
The principles of currently popular image segmentation
methods compared are shown in Table 7. In Fig. 6 (and Figs. 1
and 2 in the supplemental material, which is available
online), we demonstrate the segmentation improvements by
symmetry integration, using eight example images from the
UCB database with ground-truth segmentations provided.
The segmentation results are optimized by NSGA-II and
measured using both the supervised performance evaluation
of (13) and the symmetry evaluation of (17).

Results (d)-(h) in Fig. 6 (and Figs. 1 and 2 in the
supplemental material, which is available online) have
different levels of segmentation defects and noisy regions in
symmetric objects compared to symmetry-integrated seg-
mentation in (c). The incorporation of symmetry cue is the
main source of improvement. The symmetric regions are
more likely to be aggregated by the symmetry constraint by
eliminating small noisy regions within the symmetric
objects; thus more complete and proper symmetric bound-
aries are generated. The most complete and clear symmetric
objects are segmented by the proposed method. For the
result image “Man” in Fig. 6c, our approach can segment
the symmetric face without incorrect segments, while the
other results fail to accomplish this. Similar improvement
can be seen in image “Building” in Fig. 6, where the central
part of the building is segmented with fewer flaws and
noisy regions than other methods. One of other advantages
of our method is that we not only refine symmetric regions,
but also segment background nonsymmetric regions more
properly.

4.4.2 Quantitative Comparison
Fig. 6i (and Figs. 1 and 2 in the supplemental material,
which is available online) shows the curves of symmetry
versus segmentation performances, measured by super-
vised segmentation evaluation of (13) and symmetry

evaluation of (17), respectively. Each point in the curve is
a symmetry and segmentation performance by running
segmentation of an image by different parameter values.
From comparisons in Fig. 6i, the following conclusions can
be made:

1. The curve of the proposed method has the highest
segmentation performance in all images.

2. The curve of the proposed method also reaches the
highest symmetry performance measures.

The above improvements of segmentation and symmetry,
comes from integrating the symmetry cue to improve the
segmentation by refining both the symmetric objects and
nonsymmetric backgrounds. Fig. 6j (and Figs. 1 and 2 in the
supplemental material, which is available online) shows the
ROC plot, and our method has the highest true positive rate.
The ROC plot quantitatively shows that the proposed
method is closest to the ground-truth segmentation. Table 8
shows the comparison among segmentation performances
((13)) measured on the optimal segmentation results. All
segmentations are optimized by NSGA-II. The proposed
method has the highest performance in all images.

4.5 Symmetry-Integrated Region Growing versus
Current Symmetry-Based Segmentation

We also compare our approach with the method in [14],
which is a symmetry-integrated segmentation combining
symmetry feature into regular normalized cut segmentation
to refine the symmetry level of the segmented regions. As
we can see in Fig. 6i (and Figs. 1 and 2 in the supplemental
material, which is available online), both normalized cut
with and without symmetry, have worse segmentation
performance than region growing with and without
symmetry, and they also have lower symmetry measure-
ment. We can infer from the scalar comparisons in Table 8
that the symmetry-integrated region growing reaches high-
er segmentation improvements than [14]. Take the image
“Bear” in Table 8 as an example; the improvement from
normalized cut to symmetry-integrated normalized cut is
only 0.17 percent, while the improvement from regular
region growing to the symmetry-integrated region growing
is as high as 2.88 percent. For an extreme case of “Fresco” in
Table 8, the performance obtained by symmetry-integrated
normalized cut is even decreased by 0.35 percent, while the
improvement of region growing by symmetry integration is
as high as 8.39 percent. Also for the ROC curves of all three
images in Fig. 6j, the true positive of symmetry-integrated
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Fig. 12. Images with multiple symmetric objects from the UCB database
[43]. (a) Original image. (b) Symmetry axis (with high intensity as the
dominant axis). (c) Ground-truth segmentation provided by the UCB
database [43]. (d) Symmetry-integrated region growing. (e) Region
growing without symmetry. (f) Segmentation improvement ((e) to (d)).

TABLE 7
Principles of State-of-the-Art Segmentation Methods



normalized cut is even worse than that of normalized cut
with no symmetry. In conclusion, the symmetry integrated
in normalized cut does not always improve the segmenta-
tion. The symmetry integrated in region growing improves
the segmentation in all cases, and it reaches higher
improvement compared to [14]. The normalized cut
separates a perceptually coherent region into many parts
in a large number of segments. It prevents the work of [14]
with segmentation improvement.

4.6 Symmetry-Integrated Region Growing:
Supervised versus Unsupervised Evaluations

Since two different segmentation evaluation criteria ((11)
and (13)) are used in this paper, in this section the
effectiveness of these two evaluations is compared, as
shown in Table 9, on eight images from the UCB database
(see Fig. 6 and Figs. 1 and 2 in the supplemental material,
which is available online). Note that the segmentation of
images from the UCB database is optimized by the
supervised evaluation (13), and the segmentation of images
from the Caltech-101 database is optimized by the un-
supervised evaluation (11). But in this section, the segmen-
tation of images from the UCB database is optimized by
both (13) and (11) to compare the results of the two
evaluation criteria, by the following steps:

1. In column (a) of Table 9, segmentation is optimized
with the supervised segmentation evaluation (13).
The goodness of the optimized segmentation is

evaluated using (13) (see column (1) in Table 9). The
second column in Table 8 has the same realization.

2. In column (b) of Table 9, segmentation is optimized
with the unsupervised evaluation (11). The goodness
of the optimized segmentation is also evaluated by
(13) (see column (3) in Table 9).

3. The symmetry performance shown in columns (2)
and (4) are both evaluated by (17).

It is clear from Table 9 that the optimal segmentation
results obtained by the supervised evaluation are closer to
the ground-truth segmentation with a higher evaluation
score than that obtained by unsupervised evaluation (see the
comparison between columns (1) and (3)). Thus, the
supervised evaluation is preferred to guide the optimization
for a better segmentation if the ground truth is available.

4.7 Statistical Validation of Results

The proposed method is validated by statistical results with
15 images from the UCB database, and with 93 images from
the Caltech-101 database (see these images listed in Figs. 4
and 5, which are available in the online supplemental
material). Symmetry axes are detected correctly in all
108 images. Table 10 shows the comparison of statistical
results on images from the two databases. Note that the
mean and standard deviation are computed from optimal
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TABLE 8
Numerical Comparison of Segmentation Performance: Images in Fig. 6, and Figs. 1 and 2 in the Supplemental Material,

which Is Available Online [52]

TABLE 9
Numerical Comparison of Optimal Segmentation Performance:

Supervised versus Unsupervised Evaluations

TABLE 10
Statistical Validation on 15 Images from the UCB Database

and on 93 Images from the Caltech-101 Database
(See Figs. 4 and 5, which Are Available in the
Online Supplemental Material, [52] for Images)



segmentation performances of the images. We use the
supervised performance evaluation (see (13)) for the UCB
database, but use unsupervised evaluation (see (11)) for the
Caltech-101. Table 10 shows that the proposed method
outperforms all the other methods. The percentage of
improvement in parentheses with the positive number in
the last five rows in Table 10 is the segmentation
improvement achieved by the proposed symmetry integra-
tion method compared to the method in the same cell. The
performance in the parentheses in the second row in each
cell is the highest and lowest performance of the method,
respectively. Note that even a 1 percent numerical
improvement in segmentation leads to a significant visual
improvement in segmentation results.

All 108 images (with correct symmetry axis detected)
achieved performance improvement by using the symmetry
cue (see Table 10). Additionally, we also tested our
algorithm on 374 images (from the Caltech-101 database)
in which the symmetry axes are incorrectly detected. In this
situation, still over 99.45 percent of the images obtained
improved segmentation performance by using the symme-
try cue. There are only two exceptional cases, as shown in
Fig. 13, where the improvement did not take place.
However, the decrease in performance is minimal in these
two exceptional cases. With the other 598 images (from the
Caltech-101 database) where no symmetry axes are detected
(not enough symmetry level in images), the performance of
the proposed method is the same as the one without using
symmetry for all these images. In conclusion, the proposed
method has robust performance, as evidenced by experi-
ments on large image data sets.

4.8 Discussion of the Results

Based on the experimental results on hundreds of images
shown here and in [52], we note the following points:

1. Quality of segmentation. The symmetry constraint
generates more symmetrical regions, which de-
creases the number of small segments. Due to the
robustness against noise property of the global
symmetry and symmetry affinity, noisy regions are
aggregated into surrounding regions if they show
symmetry property.

2. Different levels of symmetry. The higher the symmetry
presents in an image, the higher is the improvement
for symmetry-integrated image segmentation.

3. Symmetry axis. The proposed method highly depends
on the symmetry axis detection. But under condition
of incorrect symmetry detection (see Fig. 11) and no
symmetry detected (see images (1) and (2) in Fig. 7),
the performance of the proposed method is not worse
than that of the method without symmetry (see
Section 4.7).

4. Symmetry refinement. It is possible to use the
segmented regions that are symmetric with their
reflected regions to provide a feedback to the
symmetry detection algorithm for the computation
of a refined axis of symmetry. This, in turn, will
provide a better image segmentation.

5 CONCLUSIONS

In this paper, a new symmetry-integrated scheme is
proposed for region-based image segmentation to improve
its performance. We accomplish this goal by incorporating
symmetry into the region growing segmentation, in terms
of the symmetry affinity matrix. We carry out experiments
on a wide variety of images and provide thorough analysis.
Both qualitative and quantitative experimental results
indicate that with the symmetry constraints enforced by
symmetry affinity, both the symmetry and segmentation
performance are improved compared to several popular
current segmentation methods. This is the first paper in the
computer vision and pattern recognition field that demon-
strates the improvement of pixel-level image segmentation
by incorporating the high-level symmetry cue and perform-
ing thorough qualitative and quantitative analyses on large
data sets. The nonoptimized code takes � 54 s to run (for a
640 � 480 color image) on a PC with Intel Core 2 Quad CPU
2.40 GHz and 3 GB of RAM. The region growing
segmentation takes 87 percent of the total running time.
The future work will focus on increasing the computational
efficiency of the method.
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