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Abstract—This paper presents a new symmetry-integrated region-based image segmentation method. The method is developed to

obtain improved image segmentation by exploiting image symmetry. It is realized by constructing a symmetry token that can be flexibly

embedded into segmentation cues. Interesting points are initially extracted from an image by the SIFT operator and they are further

refined for detecting the global bilateral symmetry. A symmetry affinity matrix is then computed using the symmetry axis and it is used

explicitly as a constraint in a region growing algorithm in order to refine the symmetry of the segmented regions. A multi-objective

genetic search finds the segmentation result with the highest performance for both segmentation and symmetry, which is close to the

global optimum. The method has been investigated experimentally in challenging natural images and images containing man-made

objects. It is shown that the proposed method outperforms current segmentation methods both with and without exploiting symmetry. A

thorough experimental analysis indicates that symmetry plays an important role as a segmentation cue, in conjunction with other

attributes like color and texture.

Index Terms—Local and global symmetry, region growing, symmetry affinity, segmentation and symmetry evaluation, comparison of

segmentation algorithms.

Ç

1 INTRODUCTION

SYMMETRY is one of the important features that is present
in all forms of objects, and it plays a crucial role in

machine perception. Symmetry is an intrinsic property of an
object which causes it to remain invariant to certain classes
of transformations. In the field of computational symmetry,
four primitive types of symmetry exist in the 2D euclidean
space [51]:

1. reflection symmetry,
2. rotational symmetry,
3. translational symmetry, and
4. glide-reflection symmetry,

a combination of reflection by a line and a translation along
that line. Four primitive symmetry types are shown in Fig. 1a.

Combinations of the primitive symmetry types generate
more symmetry categories [51], as shown in Fig. 1b. This

paper is concerned with the segmentation of 2D images
having reflection symmetry possessed by many natural and

man-made objects.
In the computer vision and pattern recognition literature,

symmetry has been used extensively for object boundary

interpretation [1], [3], shape symmetry analysis [2], [5], [6],
[44], [45], [46], [47], [48], [55], [56], and symmetry extraction

[7], [8], [9], [10], [50], [51], [53], [54], [57]. Since symmetry is

a high-level geometric feature compared to other lower
level features like color and texture, there is an extensive
literature concerning application of symmetry into higher
level tasks. Many approaches have been developed for the
segmentation and abnormality detection in brain in
magnetic resonance images [16], [17], [18], [19], [33]. There
is also extensive work on face detection [20], [21], [22], [23],
human tracking and identification [24], [25], [60], [61], and
image pattern detection [58], [59].

The above work on symmetry provides us the motiva-
tion for integrating symmetry into an image segmentation
algorithm. This paper incorporates high-level symmetry
feature for improved region growing image segmentation.
It develops a systematic approach and provides detailed
comparisons using publicly available databases.

Symmetry detection can be conducted on a local or a
global level [51]. For the global symmetry detection [8], [10],
[20], [25], [47], all object points, or the points in the entire
image, contribute to the determination of symmetry. The
computation of global symmetry is time efficient and
always free from prior models, but it is sensitive to
distortions. For the local symmetry detection [2], [6], [7],
[22], [46], [50], the symmetry element is supported locally
by some subset of an object. It is more robust to distortions,
but has high time complexity, and generally it relies on
prior geometric model. In the field of local symmetry
detection, the local features are always used, e.g., the object
contour and the gradient orientation. The method of [29]
can detect both local and global symmetries, and multiple
occurrences of symmetry.

The type of symmetry can be discrete or continuous [27],
[51]. Under the discrete symmetry group, its invariant
transforms (related to its symmetry properties) have discrete
(noncontinuous) generators, e.g., the reflection symmetry by
an axis and the rotational symmetry of a regular polygon. As
shown in Fig. 1c, the hexagon possesses discrete rotational
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symmetry, as only rotations by discrete angles preserve the
original appearance. For the continuous symmetry group, its
invariant transforms are continuous and smooth, e.g., the
rotation of a circle (rotation by infinite number of angles
preserves its original shape, as shown in Fig. 1c).

The existence of symmetry can be measured as a binary
(exists or not) or a continuous (variable) feature. The work
in [28], [29] treats the symmetry as a continuous feature, in
which intermediate values of symmetry denote some
intermediate amount of symmetry. Since symmetry in the
real world is not perfect, it does not restrict the symmetry as
a binary feature, where the object is either symmetric or
nonsymmetric. This paper detects the discrete reflection
symmetry axis of an image (see Section 3.1.1), and it uses a
continuous symmetry magnitude to measure the amount of
symmetry in an image [29]. Based on the selection of a
threshold for symmetry magnitude, the presence/absence
of the symmetry axis can be detected.

As mentioned above, the global symmetry detection has
the advantages of freedom from a priori model. It is
considered to be useful in our region-based segmentation
scheme. Although these segmentation methods vary in
principle on how to form the regions, all of them have one
thing in common—they all define a similarity measure
related to their segmentation cues, e.g., color and texture.
Thus, these methods have the potential to incorporate a
symmetry cue. In this paper, symmetry is combined as a
new cue in region growing image segmentation method.

The rest of this paper is organized as follows: In Section 2,
we give an overview of the related work on symmetry-based
image segmentation and identify our contributions. In
Section 3, we present the details of technical approach for
symmetry-integrated image segmentation. In Section 4, we
provide experimental results and discussions. Finally, in
Section 5 we present the conclusions.

2 RELATED WORK AND CONTRIBUTIONS

2.1 Related Work

Image segmentation attracts a great deal of attention in
computer vision and pattern recognition. Although re-
gions with coherences like color and texture are segmen-
ted successfully, most methods fail to achieve appropriate
segmentation due to the unavailability of higher level

features. Recently, the integration of symmetry into image
segmentation as a high level feature has attracted
attention [12], [13], [14], [15], [16], [17], [49], but the field
is still immature.

Several reasons make the symmetry-integrated image
segmentation a challenging problem. First, symmetry is a
higher level feature. It is difficult to combine with low-level
features like color and texture. It makes segmentation a
challenging and error-prone task. This is called the feature
gap, which commonly exists. In this paper, the feature gap is
narrowed by using symmetry as a pixel-based affinity [10],
[14], and it is integrated into other segmentation cues to
form a unified constraint.

Second, symmetry features like shape [2], [5], [6], [44],
[45], [46], [47], [48], [55] are only used for object detection.
This paper extends the use of symmetry by applying it as a
segmentation cue.

Third, there exists a gap between global and local
symmetry integrations. Previous work applies local sym-
metry, which segments only the local symmetric objects.
Our method uses the global symmetry, which is able to
refine the symmetry of the entire segmented image.

The symmetry-based image segmentation can be traced
back to the work of [11]. In the current literature, only a
limited number of papers can be found for symmetry-
based image segmentation [12], [13], [14], [15], [16], [17],
[49]. Tables 1 and 2 provide a summary and limitations of
their methods.

2.2 Contributions of This Paper

As compared to the previous work (see Tables 1 and 2), the
contributions of the paper are:

1. Integrated symmetry and segmentation. This is the first
work that integrates the high-level symmetry con-
cept into the low-level region-based image segmen-
tation method.

2. Global symmetry detection. Our method addresses
Limitation 1 (see Table 2) by using global symme-
try detection, which is more robust to asymmetric
distortions.

3. Multiregion segmentation. Limitation 2 and 7 (see
Table 2) are overcome by region growing as a
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TABLE 1
State-of-the-Art Image Segmentation Methods Integrating

Symmetry: Summary and Their Limitations

Fig. 1. (a) Primitive symmetry categories. (b) Combined (extended)
symmetry categories. (c) Discrete and continuous symmetry.



multiregion segmentation combined with symmetry
(see Fig. 5).

4. Integration of symmetry with color and texture. Limita-
tion 3 (see Table 2) is addressed by integration with
symmetry. Thus, regions with different properties
like color, texture, and symmetry are segmented
simultaneously.

5. No need of prior knowledge. Limitation 4 (see Table 2) is
addressed by using symmetry affinity as a constraint,
which does not need any prior model (see (10)).

6. Different cues into a single criterion. Limitation 5 (see
Table 2) is overcome by using the symmetry with
other constraints to build a single criterion (see (5)).

7. Robust to distortions. Limitation 6 (see Table 2) is
overcome by global symmetry detection and sym-
metry as a continuous feature that is more robust to
distortions.

8. Both quantitative and qualitative analyses. This is the
first work to use thorough qualitative and quantita-
tive analyses (see Fig. 6) in symmetry-integrated
segmentation.

9. Segmentation of both symmetric and nonsymmetric
regions. This work not only refines symmetric
regions, but also segments nonsymmetric regions
properly (see Fig. 5).

3 SYMMETRY-INTEGRATED REGION GROWING

SEGMENTATION

The overall approach is summarized in Fig. 2. An input
image is processed with discrete reflection symmetry
detection to obtain a global symmetry axis. It is used to
compute the symmetry affinity, which is carried forward as

the symmetry cue to be integrated into the region growing
segmentation. A multi-objective genetic search is applied to
find the optimal segmentation results. Table 3 presents the
definition of symbols used in this section.

3.1 Discrete Reflection Symmetry Detection and the
Symmetry Affinity Matrix

3.1.1 Discrete Reflection Symmetry Detection

The reflection symmetry axis of an image is extracted by the
global symmetric constellations of features [29]. The algo-
rithm is capable of finding a dominant symmetry axis when
an image has one or multiple symmetric objects. Also,the
algorithm is able to show the axes belonging to multiple
symmetric objects. It also tells us when no symmetry axis is
detected. Table 4 shows the key steps of the symmetry
detection algorithm.

3.1.2 The Symmetry Affinity Matrix

The symmetry axis is used to compute a symmetry affinity
matrix, which is the correlation between original and the
symmetrically reflected image. Each pixel has a symmetry
affinity value between 0 (perfectly symmetric) and 1 (totally
asymmetric), as shown in Fig. 4d. It is computed by the
Curvature of Gradient Vector Flow (CGVF) [10]. The
Gradient Vector Flow (GVF) of an image is denoted by

V ¼ ½uðx; yÞ; vðx; yÞ�: ð1Þ

Then, the CGVF is computed as

Curvðx; yÞ ¼ 1

jV j3
½ðvx þ uyÞuv� uxv2 � vyu2�; ð2Þ
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Fig. 2. System diagram for symmetry-integrated image segmentation.

TABLE 2
State-of-the-Art Image Segmentation Methods Integrating

Symmetry: List of Their Key Limitations

TABLE 3
Definition of Symbols Used in Section 3



where ux ¼ @u=@x, uy ¼ @u=@y, vx ¼ @v=@x, vy ¼ @v=@y are

the first derivatives of a pixel’s GVF values along x and y

directions. The symmetry affinity of a pixel ðxpi; ypiÞ is

given by

Cðxpi; ypiÞ ¼ min
k;v

 Xxpjþm
xpj k¼xpj�m

Xypjþm
ypj v¼ypj�m

jCurvðxpi; ypiÞ � Curvðxpj k; ypj vÞj
!
;

ð3Þ

where ðxpj; ypjÞ is the symmetric counterpart of ðxpi; ypiÞ
reflected by the axis. It is realized by searching local window

of pixels with size 2mþ 1 centered at the pixel ðxpj; ypjÞ, and

the minimum curvature distance is used as the symmetry

affinity. The window size is set to 7� 7 ðm ¼ 3Þ in the

experiments. The symmetry affinity value of (3) measures

the level of symmetry. In this paper, the level of symmetry

quantifies the amount of symmetry exhibited by an image

(or a pixel, or a region). The higher symmetry level means

that an image is more similar to its mirrored counterpart

reflected by the global symmetry axis (see Fig. 3a). The value

of symmetry level of an image (or a region) is the average

symmetry affinity value of its pixels (computed by (3)). For a

pixel, the symmetry level is equal to the pixel’s symmetry

affinity value.

3.2 Symmetry-Integrated Region Growing

The region growing starts the segmentation from initial

seeds of pixels and agglomerates their neighboring pixels

having similar features to form uniform regions iteratively.

Our method aims to improve the region growing segmenta-

tion by integrating the symmetry cue, using the symmetry

affinity matrix obtained from Section 3.1.2.

3.2.1 Pixel Aggregation Criterion �ðpi; rjÞ
Region growing concerns the aggregation of a region by its

neighboring pixels having similar properties measured by

the homogeneity criteria, based on color, texture, shape, etc.

Let us denote it as the homogeneity aggregation criterion

�ðpi; rjÞ. The criterion holds true when

�ðpi; rjÞ < �g: ð4Þ

The rationale behind the equation is that pixel pi will be
aggregated into neighboring region rj if the region homo-
geneity criterion �ðpi; rjÞ between them is below a pre-
determined region growing threshold �g. This threshold can
be tuned to allow more or less tolerance to the aggregation
criterion, resulting in different segmentations. Typically, the
region homogeneity criteria used are color and texture, with
a single region homogeneity criterion �ðpi; rjÞ ¼ �Rðpi; rjÞ. In
this paper, the aggregation criterion is modified to integrate
the symmetry cue, defined as

�ðpi; rjÞ ¼ �Rðpi; rjÞ�Sðpi; rjÞ; ð5Þ

where we enforce symmetry constraint �Sðpi; rjÞ along with
the region homogeneity criterion �Rðpi; rjÞ to guide the
segmentation. The region homogeneity criterion �Rðpi; rjÞ is
the combination of color and texture cues, which will be
introduced in Section 3.2.2. The symmetry constraint
�Sðpi; rjÞ is introduced in Section 3.2.3.

3.2.2 Region Homogeneity Criterion �Rðpi; rjÞ
The region homogeneity criterion �Rðpi; rjÞ, is given by

�Rðpi; rjÞ ¼WColor �Colorðpi; rjÞ þWTexture�Textureðpi; rjÞ; ð6Þ

where WTexture þWcolor ¼ 1. The weights WColor and WTexture

can be allocated in a dynamic manner, depending on
whether a region shows more uniformity in color or texture,
as described in the dynamic weights allocation with the
region growing algorithm shown in Table 5. For a region R,
let the standard deviation of its pixel-level color and texture
feature distributions (StdR�color and StdR�texture) denote its
region uniformity. At each region growing iteration, a
region absorbs one pixel, and the region’s color and texture
uniformities are changed as more pixels are aggregated.
The algorithm is able to dynamically track the changes of
color and texture uniformities, and assign weights to put
more emphasis on color or texture as the region growing
process is iterated. The larger weight will be assigned to the
feature whose region uniformity is increased (with the
decreased standard deviation).

We use HSV as the color feature [37]. It is composed of a
vector that is a nonlinear transform of HSV values

FColorð�Þ ¼ ðV � S � cosð2�HÞ; V � S � sinð2�HÞ; V Þ; ð7Þ

where H, S, and V correspond to HSV components of a
pixel or average for a region. The color homogeneity
criterion in (6) can be expressed as
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Fig. 3. (a) Integration of symmetry in region growing, (b) graphic
illustration of (10): plot of symmetry criterion �Sðpi; rjÞ related to a pair of
symmetry affinity values Cpi and Crj.

TABLE 4
The Symmetry Detection Algorithm



�Colorðpi; rjÞ ¼ jjFColorðpiÞ � FColorðrjÞjj; ð8Þ

which is the euclidean distance of color features between
pixel pi and its neighboring region rj.

The 8D texture feature FTexture is obtained by: 1) filtering
an image with a bank of Gabor filters at four orientations
(0, 45, 90, 135 degrees), and 2) computing the mean and
standard deviation of the filtered image or region. The
texture feature of a pixel is extracted from its local window.
Thus, the texture homogeneity criterion is

�Textureðpi; rjÞ ¼ jjFTextureðpiÞ � FTextureðrjÞjj: ð9Þ

Both color and texture features are normalized into ½0; 1�.

3.2.3 Symmetry Homogeneity Criterion �Sðpi; rjÞ
The motivation of using symmetry constraint �Sðpi; rjÞ is as
follows: If both the pixel pi and its neighboring region rj are

symmetric with their counterparts (both have low symme-
try affinities), they will decrease the criterion �S by which
the pixel will more likely to be grown into the region to
form a integrated symmetric shape. The symmetry con-
straint �Sðpi; rjÞ in (5) is given below:

�Sðpi; rjÞ ¼
�
2 þ arctanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ CpiÞð1þ CrjÞ

p
Þ

�

þ
1þ j

ffiffiffiffiffiffiffi
Cpi

p
�

ffiffiffiffiffiffiffi
Crj

p
j

2
;

ð10Þ

where Cpi and Crj are symmetry affinities of pixel pi and its
neighboring region rj. This equation is nonlinearly related
to the symmetry affinity values. This constraint is devel-
oped for estimating whether pixel pi can be grown into
region rj by the symmetry criterion. Equation (10) provides
the following symmetry constraints: The first term means
that if both patterns i and j indicate low symmetry
affinities (highly symmetric) to their symmetric counter-
parts i0 and j0, as seen in Fig. 3a, pixel i is more likely to be
grown into region j by decreasing �Sðpi; rjÞ. The second
term means that the two patterns with closer values of
symmetry affinities, will also reduce �Sðpi; rjÞ. As a result,
the criterion �Sðpi; rjÞ has a lower value under the two
conditions given below:

1. Symmetry affinities of pixel i and region j have
lower values (i and j stay in symmetric field).

2. Symmetry affinity values of pixel i and region j are
closer with each other.

The above relationship is explained by a plot of �Sðpi; rjÞ in
Fig. 3b. It is clear that the lowest value of �Sðpi; rjÞ is reached
when both symmetry affinity values Cpi and Crj have 0
values (both of them stay in perfect symmetric field).
Consequently, both the lower and closer symmetry affinity
values of the two patterns will lead to a lower value of the
criterion �Sðpi; rjÞ. The lower value of symmetry criterion
�Sðpi; rjÞ will decrease the overall segmentation criterion
�ðpi; rjÞ (see (5)). Thus, the criterion �ðpi; rjÞ is more likely to
pass the threshold �g(see (4)). This means that patterns i and
j in a more symmetric field are easier to grow into an
integrated symmetric region,and at the same time eliminate
many small noisy regions within symmetric objects. Work
in [14] also uses a symmetry criterion integrated into an
edge weight in the graph-cut image segmentation method
[39], and its limitations are stated in Table 1. Experimental
results in Section 4.5 provide an analysis which will show
the advantages of our method over that of [14].

3.2.4 Symmetric Region Merging Criterion mðri; rjÞ
Initial segmentation by the aggregation criterion �ðpi; rjÞ
(see (5)) is an oversegmented result. During the region
merging, neighboring regions are merged using the
criterion mðri; rjÞ ¼ jjFColorðriÞ � FColorðrjÞjj þ jjFSymðriÞ �
FSymðrjÞjj, which is the euclidean distances of mean color
and mean symmetry affinity values of two regions ri and rj.
A region with higher symmetry level with its symmetric
counterpart is more likely to be merged into neighboring
region. For the two thresholds �g (4) and �m (Section 4.1),
related to the aggregation criterion �ðpi; rjÞ and region
merging criterion mðri; rjÞ, we establish a 2D parameter
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TABLE 5
Region Growing Segmentation with

Dynamic Region Weights Allocation Algorithm



space of the two criteria that is used for segmentation
optimization (Section 3.4).

3.3 Performance Evaluations of Segmentation and
Symmetry

In this paper, three evaluation schemes are used for
estimating the segmentation and symmetry, as given below.

3.3.1 The Unsupervised Segmentation Evaluation

We use the following metric for unsupervised segmentation
evaluation [38], and it is defined as

EVA SEGunsuperervised

¼ 1� 1

M �N
�
1þ log

� ffiffiffiffiffiffiffiffi
NR
p ��XNR

i¼1

e2
SEGðriÞ

1þ logðNiÞ

� �
;
ð11Þ

where M, N are the number of rows and columns of an
image and NR is the total number of segmented regions.
The term e2

SEGðriÞ is the interregion contrast of region ri:

e2
SEGðriÞ ¼

 XNi

j¼1

FColorðpjÞ � FColorðriÞ
�� ��

þ FTextureðpjÞ � FTextureðriÞ
�� ��!,Ni;

ð12Þ

where jjFColorðjÞ � FColorðRiÞjj is the euclidean distance of
HSV color features between pixel pj and its region ri (mean
HSV), and jjFTextureðpjÞ � FTextureðriÞjj is the euclidean
distance of texture features derived by Gabor filters. Ni is
the number of pixels of the ith region. Lower interregion
contrast indicates a better segmentation. ð1þ logð

ffiffiffiffiffiffiffiffi
NR
p

ÞÞ
and ð1þ logðNiÞÞ are punishments for oversegmentation
and small segments, respectively. The second term in the
right side of (11) is normalized within ½0; 1�. The larger
values of (11) are for better segmentation. In this paper,
segmentation results of thr Caltech-101 [42] database are
optimized by unsupervised evaluation.

3.3.2 The Supervised Segmentation Evaluation

The supervised segmentation evaluation [41] is used as

EVA SEGsupervised ¼
MI þm� �

1þm ; ð13Þ

where MI is the region matching evaluation term:

MI ¼
X

j;maxiCardðrRefi \ r
Seg
j Þ

Card
�
rRefi \ rSegj

�
Card

�
rRefi [ rSegj

��j; ð14Þ

Cardð�Þ computes the number of pixels of a region. For the

segmented region rSegj , its reference region rRefi is chosen

from the ground-truth segmentation, with the maximum

overlap with rSegj . The larger overlap means a better

segmentation. The normalization term is given by

�j ¼
Card

�
rSegj

�
CardðISegÞ ; ð15Þ

where ISeg is the segmentation of the entire image. The term
� in (13) is a punishment for both oversegmentation and
undersegmentation:

� ¼ NRRef=NRSeg; if NRSeg > NRRef ;
logð1þNRSeg=NRRefÞ; otherwise;

�
ð16Þ

where NRSeg (NRRef ) is the number of regions in real
segmentation (ground-truth/reference segmentation). In
conditions of both oversegmentation and undersegmenta-
tion, the above term decreases. m in (13) is the weight
parameter, set to 0.5 for all the experiments, that means to
put the weight on punishment term for oversegmentation
that is half of the weight of the region matching term.
The larger the value of EVA SEGsupervised is, the better the
segmentation is. The supervised evaluation requires the
ground-truth segmentation, which prevents its wide appli-
cation. In this paper, the segmentation results of UCB
database [43] (with ground-truth benchmark) is optimized
and analyzed by the supervised evaluation.

3.3.3 The Symmetry Evaluation

In this paper, a new symmetry evaluation of a segmented
image is defined as

EVA SYM ¼ 1� 1

NR

XNR
i¼1

e2
SYMðri; ri0 Þ: ð17Þ

For the symmetry evaluation of (17), NR is the number of
segmented regions and eSYMðri; ri0 Þ is the difference in
region properties between region ri and its symmetric
counterpart region ri0 according to the symmetry axis. The
region properties used are: region’s centroid, mean color
value, and its orientation. For each region ri, the smaller
eSYMðri; ri0 Þ means that the region ri is more symmetric to
its counterpart ri0 . The second term in the right side of (17)
is normalized within ½0; 1�. A larger value of (17) is better.
Note that the symmetry performance (measured by (17)) of
the segmented image can be optimized by tuning the
segmentation thresholds. But, the symmetry axis detection
(Section 3.1.1) cannot be optimized by these thresholds. The
thresholds for symmetry detection (see Table 4) are fixed for
all the results shown in this paper. The NSGA-II [31]
searches the parameter space to find an optimal segmenta-
tion, measured by both the symmetry evaluation (17) and
the supervised or unsupervised segmentation evaluation
((13) or (11)). All the segmentations shown in experiments
are optimized.

3.4 Multi-Objective Optimization for Segmentation
and Symmetry

It is able to search the segmentation results with optimal
performance for both segmentation and symmetry. It is
formulated as a multi-objective optimization (MOP), which
is the process of optimizing multiple objectives subject to
certain constraints. We use Nondominated Sorting Genetic
Algorithm (NSGA-II) [31], a multi-objective optimization
algorithm to search for optimum matched segmentation
parameters (�g and �m) by using measures of the objective
functions of segmentation and symmetry (see Section 3.3).
Our optimization problem (see Fig. 2) can be formulated as
follows: Given an image I(x), the system outputs a
segmentation LðxÞ, with a combinatorial objective function
F ðLðxÞÞ, composed of evaluations of both segmentation and
symmetry as (11) or (13), and (17):
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F ðLðxÞÞ ¼
EVA SEGðLðxÞÞ
EVA SYMðLðxÞÞ

" #
; ð18Þ

where EVA SEGXXðLðxÞÞ is (11) or (13). The goal is to get a
segmentation LðxÞ where both segmentation and symmetry
are optimized. It’s formulated as a Multi-objective Optimi-
zation (MOP), defined below.

By searching the parameter settings in the parameter
space, seek an optimal segmentation result L0ðxÞ from all
possible results LðxÞ in segmentation space  such that

F ðL0ðxÞÞ ¼ arg max
LðxÞ� 

F ðLðxÞÞ: ð19Þ

It aims to seek a segmentation that optimizes both the
segmentation and symmetry performance F ðLðxÞÞ, along
with its optimal parameter of thresholds (�g and �m) for
aggregation criterion �ðpi; rjÞ and region merging criterion
mðri; rjÞ. For the multi-objective optimization, NSGA-II
outperforms other existing methods like particle swarm
optimization [31]. In some cases, the NSGA-II obtains
multiple equivalent optimal results (they have very similar
segmentation and symmetry performances). We select the
one with the highest segmentation performance, to be the
optimal segmentation of the image.

3.5 Algorithm for the Proposed Segmentation
Method

The overall algorithm for the system is given in Table 6.

4 EXPERIMENTAL RESULTS

In this section, we present both quantitative and qualita-
tive analysis to demonstrate the improvements in image
segmentation by the integration of symmetry. The

symmetry-integrated region growing is compared to the
region growing [34] without the symmetry integration.
Thus, the segmentation improvement is carried by the
symmetry integration alone. Our method shows superior
performance over other commonly used segmentation
approaches [35], [36], [39]. Moreover, our method also
outperforms the symmetry-integrated normalized cut [14].

4.1 Data Sets and Parameters

The proposed method was tested on two commonly used
image databases, demonstrating different levels of object
symmetries. The two image databases used are:

1. The Caltech-101 image database [42]. It contains images
of both natural and manmade objects belonging to 101
categories. Segmentation results are shown in Fig. 5.
They are optimized using unsupervised segmentation
evaluation (without ground truth) of (11).

2. The Berkeley segmentation data set and benchmark (UCB)
[43]. It contains hand-labeled (ground truth) seg-
mentations of 1,000 Corel data set images. Example
images and their delineated ground-truth segmenta-
tions are shown in Fig. 6. The segmentation results
on this data set are optimized using supervised
segmentation evaluation (with ground truth) of (13).

The parameter space for segmentation optimization is
composed of two thresholds: the aggregation criterion
threshold �g, introduced in Section 3.2.1, and the region
merging criterion threshold �m. The value for �g varies
between ½0:015; 0:035� and the range for �m is ½0:02; 0:05�.
These ranges are obtained by experiments and they are
unchanged. The multi-objective optimization [31] is run on
the search space of these two parameters, with objective
functions of both symmetry and segmentation evaluations
introduced in Section 3.3. The optimization stops if the
results are acceptable as follows: 1) Both segmentation and
symmetry performances are better than the predefined
thresholds (0.62 and 0.89 for segmentation and symmetry,
respectively). The values are set based on our experimental
experience. 2) The combination of the performance reaches
its optimal value reported by NSGA-II [31]. The optimiza-
tion stops with the optimal segmentation if both conditions
are met; otherwise it continues by searching different
parameters until maximum number of iterations (equals
to 500 in this paper) is reached.

4.2 Performance Metrics

Three performance metrics are used in experiments.

1. The performance curve of supervised segmentation
measurement of (13), with respect to the symmetry
measurement of (17) on the UCB database [43], as in
Fig. 4g and Fig. 6i.

2. The ROC plot, a plot of true positive versus false
positive of the region pixels (with respect to
ground-truth segmentation), is shown in Fig. 6j.

3. Optimal segmentation obtained by a) supervised
evaluation (13) with ground-truth segmentation, for
the UCB database, as shown in segmentations in
Figs. 4, 6, 7, and 9 and 11 and 12, or by b) unsupervised
evaluation (11) without ground-truth segmentation,
of Caltech-101 database, as for segmentations in Figs. 5
and 10. In both a) and b) the evaluations are also
optimized by symmetry evaluation of (17).
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TABLE 6
The Overall Algorithm for the Proposed Method



4.3 Performance of the Proposed Method

4.3.1 Realization of the Proposed Method

In Fig. 4, we show our segmentation scheme by an image of
the symmetric “Triumphal Arch” [43] surrounded by
background objects. Fig. 4d shows large symmetry affinity
values in red pseudocolor, which indicates asymmetric
pixels, and small values in yellow, indicating symmetric
pixels. Fig. 4g shows the performance curve, measured by
(17) and (13), respectively. Different points on the curve
correspond to evaluations of segmentation and symmetry
by running the segmentation using different parameters.
The segmentation and symmetry are improved simulta-
neously. Other symmetry-integrated segmentation results
are shown in Fig. 5. Please refer to Fig. 3 in the supplemental
material, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2011.259, for more results.

4.3.2 Symmetry-Integrated Region Growing versus

Region Growing without Symmetry

In the curves of Fig. 6i, also in Figs. 1 and 2 in the
supplemental material, which is available online, the black
curve and the dotted green curve are the performance of
symmetry-integrated region growing segmentation and the
region growing without symmetry, respectively. The only
difference in the two methods is the integration of symmetry.
Comparison between the two performance curves shows the
following two advantages of symmetry integration:

1. The overall segmentation performance is improved
compared to the regular region growing, and the
improvement comes only from the integration of
symmetry.

2. In regular region growing, its segmentation perfor-
mance does not improve (image “Man” in Fig. 6i),
even starts to decrease (image “Building” in Fig. 6i),
with the improvement of symmetry. But the

segmentation on the black curve still improves at
high symmetry evaluation scores.

Lack of segmentation improvement with the increase in

symmetry is due to the oversegmentation. It deteriorates the

segmentation, but symmetry still improves since small

symmetric regions are segmented. Our method solves this

problem by segmenting symmetric objects into complete

regions. So the oversegmentation is overcome and a high

symmetry evaluation score (by (17)) is retained. The ROC

curve in Fig. 6j (and Figs. 1 and 2 in the supplemental

material, which is available online) shows that our method

has higher true positive than the one without symmetry.

Table 8 shows the segmentation improvement from no

symmetry to symmetry integration. The largest improve-

ment of 8.39 percent comes from the image “Fresco,” with a

large symmetric object. Numerous small regions are

eliminated by the symmetry cue, as compared in Figs. 2c

and 2d of “Fresco,” which is available in the online

supplemental material.

4.3.3 Results on Images with Different Symmetry

Levels—Region Growing with/without Symmetry

The segmentation results obtained through images with
different levels of symmetry can be used to show the efficacy
of the proposed method. The symmetry level in Fig. 7e is
measured by the average symmetry affinity value of the
image, and it is quantified into six categories. The segmenta-
tion performance is measured by the supervised evaluation
(see (13)), the same for the results in Figs. 8 and 9, and Figs. 11
and 12. The segmentation performance improvement (see
Fig. 7f) by using symmetry (see Fig. 7c) compared with the
same method without symmetry (see Fig. 7d) indicates that
images with higher symmetry level achieve a larger
segmentation improvement. With the absence of symmetry
(see images (1) and (2) in Fig. 7), no symmetry axis is
detected. Thus, the symmetry constraint (see (10)) is set to 1,
and the performance is the same as the region growing
without symmetry.
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Fig. 4. Symmetry-integrated image segmentation using the image from
the UCB data set [43]: (a) Original image. (b) SIFT points. (c) Symmetry
axis. (d) Symmetry affinity of image. (e) Symmetry-integrated segmen-
tation. (f) The ground-truth segmentation provided by the UCB data set
[43]. (g) Performance curve of segmentation and symmetry.

Fig. 5. Examples of symmetry-integrated segmentation results using
images from the Caltech-101 database [42].



4.3.4 Results on Images with Symmetry

Distortion—Effect of Occlusion, Affine/Perspective

Transform, Articulation, and Incorrect Symmetry

Detection

. Occlusion. Many of the real-world images have
symmetric objects with occlusions. Fig. 8 shows
segmentation with symmetric objects occluded by
trees. The symmetry axis can be detected effectively
(see Fig. 8b). Under partial occlusions, the symmetry
integration (see Fig. 8d) can improve the segmenta-
tion (see Fig. 8f), compared with the same method
without symmetry (see Fig. 8e).

. Affine/perspective transform. Fig. 9 shows the
robustness of symmetry integration under nonrigid
distortions. The affine transform shown in Fig. 9(1) is
composed of linear transformations (rotation, scal-
ing, or shear) and a translation, and it preserves the
parallelism of lines. The perspective transform
shown in Fig. 9(2) illustrates that from the view of
human eyes (or camera), the parts of the object in the
distance appear smaller than the parts close by. The
perspective transform preserves the straight lines of
objects. Fig. 9b shows that the symmetry axes for
transformed human faces are extracted, and the
symmetry integration can improve the segmentation
(see Fig. 9f) under conditions of nonrigid distortions.

. Articulation. The articulation refers to the object
composed of two or more joint components, and
each component has rigid movement. Fig. 10 shows

how the symmetry integration improves segmenta-
tion of the images with articulated symmetry
distortions. Since the images in Fig. 10 are collected
from the Caltech-101 database or from the Internet,
without the ground-truth segmentation, we use (11)
for the unsupervised segmentation evaluation. Im-
age (1) shows the clamp with asymmetric handles,
and image (2) shows a human with articulated arms
and legs. Fig. 10b shows that global symmetric axes
are correctly extracted. Fig. 10e indicates the
segmentation improvements achieved by using the
symmetry integration.

. Incorrect symmetry detection. Fig. 11 shows the
incorrect symmetry axis extraction because of large
distortions for perspective, occlusion, and articula-
tion, respectively. In these three conditions, Fig. 11f
shows that the performance of symmetry-integrated
segmentation is no worse than that of the same
method without symmetry. The conclusion is that
even under incorrect or failed symmetry detection,
the symmetry-integrated performance is not worse
than that of using no symmetry at all.

4.3.5 Results on Images with Multiple Symmetric

Objects

Complex conditions of symmetry exist in images with
multiple symmetric objects. Within multiple symmetry
objects shown in Fig. 12, the global symmetry detection is
able to extract multiple symmetry axes in an image (see
Fig. 12b), and choose the symmetry axis belonging to the
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Fig. 6. Comparison of results on the UCB database [43]: “Building,” “Man,” and “Woman_1.” (a) Original image. (b) Ground-truth segmentation
provided by the UCB database [43]. (c) Symmetry-integrated region growing. (d) Region growing without symmetry. (e) Normalized cut with
symmetry. (f) Normalized cut without symmetry. (g) Watershed segmentation. (h) Meanshift segmentation. (i) Performance curves. (j) ROC curves.



most dominant symmetric object, as the global symmetry
axis of the image. The dominant symmetric objects in
images (1) and (2) in Fig. 12 are both the rightmost objects,
and their symmetry axis (in bright color) is used as the
global symmetry axis of the image. Another condition of
symmetry is shown as image (3), where all three

astronauts contribute to the same symmetry axis, and they
share the same cluster of global symmetric pairs of SIFT
points. Image (3) highlights the advantage of using the
global symmetry detection, which can detect symmetry
within the entire image and make use of multiple
symmetric objects to derive a global axis. It cannot be
done by using local symmetry detection only. Fig. 12f
shows that under condition of multiple symmetric objects,
the symmetry integration also improve the segmentation,
compared to the same method without symmetry.

4.4 Symmetry-Integrated Region Growing versus
Other Segmentation Methods

4.4.1 Qualitative Comparison

We obtain image segmentation improvements as compared
to other segmentation methods that do not exploit symmetry.
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Fig. 7. Results for images, with different symmetry levels, from the
UCB database [43]. (a) Original image. (b) Ground-truth segmenta-
tion provided by the UCB database. (c) Symmetry-integrated region
growing. (d) Region growing without symmetry. (e) Symmetry level.
(f) Segmentation improvement (from (d) to (c)). N/A: Not Applicable.

Fig. 8. Images with occluded symmetric objects from the UCB database
[43]. (a) Original image. (b) Symmetry axis detection. (c) Ground-truth
segmentation provided by the UCB database [43]. (d) Symmetry-
integrated region growing. (e) Region growing without symmetry. (f)
Segmentation improvement (from (e) to (d)).

Fig. 9. Image “Man” in Fig. 6, with (1) affine transform, (2) perspective
transform, from the UCB database [43]. (a) Transformed image.
(b) Symmetry axis. (c) Ground-truth segmentation provided by the UCB
database. (d) Symmetry-integrated region growing. (e) Region growing
without symmetry. (f) Segmentation improvement (from (e) to (d)).

Fig. 10. Results for images, with articulated symmetry distortions from
the Caltech-101 database [42] (image (1)), and from the Internet (image
(2)). (a) Original image. (b) Symmetry axis detection. (c) Symmetry-
integrated region growing. (d) Region growing without symmetry.
(e) Segmentation improvement (from (d) to (c)).

Fig. 11. Results with images for incorrect symmetry detection from the

UCB database [42]. (a) Original image. (b) Symmetry detection.

(c) Symmetry-integrated region growing. (d) Region growing without

symmetry. (e) Distortions. (f) Segmentation improvement ((d) to (c)).



The principles of currently popular image segmentation
methods compared are shown in Table 7. In Fig. 6 (and Figs. 1
and 2 in the supplemental material, which is available
online), we demonstrate the segmentation improvements by
symmetry integration, using eight example images from the
UCB database with ground-truth segmentations provided.
The segmentation results are optimized by NSGA-II and
measured using both the supervised performance evaluation
of (13) and the symmetry evaluation of (17).

Results (d)-(h) in Fig. 6 (and Figs. 1 and 2 in the
supplemental material, which is available online) have
different levels of segmentation defects and noisy regions in
symmetric objects compared to symmetry-integrated seg-
mentation in (c). The incorporation of symmetry cue is the
main source of improvement. The symmetric regions are
more likely to be aggregated by the symmetry constraint by
eliminating small noisy regions within the symmetric
objects; thus more complete and proper symmetric bound-
aries are generated. The most complete and clear symmetric
objects are segmented by the proposed method. For the
result image “Man” in Fig. 6c, our approach can segment
the symmetric face without incorrect segments, while the
other results fail to accomplish this. Similar improvement
can be seen in image “Building” in Fig. 6, where the central
part of the building is segmented with fewer flaws and
noisy regions than other methods. One of other advantages
of our method is that we not only refine symmetric regions,
but also segment background nonsymmetric regions more
properly.

4.4.2 Quantitative Comparison

Fig. 6i (and Figs. 1 and 2 in the supplemental material,
which is available online) shows the curves of symmetry
versus segmentation performances, measured by super-
vised segmentation evaluation of (13) and symmetry

evaluation of (17), respectively. Each point in the curve is
a symmetry and segmentation performance by running
segmentation of an image by different parameter values.
From comparisons in Fig. 6i, the following conclusions can
be made:

1. The curve of the proposed method has the highest
segmentation performance in all images.

2. The curve of the proposed method also reaches the
highest symmetry performance measures.

The above improvements of segmentation and symmetry,
comes from integrating the symmetry cue to improve the
segmentation by refining both the symmetric objects and
nonsymmetric backgrounds. Fig. 6j (and Figs. 1 and 2 in the
supplemental material, which is available online) shows the
ROC plot, and our method has the highest true positive rate.
The ROC plot quantitatively shows that the proposed
method is closest to the ground-truth segmentation. Table 8
shows the comparison among segmentation performances
((13)) measured on the optimal segmentation results. All
segmentations are optimized by NSGA-II. The proposed
method has the highest performance in all images.

4.5 Symmetry-Integrated Region Growing versus
Current Symmetry-Based Segmentation

We also compare our approach with the method in [14],
which is a symmetry-integrated segmentation combining
symmetry feature into regular normalized cut segmentation
to refine the symmetry level of the segmented regions. As
we can see in Fig. 6i (and Figs. 1 and 2 in the supplemental
material, which is available online), both normalized cut
with and without symmetry, have worse segmentation
performance than region growing with and without
symmetry, and they also have lower symmetry measure-
ment. We can infer from the scalar comparisons in Table 8
that the symmetry-integrated region growing reaches high-
er segmentation improvements than [14]. Take the image
“Bear” in Table 8 as an example; the improvement from
normalized cut to symmetry-integrated normalized cut is
only 0.17 percent, while the improvement from regular
region growing to the symmetry-integrated region growing
is as high as 2.88 percent. For an extreme case of “Fresco” in
Table 8, the performance obtained by symmetry-integrated
normalized cut is even decreased by 0.35 percent, while the
improvement of region growing by symmetry integration is
as high as 8.39 percent. Also for the ROC curves of all three
images in Fig. 6j, the true positive of symmetry-integrated
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Fig. 12. Images with multiple symmetric objects from the UCB database
[43]. (a) Original image. (b) Symmetry axis (with high intensity as the
dominant axis). (c) Ground-truth segmentation provided by the UCB
database [43]. (d) Symmetry-integrated region growing. (e) Region
growing without symmetry. (f) Segmentation improvement ((e) to (d)).

TABLE 7
Principles of State-of-the-Art Segmentation Methods



normalized cut is even worse than that of normalized cut
with no symmetry. In conclusion, the symmetry integrated
in normalized cut does not always improve the segmenta-
tion. The symmetry integrated in region growing improves
the segmentation in all cases, and it reaches higher
improvement compared to [14]. The normalized cut
separates a perceptually coherent region into many parts
in a large number of segments. It prevents the work of [14]
with segmentation improvement.

4.6 Symmetry-Integrated Region Growing:
Supervised versus Unsupervised Evaluations

Since two different segmentation evaluation criteria ((11)
and (13)) are used in this paper, in this section the
effectiveness of these two evaluations is compared, as
shown in Table 9, on eight images from the UCB database
(see Fig. 6 and Figs. 1 and 2 in the supplemental material,
which is available online). Note that the segmentation of
images from the UCB database is optimized by the
supervised evaluation (13), and the segmentation of images
from the Caltech-101 database is optimized by the un-
supervised evaluation (11). But in this section, the segmen-
tation of images from the UCB database is optimized by
both (13) and (11) to compare the results of the two
evaluation criteria, by the following steps:

1. In column (a) of Table 9, segmentation is optimized
with the supervised segmentation evaluation (13).
The goodness of the optimized segmentation is

evaluated using (13) (see column (1) in Table 9). The
second column in Table 8 has the same realization.

2. In column (b) of Table 9, segmentation is optimized
with the unsupervised evaluation (11). The goodness
of the optimized segmentation is also evaluated by
(13) (see column (3) in Table 9).

3. The symmetry performance shown in columns (2)
and (4) are both evaluated by (17).

It is clear from Table 9 that the optimal segmentation

results obtained by the supervised evaluation are closer to

the ground-truth segmentation with a higher evaluation

score than that obtained by unsupervised evaluation (see the

comparison between columns (1) and (3)). Thus, the

supervised evaluation is preferred to guide the optimization

for a better segmentation if the ground truth is available.

4.7 Statistical Validation of Results

The proposed method is validated by statistical results with

15 images from the UCB database, and with 93 images from

the Caltech-101 database (see these images listed in Figs. 4

and 5, which are available in the online supplemental

material). Symmetry axes are detected correctly in all

108 images. Table 10 shows the comparison of statistical

results on images from the two databases. Note that the

mean and standard deviation are computed from optimal
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TABLE 8
Numerical Comparison of Segmentation Performance: Images in Fig. 6, and Figs. 1 and 2 in the Supplemental Material,

which Is Available Online [52]

TABLE 9
Numerical Comparison of Optimal Segmentation Performance:

Supervised versus Unsupervised Evaluations

TABLE 10
Statistical Validation on 15 Images from the UCB Database

and on 93 Images from the Caltech-101 Database
(See Figs. 4 and 5, which Are Available in the
Online Supplemental Material, [52] for Images)



segmentation performances of the images. We use the

supervised performance evaluation (see (13)) for the UCB

database, but use unsupervised evaluation (see (11)) for the
Caltech-101. Table 10 shows that the proposed method

outperforms all the other methods. The percentage of

improvement in parentheses with the positive number in
the last five rows in Table 10 is the segmentation

improvement achieved by the proposed symmetry integra-

tion method compared to the method in the same cell. The
performance in the parentheses in the second row in each

cell is the highest and lowest performance of the method,

respectively. Note that even a 1 percent numerical
improvement in segmentation leads to a significant visual

improvement in segmentation results.
All 108 images (with correct symmetry axis detected)

achieved performance improvement by using the symmetry
cue (see Table 10). Additionally, we also tested our

algorithm on 374 images (from the Caltech-101 database)

in which the symmetry axes are incorrectly detected. In this
situation, still over 99.45 percent of the images obtained

improved segmentation performance by using the symme-

try cue. There are only two exceptional cases, as shown in
Fig. 13, where the improvement did not take place.

However, the decrease in performance is minimal in these

two exceptional cases. With the other 598 images (from the
Caltech-101 database) where no symmetry axes are detected

(not enough symmetry level in images), the performance of

the proposed method is the same as the one without using
symmetry for all these images. In conclusion, the proposed

method has robust performance, as evidenced by experi-

ments on large image data sets.

4.8 Discussion of the Results

Based on the experimental results on hundreds of images
shown here and in [52], we note the following points:

1. Quality of segmentation. The symmetry constraint
generates more symmetrical regions, which de-
creases the number of small segments. Due to the
robustness against noise property of the global
symmetry and symmetry affinity, noisy regions are
aggregated into surrounding regions if they show
symmetry property.

2. Different levels of symmetry. The higher the symmetry
presents in an image, the higher is the improvement
for symmetry-integrated image segmentation.

3. Symmetry axis. The proposed method highly depends
on the symmetry axis detection. But under condition
of incorrect symmetry detection (see Fig. 11) and no
symmetry detected (see images (1) and (2) in Fig. 7),
the performance of the proposed method is not worse
than that of the method without symmetry (see
Section 4.7).

4. Symmetry refinement. It is possible to use the
segmented regions that are symmetric with their
reflected regions to provide a feedback to the
symmetry detection algorithm for the computation
of a refined axis of symmetry. This, in turn, will
provide a better image segmentation.

5 CONCLUSIONS

In this paper, a new symmetry-integrated scheme is

proposed for region-based image segmentation to improve

its performance. We accomplish this goal by incorporating

symmetry into the region growing segmentation, in terms

of the symmetry affinity matrix. We carry out experiments

on a wide variety of images and provide thorough analysis.

Both qualitative and quantitative experimental results

indicate that with the symmetry constraints enforced by

symmetry affinity, both the symmetry and segmentation

performance are improved compared to several popular

current segmentation methods. This is the first paper in the

computer vision and pattern recognition field that demon-

strates the improvement of pixel-level image segmentation

by incorporating the high-level symmetry cue and perform-

ing thorough qualitative and quantitative analyses on large

data sets. The nonoptimized code takes � 54 s to run (for a

640� 480 color image) on a PC with Intel Core 2 Quad CPU

2.40 GHz and 3 GB of RAM. The region growing

segmentation takes 87 percent of the total running time.

The future work will focus on increasing the computational

efficiency of the method.
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