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Abstract—Existing video-based facial expression recognition
techniques analyze the geometry-based and appearance-based in-
formation in every frame as well as explore the temporal relation
among frames. On the contrary, we present a new image-based
representation and an associated reference image called the emo-
tion avatar image (EAI), and the avatar reference, respectively.
This representation leverages the out-of-plane head rotation. It is
not only robust to outliers but also provides a method to aggregate
dynamic information from expressions with various lengths. The
approach to facial expression analysis consists of the following
steps: 1) face detection; 2) face registration of video frames with
the avatar reference to form the EAI representation; 3) computa-
tion of features from EAIs using both local binary patterns and
local phase quantization; and 4) the classification of the feature
as one of the emotion type by using a linear support vector
machine classifier. Our system is tested on the Facial Expression
Recognition and Analysis Challenge (FERA2011) data, i.e., the
Geneva Multimodal Emotion Portrayal-Facial Expression Recog-
nition and Analysis Challenge (GEMEP-FERA) data set. The
experimental results demonstrate that the information captured
in an EAI for a facial expression is a very strong cue for emotion
inference. Moreover, our method suppresses the person-specific
information for emotion and performs well on unseen data.

Index Terms—Avatar reference, emotion avatar image (EAI),
face registration, person-independent emotion recognition,
Scale-invariant feature transform (SIFT) flow.

I. INTRODUCTION

FACIAL expression plays a significant role in human com-
munication. It is considered the single most important cue

in the psychology of emotion [1]. Automatic recognition of
emotion from images of human facial expression has been an
interesting and challenging problem for the past 30 years [2].
Aiming toward the applications of human behavior analysis,
human–human interaction, and human–computer interaction,
this topic has recently drawn even more attention.

A literature review shows that early-stage research on fa-
cial expression recognition focused on static images [2], [3].
Both feature-based and template-based approaches were inves-
tigated. Recently, researchers have been using image sequences
or video data in order to develop automated expression recogni-
tion systems. As demonstrated in the fields of computer vision
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Fig. 1. Existing face registration techniques cannot handle out-of-plane head
rotation.

[4]–[7] and psychology [8], [9], various types of dynamic in-
formation, such as dynamic appearance and dynamic geometry,
are crucial for the recognition of human expressions.

However, extracting the facial dynamics from an expression
sequence is not a trivial problem. There are two critical ques-
tions: First is how to aggregate the dynamic information from
expressions of varying lengths and to create features with fixed
length, and second is how to perform alignment since capturing
the dynamics requires near perfect alignment for the head pose
and facial features. The inherent challenge for facial expression
recognition is the dilemma between compensating the rigid
motion of the head pose and extracting the nonrigid motion
of facial muscles. Most existing algorithms and real-time com-
puter programs [10], [11] are only capable of analyzing a frontal
face with a near upright angle. This is not due to the failure to
detect a face but due to the failure to register the detected face
reasonably in a video.

As shown in Fig. 1, when a subject’s face is in frontal
view, near frontal view, or has in-plane rotation, the alignment
can be done easily by in-plane image transformation. We can
detect both eye locations, scale the distance of both eyes to a
constant value for every subject, and then rotate the image to
guarantee that both eyes are horizontally aligned. Finally, we
can translate the entire image such that the eyes are located
at some predefined locations. This registration technique is
suitable for some early-stage research experiments where facial
expression data are acquired under controlled conditions. One
restriction is that in the collected data, not much head move-
ment should be involved. To accomplish this, data are collected
by cameras mounted on the subject’s head to eliminate the head
motion [12].

Three types of data are used in the facial expression recog-
nition community, namely posed data, acted data, and sponta-
neous data. For data sets that are collected from a stationary
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Fig. 2. Sample sequence for posed data. Very little head motion is involved.
(a) CK data set [14]. (b) MMI data set [13].

camera such as the web-based database for facial expression
analysis (MMI) data set [13] and the Cohn–Kanade (CK) data
set [14] (see Fig. 2), the subjects show facial expressions with
minimum head movement and therefore help researchers to
focus on the nonrigid facial muscle movement. Thus, these
data sets fall into the category of posed facial expressions,
meaning that the subjects are given “instructions” before show-
ing expressions. Subjects are conscious about controlling their
facial muscle movement. All the expressions start from a
neutral face, which provides a good reference for computing
the nonrigid facial motion. However, experiments demonstrate
that, in human–human interaction such as conversation, people
tend to adapt their head movements and facial expressions in
response to the stimulus [15]. This is a strong evidence of
the fact that facial expression is correlated with head motion.
This fact is also true in a more realistic data set such as the
GEMEP-FERA challenge data set [16]. Therefore, registration
techniques should take care of out-of-plane head rotation for
realistic data.

One technique that state-of-the-art algorithms use is 2-D
affine transformation. A number of facial “anchor points” are
defined whose motion is relatively stable during facial expres-
sions. Such anchor points include eye locations, inner and outer
eye corners, and the tip of the nose. We could also define a
corresponding target location for each anchor point. Once the
anchor points are detected, the affine transformation matrix
could be computed by minimizing the sum of the least square
error of detected location and target location of the anchor

points. This affine transform is subsequently applied to the
entire face image to complete the registration step.

The affine-based registration performs quite well when in-
plane or minor out-of-plane head motion is present. However,
the anchor points are not entirely stable during a facial ex-
pression. The eye corner could be unstable if the subject is
blinking or the tip of the nose could also be moving and so
forth. The typical number of anchor point is around six. If not
all points are detected correctly, a large transformation error
will be generated, and the affine transformation of the original
image will be unacceptable.

Moreover, affine-based registration is not temporally smooth.
If a minor change occurred to an anchor point for two con-
secutive face images, the affine transform matrix will be off
by a small amount. After applying this affine transform to the
entire face image, every single pixel is affected due to this minor
change. This will result in a fake motion for the stationary face
regions. Therefore, the entire dynamic analysis based on this
registration method will be imprecise.

Another registration technique is through the active appear-
ance model (AAM) [17], [18]. The automatic AAM fitting
process may perform poorly for person-independent cases.
Thus, it may require manual labeling of a subset of the frames
for each data [19] to improve the fitting result, which is unde-
sirable in an automated system. Recently, a person-independent
AAM approach has been developed [20]; however, this tech-
nique can be inaccurate due to false feature localization.

A significant issue in addition to face registration is the
person-independent property (subjects in the test data are not
used for training) of the algorithm. Computer algorithms cannot
be trained with data for all human beings. The generaliza-
tion ability must allow the system to predict for the unseen
people. Thus, the computer algorithms are expected to extract
person-invariant features. This property enables the system to
carry out facial expression recognition from a person-dependent
(or person-specific) environment to a person-independent
environment.

The person-specific information, including facial geometry
and facial appearance, can be eliminated at two steps in a
system: face registration and feature extraction. In-plane image-
transformation-based registration techniques do not change the
geometry or appearance of facial features; therefore, the person-
specific information is retained. An AAM-based approach can
warp the facial appearance and align the landmark points. The
affine-transformation-based registration algorithms are able to
change the geometry and the appearance of a person to a limited
extent. When a face is in a near frontal view (where the affine-
based registration accomplishes the most plausible result) and
only a simple transformation is needed, the face geometry
is mostly unaltered. When faces are not in the frontal view
(contain out-of-plane head rotation), the affine-based algorithm
is able to change the face geometry by a large amount, but
unfortunately, that is when this approach performs poorly and
when most of the registration results are unacceptable.

The person-specific information can be also eliminated
through feature extraction. Features that are extracted could
be categorized into geometry based and appearance based.
Geometry-based approaches track the geometry of landmark
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points over time and use their geometric relations or dynamics
as the feature. If the locations of the facial landmark points
are normalized and only the amount of location change is
considered to be the feature, it falls into the category of a
person-independent feature. For instance, emotion “joy” is
typically accompanied with a smile, which results in the mouth
expanding and the lip corner being pulled up [21]. However,
the geometry-based inference is sensitive to out-of-plane head
rotation. This rigid head motion may disguise the true motion
of the landmark points; therefore, it generates a large error
in the extracted feature. On the other hand, the appearance-
based approaches, such as local binary patterns (LBPs) [22],
Gabor wavelets [23], and local phase quantization (LPQ) [24],
concentrate on the dense response of filters to the intensity val-
ues of a face. These methods are inherently person dependent
unless person-dependent information is eliminated during the
face registration process.

The challenges aforementioned encourage us to develop a
system that accurately registers face images even with out-of-
plane rotation and, at the same time, eliminates the person-
specific information. To pinpoint the key emotion of an image
sequence while circumventing the complex and noisy dynam-
ics, we also seek to summarize the emotion video containing a
sequence of frames. If we can find a single good image repre-
sentation based upon which we make judgements, we would be
able to infer the emotion expressed through a sequence of facial
expressions in a computationally efficient manner.

In this paper, we have adopted the recently introduced SIFT
flow algorithm [25] to register the facial images. By matching
the dense SIFT descriptors across image pairs, this method is
able to generate satisfactory alignment results for facial fea-
tures. Although the SIFT flow is originally designed for image
alignment at the scene level, it is reasonable to apply it here to
facial expression recognition since a human face can be consid-
ered as a scene in this case. It is capable of globally aligning
the head/face region while maintaining the shape and motion of
facial features for consecutive frames. In order to solely extract
the facial motion information irrespective of person-specific
information, we iteratively build a single “avatar reference”
face model, onto which we align all the face images. Later, we
update the avatar reference face model and also the single good
representation, i.e., the emotion avatar image (EAI), for each
video consisting of frames for an emotion. We name the model
avatar because the subjects are morphed toward homogeneity,
whereas the emotions are successfully retained. Subsequently,
the EAIs are individually passed through LBP and LPQ texture
descriptors for feature extraction. Finally, support vector ma-
chines (SVMs) with a linear kernel are used for classification.
Our approach transforms the expression recognition problem
from an image sequence back to a single image.

In what follows, we first discuss the related work, motivation,
and the contribution of this paper (see Section II). Subsequently,
we introduce the effectiveness of the data for facial expression
and our iterative algorithm to build the avatar reference and
EAIs in Section III. Two combinations of methods are tested,
and the classification results of different techniques are com-
pared in Section IV. The conclusions of this paper is provided
in Section V.

II. RELATED WORK, MOTIVATION,
AND OUR CONTRIBUTIONS

A. Related Work

A large amount of effort has been focused on describing
facial expression features. Based on the feature in use, as
introduced earlier, we can broadly divide the methods into
three categories, i.e., geometry-based approaches, appearance-
based approaches, and the combination of the two. Geometry-
based approaches track the facial geometry information based
on a set of facial landmark points over time and classify
expressions based on their deformation. On the other hand,
appearance-based approaches use information from the fa-
cial texture described by various types of texture descriptors,
such as LBP, Gabor wavelets, and LPQ. The dynamics of
the texture deformation can also be included for feature ex-
traction. In Table I, a thorough comparison of methods from
the literature based on the usage of registration techniques,
feature types, dynamic features, classifiers, and the data set is
provided.

In this paper, the methods that are compared with the pro-
posed method are listed in Table II. In this table, we also analyze
their registration techniques, features, and classifiers similar
to the comparison shown in Table I. In addition, we include
the features and classifiers that are adopted in these papers.
Later, in Section IV, we provide a comparison of the meth-
ods on the same data, which is the GEMEP-FERA challenge
data set [16].

B. Motivation

Based on how the data are acquired, it can be categorized
into three classes: posed data, acted data, and spontaneous
data. When posed data are collected, subjects are given a
series of “instructions” such as emphasize on the facial muscle
movement and try not to move the head. Posed data played an
important role in the early-stage research, because it provided
researchers with more insights about the relation of expression
to the muscle movement. The CK database [14] and the MMI
database [13] fall into this category.

The ultimate goal of the research community is to recognize
spontaneous facial expressions. However, spontaneous data are
very hard to acquire. Facial expressions can be called sponta-
neous when subjects are not aware that they are being recorded,
and naturally express emotions. Since it is very difficult to
design a fully unaware environment when collecting data, no
spontaneous data set coded with explicit emotions is publicly
available.

The intermediate stage between the previous two, namely, the
acted data, has less control than the posed data, but subjects are
fully aware when data are being recorded. The GEMEP-FERA
challenge data set [16] that this paper used belongs to this class
and is shown in Fig. 3. In the process of data collection, subjects
are not asked to control themselves but just to convey a certain
emotion. These experiments have no control about the body
pose, the head pose, the gesture, or occlusion and are therefore
very challenging for expression recognition by an automated
system.
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TABLE I
COMPARISON OF SELECTED FACIAL EXPRESSION RECOGNITION TECHNIQUES

TABLE II
COMPARISON OF METHODS PROPOSED BY DIFFERENT TEAMS WHOSE PAPERS WERE ACCEPTED IN THE FERA CHALLENGE [36].

THE RANKED RESULTS ON THE SAME GEMEP-FERA CHALLENGE DATA SET ARE GIVEN IN Fig. 11

To motivate our method, we analyze the specifications of the
GEMEP-FERA data set as follows:

• Ten subjects (five males and five females) are involved
with their upper body visible.

• Subject’s age is approximately between 25 and 60 years,
as judged by observation.

• Video resolution is 720 × 576, and face resolution is
around 200 × 200 pixels.

• Average video length is about 2 s with a frame rate of 30 fps.

• Each video contains one subject displaying expressions
corresponding to a certain emotion.

• Five emotions are involved: Anger, Fear, Joy, Relief, and
Sadness. This is different from the typical six basic emo-
tions data sets.

• There are three to five videos for each subject with the
same emotion.

• Most subjects are uttering meaningless phrases while dis-
playing an expression [47].
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Fig. 3. Uncontrolled acted data from the GEMEP-FERA data set. These data
are used for testing.

• Videos do not start with the neutral face or end at the apex
or the offset. This is unlike the CK and MMI data sets.

• Multiple apexes are involved in some videos.
• The neutral face is not always available.
The given observations provide us the following key facts

that inspire our system:
1) Good registration is demanding, and previous registration

techniques (in-plane image transformation and affine-
based transformation) are not suitable for this data set.

2) Dynamical changes are hard to recover because the neu-
tral reference face is not always available.

3) Constant lip motion limits the geometry-based ap-
proaches.

C. Our Contributions

Existing work intensely emphasizes on analyzing the sequen-
tial change of the facial feature. Nevertheless, since the onset
and the offset for realistic data are hard to detect, if a near-apex
frame is able to be picked up to represent an entire expression
session, we can avoid extracting subtle sequential facial feature
deformations and describe emotions in a reliable manner.

The contributions of this paper are the following. First, iter-
atively build a reference face model called the avatar reference.
This homogenous reference face model can capture the nature
of the entire data set. Second, condense a video sequence into a
single image representation, i.e., an EAI, for facial expression
recognition. The EAI representation registers the facial fea-
tures at meaningful locations and maintains the nonrigid facial
muscle movement. Third, the EAI representation is capable of
aggregating dynamic facial expression information with various
lengths into fixed length features. Fourth, being able to suppress
the person-specific information, the EAI representation also
allows the expression recognition tasks to be carried out in a
person-independent manner.

To the best of our knowledge, until now, little work has
been done to condense a video sequence into a tractable im-
age representation for emotion recognition. As the results in
Section IV show, our algorithm can distinguish most of the
differences between expressions, as long as the expressions are

Fig. 4. Overview of our approach.

not so subtle that even the human visual system is unable to
detect them.

III. TECHNICAL APPROACH

In Fig. 4, our approach is outlined in four major steps. After
automatically extracting faces from a raw video, we provide
some insights about our EAI representation that suppresses the
person-specific information while maintaining the shape and
texture information on the facial features. Both LBP and LPQ
texture descriptors are applied to generate the features; then, the
linear SVM classifiers are used for classification. The model
used for testing is trained with a 1-versus-1 SVM.

A. Face Detection

We first extract the face from the video using the Viola
and Jones face detector [49] implemented in OpenCV. This
algorithm achieves high-quality performance and is suitable
for real-time processing. The detection rate is near perfect on
the GEMEP-FERA [16] data set. Since the face resolution is
around 200 × 200 pixels, we resize the detected face image ex-
actly to this resolution using bicubic interpolation. This process
removes the noise and smoothes the raw images.

B. EAI Representation

1) SIFT Flow Alignment: SIFT flow has been recently in-
troduced in [25]. It is originally designed to align an image to
its plausible nearest neighbor, which can have large variations.
The SIFT flow algorithm robustly matches dense SIFT features
between two images while maintaining spatial discontinuities.

In [25], the local gradient descriptor SIFT [35] is used to
extract a pixelwise feature component. For every pixel in an
image, the neighborhood (e.g., 16 × 16) is divided into a 4 × 4
cell array. The orientation of each cell is quantized into eight
bins, generating a 4 × 4 × 8 = 128 dimension vector as the
SIFT representation for a pixel or the so-called SIFT image. The
SIFT image has a high spatial resolution and can characterize
the edge information.
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After obtaining the per-pixel SIFT descriptors for two im-
ages, a dense correspondence is built to match the two images.
Similar to optical flow, the objective energy function that we
attempt to minimize is designed as

E(w) =
∑
p

min (‖s1(p) − s2 (p + w(p))‖1 , t) (1)

+
∑
p

η (|u(p)| + |v(p)|) (2)

+
∑

(p,q)∈ε

min (α |u(p) − u(q)| , d)

+ min (α |v(p) − v(q)| , d) (3)

where p = (x, y) is the grid coordinates of the images and
w(p) = (u(p), v(p)) is the flow vector at p. u(p), v(p) is the
flow vector for the x-direction and the y-direction, respectively.
s1 and s2 are two SIFT images to be matched. ε contains all
the spatial neighbors (a four-neighbor system is used). The data
term in (1) is a SIFT descriptor match constraint that enforces
the match along the flow vector w(p). The small displacement
constraint in (2) allows the flow vector to be as small as pos-
sible when no other information is available. The smoothness
constraint in (3) takes care of the similarity of flow vectors
for adjacent pixels. In this objective function, the truncated L1
norm is used in both the data term and the smoothness term
with t and d as the threshold of matching outliers and flow
discontinuities, respectively. η and α are scale factors for the
small displacement and the smoothness constraint, respectively.

The dual-layer loopy belief propagation is used as the base
algorithm to optimize the objective function. Then, a coarse-
to-fine SIFT flow matching scheme is adopted to improve the
speed and the matching result.

Two frames with a minor pose difference are shown in
Fig. 5(a). We align the target frame with respect to a refer-
ence frame. For comparison purpose, we separately take the
absolute difference between images before alignment and after
alignment with respect to the reference. Comparing the two
difference images in Fig. 5(a), the rigid head motion from the
minor pose change is eliminated. Nevertheless, the difference
image also shows that the SIFT flow alignment process is noisy.

Consider a case with a major pose change in Fig. 5(b), the
head pose motion is out of plane, and the facial appearance
significantly changes. The registration result is in the upright
pose, and nonrigid motion in the mouth and eye areas can
still be captured. Differences at the periphery are due to the
lack of correspondences for SIFT flow vectors. However, this
information is still useful as it captures the pose change, which
is also an important cue in facial expression recognition [15].
Differences at the periphery show that the pose change and the
true facial feature motion are separated. Similar to the minor
pose change case, the noise and discontinuity are issues in the
aligned result.

2) Avatar Reference and the EAI: SIFT flow has the po-
tential to align images with large spatial variation. This is
useful in aligning the face image given the possibility of a
large head pose change or occlusion. However, the person-

Fig. 5. SIFT flow face registration performs well when the pose change is
small or large. It captures the facial muscle motion in both cases but the results
are very noisy. (a) Minor difference. Only true facial motions are captured
as shown by the corresponding difference image of before alignment and
after alignment. (b) Major difference. (bottom right) Difference image of the
reference and the alignment result shows the true facial motions are captured in
the inner eye corner areas.

specific information still has to be eliminated. We seek to build
a reference face with respect to which each face image can be
aligned.

Algorithm 1 Avatar Reference and EAI
Given:
I(m,n): face image from sequence m, frame n
M : total number of image sequences
Nm: total number of frames in sequence m
Q: user-defined number of levels
Aref

i : Avatar Reference at level-i
EAIm

i : EAI representation for sequence m based on the
level-i Avatar Reference Aref

i

I
(m,n)
align : the alignment result for a face image I(m,n) using

SIFT flow
Initialization: Aref

0 = 1/(
∑M

m=1 Nm)
∑M

m=1

∑Nm

n=1 I(m,n)

for i = 1 → Q do
for m = 1 → M do
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Fig. 6. Avatar reference face model and EAI representations for the first three
levels. For comparison, level-0 EAIs are the average of every face image from
their corresponding videos without alignment. Higher levels of EAI have more
facial feature details and a homogenous face model.

for n = 1 → Nm do
I
(m,n)
align ← SIFTflow(I(m,n), Aref

i−1)
end for
EAIm

i ← 1/Nm

∑Nm

n=1 I
(m,n)
align

end for
Aref

i ← 1/
∑M

m=1

∑M
m=1 EAIm

i

end for

In Algorithm 1, we design an iterative averaging method to
generate an avatar reference face model. To put it simply, we
initialize our algorithm by averaging all possible face images
in the training data set. Initially using this average face as the
reference, we align each face image in the video using SIFT
flow. After alignment, the user can update the avatar reference
using all the aligned faces. The iteration number defines the
level of the avatar reference (level 0 means the average of all
the unaligned face images). The avatar reference models for
the first three levels are shown in row 1 in Fig. 6. From our
observation, the avatar reference is not always a neutral face. It
captures the most likely facial appearance throughout the whole
data set; therefore, it has less total variation in registration. The
mouth is open for the level-1 and level-2 avatar reference face
results (as shown in row 1 in Fig. 6). This is because most of the
subjects in the training data are uttering meaningless phrases
[16] and therefore have a lot of mouth movement.

In Algorithm 1, once the avatar reference face model is
obtained, we establish the single-representation EAI for the
sequence of face images at the current level. As demonstrated
earlier, a single-aligned face image possesses errors and dis-
continuities. Therefore, we describe an image sequence as
the average of all frames within this sequence. The statistical
justification of the EAI representation is similar to [50]. Assume
that the distribution of every aligned face frame is subject to
an addition of a true face and additive noise. The noise is
further assumed to be Gaussian. During the averaging process,
the noise variance is reduced by a factor of N , where N is
the number of face images. Thus, the alignment noise can be
removed from our EAI representation.

3) Characteristics of EAI: In this paper, we attempt to test
the performance of EAIs at different levels. As shown in Fig. 6
(row 2), the quality of the EAIs improves as the level of

avatar reference becomes higher. A high-level avatar reference
model enhances the facial details, corrects the rigid head pose
change, and attenuates the person-specific information. Mean-
while, EAI representation retains the expression information
that is recognizable by the human visual system. The EAI
representations for five subjects with different emotions are
shown in Fig. 7 (due to publication permission issue, we only
show sample EAI representations for a subset of emotions in the
CK+ data set. Please refer to [37] for the similar figure for the
Facial Expression Recognition and Analysis Challenge (FERA)
challenge data set). Since all the faces are aligned with respect
to the same avatar reference, the EAI representation can be seen
to align facial features, such as the nose, eyes, and the mouth
reasonably. This lays the foundation for extracting meaningful
facial feature motion. In addition, aligning every face image
with the avatar reference allows the elimination of the person-
specific information to a great extent.

The EAIs in Fig. 7 can also be observed to capture the
nonrigid facial feature motion and the corresponding facial
expression information. This is due to the small constraint
intensity parameter η in (2). Larger values of η will penalize the
large flow vectors more, which will result in less morphing for
the alignment result. Ideally, if two face images are perfectly
aligned, all the facial features should be at exactly the same
locations. The facial feature motion will be eliminated in this
case. In practice, the real facial feature motions during an
expression are larger than the SIFT flow compensation and,
subsequently, can be maintained in the noisy alignment results.
The accumulation process will smooth the alignment results
while capturing the real motion caused by a facial expression.

The reasons we decide to use EAI are given below. First, it
is a morphed version or incarnation of the original person. Its
identity is altered through the change of facial geometry. Facial
features for every person are warped to a common reference.
Second, the representation maintains the original emotion con-
veyed through facial expression. Thus, an emotion avatar is a
subset of an avatar. Third, it is an image representation and
not a 3-D model. The avatar reference and EAI are related as
described in Algorithm 1.

C. Feature Extraction

The EAI representation allows us to represent the recognition
problem with a single image rather than a video. To test the
effectiveness of our single-image-representation EAI, we de-
scribe the facial texture from EAI using the well-known texture
descriptor LBP and the recently proposed blur-insensitive LPQ
descriptor. We expect to receive similar improvements for both
methods.

1) LBP: The LBP is a powerful and well-known texture
descriptor. In this paper, we used the extended version of the
basic LBP in [22], where the LBP descriptor is uniform and
grayscale invariant. To briefly go over this extended work,
the operator, which is denoted as LBPu2

P,R, is applied to a
circularly symmetric neighborhood with P number of pixels on
the circle of radius R. Superscript “u2” denotes the uniform
property. A uniform LBP is favorable since it reduces the
feature dimension. For example, the LBPu2

8,1 adopted in this



YANG AND BHANU: UNDERSTANDING DISCRETE FACIAL EXPRESSIONS IN VIDEO USING EMOTION AVATAR IMAGE 987

Fig. 7. Level-2 EAI representation for subjects in the CK+ data set. The facial features are reasonably aligned, and person-specific information is attenuated.

paper will generate 59 basic patterns, whereas the LBP8,1 has
256 possibilities. Since these parameter settings are used in the
baseline method [47], we adopt the same settings for better
comparison.

After thresholding each pixel in its neighborhood with re-
spect to the center value, the histogram is used to accumulate
the occurrence of the various patterns over a region. In our ex-
periment, we resize the face images to 200 × 200, and each im-
age is divided into blocks of size 20 × 20 blocks to capture the
local texture pattern. Therefore, the LBP feature vector in use is
of dimension 59 × 10 × 10 = 5900. As mentioned earlier, the
face resolution is close to 200×, hence we resize all face images
to this uniform value to minimize the information loss.

2) LPQ: The blur insensitive LPQ descriptor is originally
proposed in [24]. The spatial blurring is represented as multipli-
cation of the original image and a point spread function (PSF)
in the frequency domain. The LPQ method is based upon the
invariant property of the phase of the original image when the
PSF is centrally symmetric.

The LPQ method examines a local M × N neighborhood
Nx at each pixel position x of image f(x) and extracts the
phase information using the short-term Fourier transform de-
fined by

F (u,x) =
∑

y∈Nx

f(x − y)e−j2πuT y = wT
u fx (4)

where ωu is the basis vector of the 2-D Discrete Fourier
transform at frequency u, and fx is another vector containing
all M2 image samples from Nx.

The local Fourier coefficients are at four frequency points:
u1 = [a, 0]T , u2 = [0, a]T , u3 = [a, a]T , and u4 = [a,−a]T ,
where a is a sufficiently small scalar. We use a = 1/7 in our
experiment. The vector for each pixel is obtained as

Fx = [F (u1,x), F (u2,x), F (u3,x), F (u4,x)] . (5)

The phase information is recovered by a scalar quantizer, i.e.,

qj(x) =
{

1, if gj(x) ≥ 0
0, otherwise

where gj(x) is the jth component of the vector Gx =
[Re{F x}, Im{F x}]. The resulting eight binary coefficients
qj(x) are represented as integer values between 0–255 using
binary coding as follows:

fLPQ(x) =
8∑

j=1

qj(x)2j−1. (6)

In addition, the decorrelation process is added to the original
LPQ implementation to eliminate the dependence among the
neighboring pixels. Similar to LBP, we divided the 200 × 200
face image into size 20 × 20 regions. Therefore, the LPQ
feature vector is of dimension 256 × 10 × 10 = 25600.

D. Classification

We train our multiclass linear SVM classifier [51] in the 1-
versus-1 manner. The cost parameter C is chosen to be 1 for
our system for the reason that, as demonstrated in Fig. 8, the
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Fig. 8. Box plot of the tenfold cross-validation result on 155 GEMEP-FERA
training data with respect to different values of the SVM parameter C.

Fig. 9. Box plot of tenfold cross-validation results on 155 training videos
using different levels of EAIs. The average classification rate is connected
for the LPQ texture descriptor to show the improvement at each level. This
is to demonstrate that we adopt level-2 EAIs because of its potential to good
performance and relative computational efficiency.

tenfold cross-validation accuracy will not be degraded if C is
not extremely small.

The iterative EAI algorithm is only executed during training.
In the test phase, we register the detected faces using SIFT
flow with respect to the level-1 avatar reference obtained from
the training phase. Summing up all the registered faces from
one sequence generates the corresponding level-2 EAI. We
then extract LBP and LPQ texture features from every EAI
representation for classification.

The reason why we use level-2 EAI face model is statistically
demonstrated in Fig. 9. We carry out a series of tenfold cross-
validation experiments on only the training of the GEMEP-
FERA data set using the first 11 levels of the EAIs and the test
on the LPQ texture descriptor. The cross-validation procedure
results in person-specific category because we do not exclude
the test subjects from the training. In Fig. 9, it is shown that the
performance improves as the level of the EAI increases for
the first three levels. This is consistent with our discussion on
the avatar reference level in Section III-B. The performance
peaks at both levels 2 and 6. After analyzing the avatar reference
and the corresponding EAI representation, the overfitting issue
occurs to the avatar reference as the level increases, as shown in
Fig. 10. Artifact facial details are excessively displayed through

Fig. 10. Avatar reference from levels 0 to 7. A higher level of the avatar
reference will have excessive facial details due to overfitting. Level 1 is used
in our system.

the higher number of iteration in Algorithm 1. The system with
level-6 EAI may not have a good generalization to unseen data.

IV. EXPERIMENTAL RESULTS

A. System Implementation

Similar to our previous work [37], after extracting the faces
from the raw data using the face detector in [49], the face
images are then aligned to the level-1 avatar reference face
model based on Algorithm 1, and the single-representation
EAIs are generated. Subsequently, using both LBP and LPQ
operators, we separately extract the feature from all the EAIs.
Specifically, LBPu2

8,1 is used in our experiment. The parameters
for the LPQ operator are M = 9, a = 1/7, and ρ = 0.9. Lastly,
as demonstrated in Section III-D, the classifier we used is the
1-versus-1 linear SVM [51] classifier with C = 1.

B. Challenge Evaluation Protocol

Our method and ten other methods (including the baseline
[47]) are compared using the FERA2011 data, i.e., the GEMEP-
FERA data set [16]. As part of the FERA2011 challenge, 155
training videos were given out a month before the deadline.
Then, the 134 test videos were released one week before the
deadline. There are seven subjects in the training data and
six subjects in the test set, three of which are not present in
the training set [16]. We ran the test videos using our system
that takes each video session as the input and outputs the
emotion label. All predicted labels were then submitted to the
organization panel of FERA2011. After evaluation, the results
were provided in three different categories: person independent,
person specific, and overall.

C. Challenge Results

The confusion matrices for the EAI using the LPQ operator
are shown in Tables III–V, with test results on person inde-
pendent, person specific, and overall, respectively. Similarly,
the confusion matrices for EAI using the LBP operator are
presented in Tables VI–VIII.
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TABLE III
CONFUSION MATRIX FOR EAI + LPQ (PERSON INDEPENDENT)

TABLE IV
CONFUSION MATRIX FOR EAI + LPQ (PERSON SPECIFIC)

TABLE V
CONFUSION MATRIX FOR EAI + LPQ (OVERALL)

TABLE VI
CONFUSION MATRIX FOR EAI + LBP (PERSON INDEPENDENT)

TABLE VII
CONFUSION MATRIX FOR EAI + LBP (PERSON SPECIFIC)

TABLE VIII
CONFUSION MATRIX FOR EAI + LBP (OVERALL)

Fig. 11. Comparison of classification results in the primary test for person-
specific, person-independent, and overall cases [36]. Teams are ranked based
on the overall performance (numbers are labeled). Our (UCR) EAI methods
ranked the first place and the third place for LPQ and LBP, respectively.
UCR: University of California at Riverside; UIUC-UMC: University of Illinois
at Urbana-Champaign; University of Missouri; KIT:Karlsruhe Institute of
Technology; UCSD-CERT: University of California at San Diego; ANU:
Australian National University; UCL: University College London; UMont.:
University of Montreal; NUS: National University of Singapore; QUT-CMU:
Queensland University of Technology; Carnegie Mellon University; MIT-
Cambridge: Massachusetts Institute of Technology; University of Cambridge.

In Fig. 11, it is shown that our EAI representation combined
with LPQ and LBP descriptors rank the first and third places,
respectively, in the primary test. Our approach achieves the
highest classification rate in the person-independent test (0.75
using EAI + LPQ). This is a positive evidence that our ap-
proach eliminates the person-specific information and captures
the facial expression information. In addition, this demonstrates
the desired ability of EAI for predicting the unseen data in real
applications. In the person-specific test, our method achieves
96% classification accuracy. In the training data, each subject
displays the same expression three to five times. The EAI
representation achieves consistency when a subject displayed
the same expressions in different videos [37].

Since the ground-truth label for each emotion video is easy
to tell, the FERA2011 organizer required a secondary test
where no participant can see the data. We submitted our facial
expression recognition system program using EAI + LPQ to
the organizer. Secondary test data are approximately half the
size of the primary test set. Our approach achieves an 86%
overall classification rate [36], which is consistent with the
primary test.

The inherent characteristic of our approach is to eliminate
facial dynamics while maintaining the emotion information.
Unlike most of the other approaches [40], [48] which treat each
frame as a single training instance (total of 8995 frames from
155 videos if all the images in the training set are used), our
method only considers them as 155 EAIs. Given more training
videos, our system will most likely be improved since 155
videos of five emotions (approximately 30 videos/emotion on
average) may not be sufficiently large to represent a single
emotion across a large population.
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TABLE IX
CONFUSION MATRIX FOR CK+ DATA SET.

(AN = ANGER, CO = CONTEMPT, DI = DISGUST, FE = FEAR,
HA = HAPPY, SA = SADNESS, SU = SURPRISE)

D. Evaluation on the CK+ Data Set

We also evaluated our system (implemented with the com-
bination of level-2 EAI and LPQ) using 316 sequences from
123 subjects in the CK+ [14] data set. Seven emotion cate-
gories (Anger, Contempt, Disgust, Fear, Happy, Sadness, and
Surprise) are included in this data set. No subject with the same
facial expression has been collected more than once. We carry
out leave-one-subject-out cross-validation experiment so that it
belongs to the person-independent category. The confusion ma-
trix is shown in Table IX. The average classification accuracy
is 82.6%, which is consistent with our person-independent test
result for the FERA data set in Table III.

Our algorithm performs not as good as in [4], [5], and [34]
on this data set. The reasons are as follows. First, each sequence
in the CK+ data set has only one apex, which reduces the
intensity of the expression. The EAIs for CK+ look relatively
neutral compared with the EAIs for the GEMEP-FERA data
set. Second, the frontal view face images from the CK+ data
set do not need sophisticated registration techniques. Thus,
good dynamic facial features can be easily captured. Therefore,
those approaches that use dynamic features outperform our
approach that is based on simple features computed from the
EAI representation. However, in a more realistic case where
a good registration result is difficult to achieve (such as the
GEMEP-FERA), our approach outperforms the approaches
using complex dynamic features [42], [44]. Third, the training
data might not be sufficient. We plot the relation between the
number of training examples for each emotion category and
the corresponding classification rate in Fig. 12. For classes
Anger, Disgust, Happy, and Surprise, where training examples
are greater than 40, the corresponding classification rate is sig-
nificantly higher than that from the categories Contempt, Fear,
and Sadness. We can expect an improvement of performance
for a larger number of training instances.

E. Discussion

In more general cases such as spontaneous facial expression,
facial feature motion is more subtle, and the temporal bound-
aries for expression are difficult to determine. As demonstrated
in Section III, the registration process using SIFT flow can
capture small changes in facial expressions if the changes are
not extremely subtle. With respect to the temporal boundary
issue, depending on application of the system, a facial expres-
sion can be segmented based on a single expression label or
multiple labels. On the one hand, if a single-label assignment

Fig. 12. Relation between the number of training images and the classification
rate. The semantic meanings of the y-axis are different for the two classes. The
classification rates for categories with more training example are significantly
higher.

is acceptable for an application, it is possible to sample the
data based on the appearance change and to learn the temporal
boundary [52]. On the other hand, if the application needs to
capture subtle information and multiple labels are required, one
can consider learning the relation between different labels and
the appearance feature.

In the process of developing a real-time system, several
issues need to be addressed. The avatar reference is created
during the training phase. During the test phase, the detected
faces are directly aligned with respect to the avatar reference
using SIFT flow. As discussed in the previous paragraph, the
EAIs can be computed given a temporal buffer resulting from
the resampling process. The real question is that whether SIFT
flow can be implemented in real time or not. The dense SIFT
descriptor can be computed in a parallel fashion, whereas loopy
belief propagation cannot. However, if we can lower the face
resolution from 200 × 200 (as used in this system) and sacrifice
a small amount of the recognition rate, it is possible to carry out
SIFT flow in real time.

V. CONCLUSION

Given the temporal segmentation of a video, we explore
the new idea of condensing a video sequence into a single
EAI representation. We adopt SIFT flow for aligning the face
images, which is able to compensate for large rigid head motion
and maintain facial feature motion detail. Then, an iterative al-
gorithm is used to generate an avatar reference face model onto
which we align every face image. We experimentally demon-
strate that the level-2 EAI has the potential to generate a higher
classification rate. Our EAI representation combined with LPQ
and LBP texture descriptors achieved excellent performance in
both person-independent and person-specific cases when tested
on the challenging facial expression recognition data set, i.e.,
the GEMEP-FERA data set. Given the consistency of our EAI
representation, the performance of our approach is dramatically
improved when compared with the baseline [47] and other
approaches [38], [40]–[42], [44]–[46], [48]. In the future, we
will incorporate larger data in our system. To generalize our
system, we will also study on how to automatically segment a
video in a meaningful manner.
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