning to the prediction process. We increase
the small gallery size to n¼100. We feed back the match scores
and the non-match scores from the randomly selected 100 pairs of
fingerprints and repeat this process seven times. When the large
population size is 100, the absolute error between the prediction
performance and the actual performance is 0.139 which is greater
than the margin of error 0.06. So, we increase the small gallery
size to n¼200 and repeat the same process. The absolute error is
0.078 when the large population size is 100. Then, we increase the
small gallery size to n¼300 and repeat the same process. The
absolute error is 0.022 when the large population size is 100. We
increase the large population size in steps of 100 until the large
population size N¼2000. For these three small galleries, most of
the non-match scores are 0. Table 4 shows the estimation of the
match score distributions with different small gallery sizes. The
distributions are represented by the Gaussian mixture model. For
each component we have its mean, covariance, and weight. Fig. 11
shows the match score distribution curves on different small
gallery sizes. For each small gallery size we provide histogram
and distribution estimated by the EM algorithm. We can see that
the distributions conform with the histograms very well. Fig. 12
shows the absolute error between the prediction and the actual
performance decreases when the gallery size increases. When the
small gallery size n¼300, the absolute error for the large popula-
tion is smaller than the margin of error 0.06. At this point, we can
stop learning the small gallery size.

Since the prediction model is used to predict the recognition
system performance on the unseen data, we use 500, 1000, and
1500 pairs of fingerprints as our small gallery to estimate the
performance for the other 1500, 1000, and 500 fingerprints. We
repeat these experiments for seven times and get the average
absolute error between the actual performance and the prediction
performance which is shown in Fig. 13. From Fig. 13, we can see
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Table 3
Match score distribution parameters estimated by the EM algorithm for small
gallery size n¼50.

Small gallery size Component # Mean Variance Weight

50 4 684.458232 1135.136189 0.030087
14.287706 314.973985 0.492921
254.830754 11 292.774499 0.476992
1624.000001 0.000001 0.000001
that when the large population sizes are 500, 1000, and 1500, the
absolute errors between the prediction performance and the
actual performance are 0.020, 0.023, and 0.028. The reason that
the absolute errors increase with the population size enlarged is
that the small gallery size decreases as the large population size
increases due to limited experimental data. This conforms with the
conclusion we obtained from Fig. 12. From Fig. 12, we can see that
when the small gallery size is 300, the absolute errors between the
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Fig. 10. Absolute error between the prediction and the actual performance when
the small gallery size n¼50, N1 ¼ 100, N¼2000.
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Fig. 11. Match score histograms and distributions for different small gallery sizes: (a) four components, Small gallery size n¼100.; (b) three components, Small gallery size
n¼200.; (c) six components,Small gallery size n¼300.
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prediction performance and the actual performance are 0.024,
0.017, and 0.016 when the large population sizes are 500, 1000,
1500 respectively. The absolute errors obtained from the different
prediction evaluation approaches are not significant.

Now we use different small galleries with the learned optimal
size to predict large population performance. Then, we select the
maximum and the minimum prediction performance as our upper
bound and lower bound for the performance prediction on the
large population. Fig. 14 gives the upper bound and lower bound
on the prediction of large population performance when the small
gallery size n¼300. Since we have 2000 pairs of fingerprints, the
actual recognition performance for the distorted images is shown
in Fig. 14. Beyond this population size, we can give the bounds
for the prediction. From Fig. 14, it can be seen that the actual
performance is within the upper bound and lower bound. Our
experiments show that when the small gallery size n¼300 the
prediction error is less than 0.05.

4.3. Estimation of the small gallery size based on statistical
inequalities

Table 5 shows different small gallery sizes given different
confidence intervals and margins of error for Chernoff inequality
and Chebychev inequality ðs2 ¼ 1Þ. From the table, we ascertain
that the Chernoff inequality is much tighter than the Chebychev
inequality. We compare our learning small gallery size with the
Chernoff inequality. When the confidence interval α¼ 95% and
margin of error e¼0.06 then the small gallery size n¼417. From
our experiment for the same margin of error the small gallery size
is 300 and the confidence interval is α¼ 95%. Note that statistical
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Table 5
Values of the confidence interval, the margin of error, and the small gallery size for
Chernoff inequality and Chebychev inequality ðs2 ¼ 1Þ.

1−α 0.05 0.05 0.1 0.1 0.15 0.15

e 0.06 0.04 0.06 0.04 0.06 0.04
n (Chernoff) 417 937 320 720 264 593
n (Chebychev) 2778 6250 1389 3125 926 2083
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methods give us a loose estimation of the small gallery size. Based
on our own recognition system, we can find a more accurate small
gallery size by learning.
5. Conclusions

We focus on the fundamental problem of performance predic-
tion for object recognition: what is the optimal size of the small
gallery that can give good error estimates and what is the
confidence in the estimation? We use a generalized prediction
model that combines a hypergeometric probability distribution
model with a binomial model, taking into account distortion in
large populations. We incorporate learning in the prediction
process to find the optimal small gallery size and provide the
upper and lower bounds for the performance prediction on large
populations. The Chernoff inequality and the Chebychev inequality
are used as a guide to obtain the small gallery size and the
confidence interval given a margin of error. Experimental results
show that the small gallery size obtained from the statistical
methods are loose compared to the size provided by the proposed
learning method. Using a sufficiently small gallery size we can
provide prediction performance on large populations. Since our
prediction model is score-based, it can be applied to the prediction
problems that the match score and the non-match score are
available. We believe that the methodology and results of this
research will be useful not only for biometric applications but also
to a wide range of applications of signal processing, image
processing, computer vision, and pattern recognition.
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