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Dynamic Bayesian Network for Unconstrained Face
Recognition in Surveillance Camera Networks
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Abstract—The demand for robust face recognition in real-world
surveillance cameras is increasing due to the needs of practical ap-
plications such as security and surveillance. Although face recog-
nition has been studied extensively in the literature, achieving good
performance in surveillance videos with unconstrained faces is in-
herently difficult. During the image acquisition process, the non-
cooperative subjects appear in arbitrary poses and resolutions in
different lighting conditions, together with noise and blurriness
of images. In addition, multiple cameras are usually distributed
in a camera network and different cameras often capture a sub-
ject in different views. In this paper, we aim at tackling this un-
constrained face recognition problem and utilizing multiple cam-
eras to improve the recognition accuracy using a probabilistic ap-
proach. We propose a dynamic Bayesian network to incorporate
the information from different cameras as well as the temporal
clues from frames in a video sequence. The proposed method is
tested on a public surveillance video dataset with a three-camera
setup. We compare our method to different benchmark classifiers
with various feature descriptors. The results demonstrate that by
modeling the face in a dynamic manner the recognition perfor-
mance in a multi-camera network is improved over the other clas-
sifiers with various feature descriptors and the recognition result
is better than using any of the single camera.

Index Terms—Camera networks, dynamic Bayesian network
(DBN), face recognition, surveillance.

I. INTRODUCTION

ITH THE broad establishment of surveillance video

camera systems in recent years in both public and
private venues, the recognition/verification of the subjects is
often of interest and importance for purposes such as security
monitoring, access control, etc. Some biometric traits such as
gait can be used to recognize different subjects [1], however, it
is preferred to use more distinct biometric clues such as face to
identify a subject. Although face recognition has been studied
extensively, face recognition in an unconstrained environment
such as in surveillance camera videos remains very challenging
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Fig. 1. Subject’s face is captured by three cameras from different views in a
typical surveillance camera system setup [4]. Pose and resolution of the captured
faces vary across different views.

and the recognition rate could drop dramatically to less than
10% using standard technologies [2]. The challenges to uncon-
strained face recognition in surveillance cameras are mainly
due to the following reasons.

» Low resolution. In the video captured by surveillance cam-
eras, the pixels that account for the faces are very limited.
However, previous studies have shown that faces of size
64 x 64 are required for the existing algorithms to achieve
good recognition accuracy [3].

» Arbitrary poses. Usually the subjects are moving freely.
Consequently, it is not uncommon that the captured faces
have different poses in different cameras.

+ Varying lighting conditions. As the lighting is usually not
uniform in the coverage area of the surveillance cameras,
the illumination on the subject’s face could vary signifi-
cantly as he/she moves (e.g., the subjects walks into the
shade from direct sunshine).

* Noise and blurriness. The captured images are often cor-
rupted by noise during transmission and the motion of the
subjects usually introduces blurriness.

Fig. 1 shows an example of a subject’s face captured by
three surveillance cameras. The cameras are placed above a
portal. The cameras have different viewing angles and none of
the cameras captures the full frontal face of the subject. The
face images exhibit variations in resolution, lighting condition,
and poses. In addition, noise and blurriness are also observed.
Under such circumstance, the standard face recognition algo-
rithms such as Eigenfaces [17] would fail to work effectively.
Despite the aforementioned difficulty, a multi-camera system
provides different views of subjects which are complementary
to each other. This enables the potential to improve the recog-
nition performance with low quality input faces from multiple
cameras.

2156-3357/$31.00 © 2013 IEEE
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In this paper, we propose a dynamic Bayesian network (DBN)
based approach to tackle the problem of face recognition in
multi-camera systems. Related work and our contributions are
listed in Section II. Section IIT describes the details of the pro-
posed method. In Section IV the experimental results are re-
ported. We conclude this paper in Section V.

II. RELATED WORK AND OUR CONTRIBUTIONS

A. Related Work

To recognize a face in video, different approaches have been
proposed. In general there are two principles: using 2D images
from video sequences directly, or generating a 3D face model to
cope with pose variation.

Within the 2D-based methods, normally the faces are first ex-
tracted from the video frames manually or using an automated
face detector [18]. Subsequently, either all the face images or
only the exemplar face images are used for the recognition task.
An appearance manifold was built in [5] to represent each pose
by an affine plane to cope with the pose variations in video se-
quences. In [8] a hidden Markov model (HMM) was used for
video-based face recognition. In this model the temporal charac-
teristics were analyzed over time. Stallkamp et al. [9] presented
a real-time video based face identification system using a local
appearance-based model and multiple frame weighting schemes.
In [7] the face recognition in video was tackled by exploiting the
spatial and temporal information based on Bayesian keyframe
learning and nonparametric discriminant embedding. Recently,
Biswas et al. [10] proposed a learning-based likelihood measure-
ment to match high-resolution frontal view gallery images with
probe images from surveillance videos. Wong et al. [4] proposed
apatch-based image quality assessment method to select a subset
of the “best” face images from the video sequences to improve
the recognition performance. In [13], the video-based face recog-
nition was converted to the problem of matching two image sets
from different video sequences and it needs an independent ref-
erence set to align the images sets to be matched.

In an effort to recognize faces using more than one camera,
some prior work has been done. Xie ef al. [11] trained a relia-
bility measure and it was used to select the most reliable camera
for recognition. In [12] a cylinder head model was built to track
and fuse face recognition results from different cameras. These
approaches were tested on videos taken in controlled environ-
ment with higher resolution than typical surveillance video data.
For application in surveillance cameras, a person re-identifica-
tion method was proposed in [19] which depends on the robust-
ness of the face tracker. A face recognition framework for mass
transport security surveillance was proposed in [20].

In 3D-based approaches, the 3D face models are either com-
puted or captured directly with a 3D scanner. Xu et al. [14]
developed a framework using 3D face models for pose and il-
lumination invariant face recognition from video sequences by
integrating the effects of motion and lighting changes. In [15],
the system used the images in the video as probe to compare
with the 2D projection of the gallery 3D model. Liao ef al. [16]
used a single image for each individual in the gallery set to con-
struct a 3D model to synthesize various face views. The 3D

based methods are in general computationally expensive. Fur-
thermore, a 3D model is difficult to be constructed from low-res-
olution videos, thus, the application of 3D models in surveil-
lance cameras is limited. The above mentioned methods are
summarized and compared in Table I. A recent survey of video
based face recognition can be found in [21].

B. Motivation and Contributions of This Paper

Previously Bayesian network has been applied to face recog-
nition. Heusch ef al. [22] combined intensity and color infor-
mation for face recognition in a Bayesian network where the
observation nodes represented different parts of the face and
the hidden nodes described the types of the observations. In
[23] an embedded Bayesian network was proposed for efficient
face recognition. Beyond the image-based recognition, there
has been a growing interest to study the temporal dynamics in
video sequences to improve the recognition performance in re-
cent years [6], [7].

We propose a probabilistic approach for video-to-video face
recognition using a DBN, utilizing different frames from mul-
tiple cameras. DBN has previously been applied to tasks such
as speech recognition [24], vehicle classification [25], visual
tracking [26], and facial expression recognition [27]. Variant
of DBN such as topological DBN has also been proposed to
identify human faces across age [28]. In this paper, the DBN
is constructed by repeating a Bayesian network over a certain
number of time slices with time-dependent variables. In each
time slice the observed nodes are from different cameras.
During the training, the temporal information is well encoded
and the person-specific dynamics are learned. The identity of
the testing subject can be inferred using previously trained
network structure and parameters. By using DBN we are able
to factor the joint probability distribution considering the
temporal relationship of the feature evolution process between
consecutive frames. Moreover, the DBN is defined and struc-
tured in a way that adding more cameras is easy. In addition,
if features from one camera were not extracted due to image
capture failure, this information can still be inferred by DBN
and, therefore, recognition may not fail.

Compared to the previous work [29] in which the DBN struc-
ture is manually defined and only two cameras are used for
recognition, in this paper, the topological structure in each time
slice of DBN is learned automatically in an optimal manner with
three cameras involved. In addition, the experimental results
are examined thoroughly using multiple performance evalua-
tion criteria using much more data with improved evaluation
protocol.

In summary, the contributions of this paper are as follows.

* We propose a probabilistic framework for unconstrained

face recognition in a multi-camera surveillance scenario.
To the authors’ best knowledge, this is the first work using
DBN for video-based face recognition in surveillance cam-
eras with more than two cameras. The framework is flex-
ible and can be easily extended to more complicated multi-
camera settings. Besides, any feature descriptor is compat-
ible in this framework.

* We test the proposed method on a publicly available

multi-camera surveillance video dataset “ChokePoint”
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TABLE I
RELATED WORK SUMMARY FOR VIDEO BASED FACE RECOGNITION
Methodology 2D/3D | Multi-Camera? Advantages and Limitations

Probabilistic-based 2D No Pros: different poses are approximated by an affine plane in the manifold
appearance manifolds [5] Cons: controlled dataset, images need careful alignment
Manifold and Bayesian in- 2D No Pros: manifold learning and Bayesian inference are combined
ference model [6] Cons: view-specific manifold needs to be learned
Spatio-Temporal 2D No Pros: the intrinsic temporal structures are preserved
embedding [7] Cons: controlled dataset, small pose variation
Hidden Markov Model [8] 2D No Pros: effectively model the person specific dynamics in video sequences

Cons: controlled dataset, small pose variation
Local appearance based 2D No Pros: real-time system, different weighting schemes in different classification models
model [9] Cons: the combination of the weighting scheme does not necessarily improve results
Learning-based likelihood 2D No Pros: robust high-resolution gallery images and low-resolution video sequences matching
measurement [10] Cons: fiducial points are difficult to detect on low-resolution images
Patch-based image selec- 2D Yes (three) Pros: best images are selected from multiple video sequences to improve recognition
tion [4] Cons: the temporal information in video sequences is not utilized
Camera reliability mea- 2D Yes (two) Pros: recognition performance improved over single camera
surement [11] Cons: controlled dataset, high-resolution images, rely on component based face detector
Cylinder head model from 2D Yes (two) Pros: transform the face recognition from video to still face recognition
cameras [12] Cons: cylinder model is difficult to build with low-resolution uncontrolled videos
Image sets alignment and 2D No Pros: align two images sets using a reference set to improve the matching performance
matching [13] Cons: additional reference data needed, temporal information from video not utilized
Motion and lighting inte- 3D No Pros: robust to large changes in facial pose and lighting conditions
gration [14] Cons: controlled dataset, high-resolution images
3D model assisted recog- 3D No Pros: better than basic 2D image-based recognition
nition [15] Cons: small pose variation, controlled dataset
3D model from single im- 3D No Pros: only a single image is required to generate a 3D face model
age [16] Cons: the high-resolution frontal view face image is required
This paper: Dynamic 2D Yes (three) Pros: encode the video dynamics, multi-camera based, uncontrolled surveillance videos
Bayesian network (DBN) Cons: computation for training may become expensive with complicated DBN structure

TABLE II
DEFINITION OF THE SYMBOLS USED IN THIS PAPER

[ Symbol ] Definition |
K Number of cameras in the multi-camera setup
k camera index
T total number of time slices in the DBN (se-
quence length)
t time slice index
CAMYE | the random variable representing the feature

vector of a face image from the k™ camera in
time slice ¢

N Number of subjects in the gallery

S the random variable representing the probability
distribution over the gallery of subjects

with unconstrained face acquisition [4], in contrast to the
other commonly used datasets which were collected in
controlled environment. We compare the proposed method
with popular benchmark classifiers using different feature
descriptors. The superior performance of the proposed
DBN approach is verified in different aspects with various
evaluation criteria.

* We compare the face recognition performance using all of
the three cameras in the ChokePoint dataset against using
single camera. Experimental results demonstrate that using
multiple cameras improves the recognition performance
over any single camera.

Before the detailed algorithms is presented, Table II gives a

summary of the symbols used in the following sections for a
better understanding.

III. TECHNICAL DETAILS

In the following subsections, we first explain the Bayesian
network structure for face recognition from multiple cameras
with a single time slice and then the DBN structure with multiple
time slices is presented.

A. Bayesian Network

A Bayesian network (BN) is a graphical model, which is de-
fined using a directed acyclic graph. The nodes in the model
represent the random variables and the edges define the depen-
dencies between the random variables. Given the value of its
parents, each variable is conditionally independent of its nonde-
scendants. A BN can effectively represent and factor the joint
probability distributions and it is suitable for the classification
tasks. Mathematically, given a set of ordered random variables
X, Xo,...,X,, the full joint distribution is given by

Pz, T, ... xn) = plr1) X plre]ry) X - -

X p(xn ‘.’17175172, s 7mn71)

:H])(ﬂj.,j|1}§1./...7.’1},;,1). (1)
i=1
In the scope of multi-camera face recognition, when several
face images of the same subject are captured by different cam-
eras, we construct the corresponding BN using two different
kinds of nodes.
* Root node: This is a discrete node on the top of the BN.
The node is represented by a random variable S. S is the
probability distribution over all the subjects in the gallery
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and does not represent the identity of a single subject. The
size of the root node indicates the number of the subjects
(classes).

» Camera node: This continuous node contains the feature
descriptors of the extracted face image from one camera.
The number of the camera nodes depends on the number of
cameras involved in the surveillance. Different feature de-
scriptors such as local binary patterns (LBP) [30] or local
phase quantization (LPQ) [31] can be adopted. The nota-
tion CAM is used to represent this random variable.

When a test sequence is provided, the subject’s identity s is

determined using the maximum a posterior (MAP) rule
s = argmax p(S | CAM,,..., CAMg)
s

p(CAM;, ..., CAMK | S)p(S)
= argmax

MaX S~ ICAM,,...,CAMy | S)p(8) 2

where CAM}, is the random variable representing the feature
vector from the face image in camera k. p(.9) is the prior prob-
ability of the presence of each subject and is usually modeled
by a uniform distribution. Since the different cameras are cap-
turing the same subject, the camera nodes are not independent.
We explain how the BN structure is learned in the next part.

B. Structure Learning

The structure of the BN would greatly impact the accuracy
of the model. However, the number of possible structures is
super-exponential in the total number of nodes. Therefore, it is
desirable to avoid performing exhaustive search for structure
learning. In this paper, we use the K2 structure learning algo-
rithm [32] to determine the BN’s structure. K2 uses a greedy
approach to incrementally add parents to a node according to
a chosen scoring function. The search space of K2 algorithm
is much smaller than the entire space due to the ordering of
the nodes and it guarantees no cycle in the generated structure.
We use the completed likelihood Akaike information criterion
(CL-AIC) scoring function for this purpose [33]. Fig. 2 shows
the K2 learned BN structure. In this case, the subject’s identity
s is determined by (3) shown at the bottom of the page.

C. Dynamic Bayesian Network for Face Recognition

Compared to the traditional face recognition methods which
are typically image based, the video based face recognition is
advantageous since the dynamics in different frames for the spe-
cific person can be learned to help the recognition of the subject.
As suggested in [34], multiple face samples from a video se-
quence have the potential to boost the performance of the recog-
nition system.

We propose our graphical model as a DBN. DBN differs from
HMM in the following aspects: a DBN represents the problem

S
size=N

Fig. 2. K2 learned Bayesian network structure [32]. Training data is from the
ChokePoint dataset [4].

t=1

Fig. 3. DBN structure for three time slices with a three-camera setup.

utilizing a set of random variables whereas an HMM uses a
single discrete random variable; in a standard first-order HMM
modeled as a DBN, the random variables at time slice ¢ depend
only on the variables in time slices # and t — 1 for all ¢ > 1;
in an HMM all the hidden random variables are combined in
a single multi-dimensional node, whereas in a DBN multiple
hidden nodes can be present.

In terms of complexity, an HMM would require O(T(N#)?)
for inference, O(N?£) parameters to specify P(S¢|S!™1),
and O(TN*¥) space, where T is the sequence length, NV is the
number of classes, and K is the number of camera observa-
tions. For a DBN, O(TK N¥+1) is required for inference, and
O(K N?) parameters to specify P(S?|S*1). The DBN has
exponentially less parameters and inference is much faster.

Operating a graphic model requires three main steps: defining
the structure, learning the parameters, and inference. The struc-
ture of the DBN consists of the inter-slice topology and the
intra-slice topology. The inter-slice topology is defined as fol-
lows. Eachtimeslicet = 1...1 has K+1 nodes; one root node
S, and K cameranodes CAMj—1 g . This structure is the same
as shown in Fig. 2 for the three-camera setting (X = 3). The
intra-slice topology is illustrated in Fig. 3 with three time slices.

After defining the structure, it is required to learn the parame-
ters of the DBN before recognition is performed. Therefore, the
probability distribution for each node given its parents should be

s = argmax p(S | CAM;, CAM,, CAMj3) = argmax
s
p(CAM; | §)p(CAM, | CAM;, S)p(CAM; | CAM,, S)p(S)

p(CAM17 CAMQ, CAMg | S)]?(S)
S ZS p(CAMl CAMQ./ CAN[3 | S)])(S)

= argimax

5 > s p(CAM;, CAM,, CAM3 | S)p(S)

A3)
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determined. In the three-camera setting, for the first time slice
this includes

p (CAMi| S"), p(CAM;| S, CAMY]),
p (CAM}| S, CAM;), p(S"). (@)
For time slices £ = 2...7T it includes
p (CAMY| S*, CAM{ ™)
p (CAMY| S, CAM{*, CAMS ™', CAMY)
p (CAMY| S, CAMS ™, CAMS ™', CAMY) , p(S*|S5°71).
%)

With new unseen data (evidence), an inference algorithm is
applied to compute the marginal probability from the evidence.
Specifically, mference determines the subject’s identity by

p(ST | CAMk T 2 3), where CAM,EL?Z 5 refers to features
from all of the three cameras for time slices 1 to 7'. In other
words, a probability distribution over the set of all the subjects
is defined. The goal is to find the marginal probability of each
hidden variable. Equation (6) shows how p(S? | CAMS T)z 3)
is computed forany ¢ = 2...T

p(S'|CAMZ, 5 5)
= p(S*, CAM] = cam},.
X 1/p(CAM1 = camj,.

.,CAM? = cam})
.,CAM2 = cam! )

=L(a constant)

by marginalization

("AM3 = Cam?’) x L

by Bayes net factoring
X p CAMZ\ ST CAM 1) p (CAM;| S*, CAMy)

< [T »(s'18Y I »(CcaMi| st camit)
1=2:T 1=2:T
x p (CAMjS| 8%, CAM{ ™, CAMS ', CAMY)

p (S, ....87, CAM;

= camj, ..

p(SY)p (CAM]| SY)

x p (CAMj| %, CAM,™", CAMS ™!, CAM}) x L
by splitting products
= > p(SHp (CAM;| 8?)

x p( CAM2| Sl CAM) p (CAM;| S*, CAM;)
x [T e(s’15°7) T] p(CAM]| S",CAM{ ™)
i=2:t i=2:t
x p (CAM3| 87, CAM{ ', CAM} ', CAM})
x p (CAM}|S*, CAM, ™!, CAMY, ™!, CAMS)
IT »es'1s7 ] »p(CAM| S, CAMS™)
i=t+1.T i=t+1:T
x p (CAMS| 8%, CAM{ ', CAMS, ', CAMY)
x p (CAM}| S%, CAM, ™, CAMS ™!, CAMS) x L. (6)

CAM,

CAM,

Fig. 4. Sample images from the ChokePoint [4] dataset.

IV. EXPERIMENTS

A. Experimental Settings

1) Dataset: We use the ChokePoint dataset [4] which is de-
signed for evaluating face recognition algorithms under real-
world surveillance conditions. This dataset is challenging for
face recognition task as the captured faces are unconstrained in
terms of pose, lighting, and image quality. Although many face
datasets exist, to the authors’ best knowledge, the ChokePoint
dataset is the only available open surveillance video dataset
with multiple cameras. Fig. 4 shows some sample images from
this dataset. The setting for the network involves three cameras
mounted above two portals (P1 and P2) that captured the video
sequences of the moving subjects while the subjects were either
entering (E) or leaving (L) the portals in a natural manner. In
total four data subsets are available (P1E, P1L, P2E, and P2L).
In each subset, four sequences are provided (S1, S2, S3, and S4)
and each sequence contains the recorded videos from three cam-
eras (C1,C2, and C3). In P1 25 subjects were involved and in P2
there were 29 participants. The resolution of the captured frames
are 800 x 600 at a frame rate of 30 fps and the cropped faces
with size 96 X 96 from the original video frames are provided.

2) DBN Structure: The DBN is constructed with five time
slices. The size of the DBN is determined empirically to offset
the complexity of the network and to ensure sufficient dynamics
to be encoded as a temporal clue. In each time slice we use the
learned structure in Fig. 2. For parameter learning, the EM algo-
rithm is used and the junction tree algorithm is chosen for infer-
ence. With nonoptimized Matlab implementation, the training
takes about 42 s on a PC with 3 GHz CPU and 8 GB RAM. For
testing, the inference takes about 60 s.

In our experiments, we use faces from all of the four subsets
(P1E, P1L, P2E, and P2L). S1, S2, S3, and S4 are all used ex-
cept for P2E in which we use only S3 and S4 due to incomplete
data in P2E_S1 and P2E_S2. In each sequence 40 instances are
used for training or testing. Each instance consists of 15 face im-
ages (three cameras in each time slice, five time slices in total).
In each run, we perform cross-validation on the same subset
(i.e., train on sequence P1E_S1 and test on P1E S2, P1E S3,
and P1E_S4). The averaged results are reported for each subset
separately.

3) Feature Descriptors: For face recognition, various fea-
ture descriptors have been proposed and applied. Local binary
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TABLE III
RANK-1 RECOGNITION RATES ON DIFFERENT TESTING SEQUENCES (IN %)
Data— PIE PIL P2E P2L
Method— NN LDA | SVM | DBN NN LDA | SVM | DBN NN LDA | SVM | DBN NN LDA | SVM | DBN
LBP 43.7 40 78.2 89.7 40.9 39 55.2 85.8 55.8 70.6 84.5 95.3 88.1 85.2 81.3 94.1
LPQ 40.1 38.5 55.36 91.7 54.5 42.3 60 86.3 64.2 64.1 83.2 89 88.2 89.9 85.5 97.2
HOG 63 45.5 70.3 84.3 50.9 36.8 71.5 89 49.7 33.7 65.8 75.5 432 19.1 432 73.6
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Fig. 5. Evaluation results for P1E. From left to right: different plots (CMC, ROC, EPC, and DET). From top to bottom: different feature descriptors (LBP, LPQ,

and HOG). Best viewed in color.

pattern (LBP) and its derivatives are among the most popular
choices [30], [35]. To tackle with blurred face recognition, local
phase quantization (LPQ) has been adopted [31]. Recently, in-
spired by the success in object recognition tasks, histogram of
oriented gradients (HOG) has been applied to face recognition
[36]. In our experiments, we choose to use these three popular
feature descriptors: LPQ, LBP, and HOG. For LBP and LPQ op-
eration, the image is divided into the blocks of size 16 x 16. In
LBP, LBPE:ZQ is used as suggested in [30]. The parameters for
LPQaresetto M = 7,a = 1/7, and p = 0.9. For HOG, the
image is divided into nine blocks and the number of orientation
bins is set to 15. Note that any feature descriptors can be applied
in the proposed framework. The dimensionality of the extracted
feature vectors is reduced to 50 using PCA to enforce the effi-
ciency during computation.

4) Classifiers Compared: The DBN is compared with three
benchmark classifiers: nearest neighbor (NN), linear discrimi-
nant analysis (LDA) and support vector machine (SVM). These
classifiers are commonly used in recognition tasks. In the SVM

classifier, its linear version is used. For these classifiers, the
same training and testing data are used as for DBN. After
multiple testing samples are classified, we adopt the majority
voting scheme to decide the final class label (identity) of each
subject.

B. Experimental Results

1) Comparison With Different Classifiers: To compare with
other classifiers, the rank-1 recognition rates for the four groups
of sequences P1E, P1L, P2E, and P2L are reported in Table III.
In most cases, NN and LDA are less able to discriminate the
faces from the unconstrained video sequences due to the chal-
lenging dataset used. SVM improves the results by seeking for
the maximum separation between the features of distinct sub-
jects. Regardless of the choice of the feature descriptor, the pro-
posed DBN classifier, compared to NN, LDA, and SVM, per-
forms best in different sequences as a result of the encoding
of the person-specific dynamics in the video and the fusion of
multi-camera inputs.
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Fig. 6. The evaluation results for P1L. From left to right: different plots (CMC, ROC, EPC, and DET). From top to bottom: different feature descriptors (LBP,

LPQ, and HOG). Best viewed in color.

To carefully investigate the performance of the classifiers, for
each sequence four evaluation plots are presented: cumulative
match characteristic (CMC) curve, receiver operating character-
istic (ROC) plot, expected performance curve (EPC) [37], and
detection error tradeoff (DET) plot. Fig. 5 shows the results for
the P1E sequence. Fig. 5(a), (e), and (i) presents the CMC curves
for LBP, LPQ, and HOG, respectively. The recognition rates for
the top 25 ranks are reported as the gallery includes 25 subjects
in P1. Compared to the other classifiers, the recognition results
are more accurate using the proposed DBN at different ranks.
The comparison of the results among different feature descrip-
tors confirms the superiority of the proposed method over the
other classifiers.

Fig. 5(b), (f), and (j) presents the ROC plots using the three
different feature descriptors. The recognition using LPQ is
better than LBP and HOG in terms of ROC performance. The
reason is that LPQ is inherently designed as a blur invariant
feature descriptor while the captured faces by the surveillance
cameras show explicit blurriness due to subject’s motion. Note
that with different feature descriptors, the performance of the
DBN is constantly better than the other classifiers in most
cases. This indicates that the performance gain of the proposed
method is not entirely feature dependent.

The EPCs in Fig. 5(c), (g), and (k) compare DBN with the
other classifiers from the viewpoint of the tradeoff between false
alarm and false reject probabilities. The z:-axis represents @ € R
where o € [0, 1] and the y-axis corresponds to the error rate 8
defined as

B =axFAR+ (1 — a x FRR) )

where FAR is the false alarm ratio and FRR represents the
false rejection ratio. For all of the three feature descriptors,
DBN reports lower error rate compared to the other classifiers.
More importantly, the error rate is almost constant for all values
of a.

Fig. 5(d), (h), and (1) presents the DET plots comparing the
decision error rate of DBN versus the other classifiers. The per-
formance is characterized by the miss and false alarm probabil-
ities. Both = and y axes are scaled nonlinearly by their standard
normal deviates such that a normal Gaussian distribution will
plot as a straight line. The results show that the DBN reports less
miss probability with equal false alarm probability compared to
NN, LDA, and SVM. It is important to point out that not only
the DBN outperforms the other classifiers as shown in the DET
plots, but even in cases where DBN and SVM seem to have sim-
ilar performance [e.g., Fig. 7(e)], the DET plot shows that DBN
achieves significantly less miss probability [Fig. 7(h)].

Figs. 68 show results for sequences P1E, P1L, P2E, and P2L,
respectively. The observations of Figs. 6—8 are similar to that of
Fig. 5. Overall, compared to NN, LDA, and SVM, DBN is more
robust in recognition and less prone to error.

2) Multiple Camera Versus Single Camera: We compare the
recognition performance using three cameras against using only
one camera in the proposed DBN framework. The DBN struc-
ture for a single camera is derived from Fig. 3 by removing the
other two camera nodes. Table IV show the rank-1 recognition
rates comparisons using three cameras together (ALL) against
using only a single camera on sequences from P1E, P1L, P2E,
and P2L. As can be seen, regardless of the specific choice of
the feature descriptor, the recognition rates with three cameras
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Fig. 8. The evaluation results for P2L. From left to right: different plots (CMC, ROC, EPC, and DET). From top to bottom: different feature descriptors (LBP,
LPQ, and HOG). Best viewed in color.

are higher than using any of a single camera. The reason is that
DBN takes into account the relationship of the three cameras
through the dependencies, thus the complementary information
from each camera is utilized to help improve the recognition

performance. Also note that in most cases CAMs (Cs) provides
higher recognition rates compared to CAM; (C7) and CAMj5
(C3) due to the near frontal faces it captured with relatively
higher video quality. Although the performance using HOG is,
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TABLE IV
RANK-1 RECOGNITION RATES WITH DIFFERENT CAMERAS ON DIFFERENT TESTING SEQUENCES (IN %)

Data— P1E PIL P2E P2L
Camera— 1 Cs C3 ALL Ch Co C3 ALL Ch Co C3 ALL Ch C> C3 ALL
LBP 773 | 813 | 753 89.7 80 813 | 753 85.8 74.1 | 86.2 | 845 95.3 558 | 652 | 63.2 94.1
LPQ 78.3 84 73.3 91.7 75.3 86 60 86.3 799 | 848 | 77.9 89 65.8 | 704 | 67.2 97.2
HOG 713 | 737 | 73.7 84.3 73.7 77 76.7 89 67.6 | 65.9 71 75.5 684 | 69.3 69 73.6
Average 75.7 | 79.7 | 74.1 88.6 76.3 | 81.4 | 70.7 87 73.9 79 77.8 86.6 63.3 | 683 | 66.5 73.6

in general, inferior to LBP and LPQ, for different camera, HOG
gives similar recognition rates. This is due to the tolerance of
the HOG descriptor for small pose variations.

V. CONCLUSION

We proposed a multi-camera face recognition system using
DBN and this framework is suitable for applications such as
surveillance monitoring in camera networks. In the proposed
method, videos from multiple cameras are effectively utilized
to provide the complementary information for robust recogni-
tion results. In addition, the temporal information among dif-
ferent frames are encoded by DBN to establish the person-spe-
cific dynamics to help improve the recognition performance.
Experiments on a surveillance video dataset with a three-camera
setup show that the proposed method performs better than the
other benchmark classifiers using different feature descriptors
by different evaluation criteria. Regarding the generality of our
method, the feature nodes in the DBN can be replaced with
any choice of informative feature descriptors and the proposed
framework can be extended to the camera systems with different
number of cameras.
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