
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010 423

Incremental Unsupervised Three-Dimensional
Vehicle Model Learning From Video

Nirmalya Ghosh and Bir Bhanu, Fellow, IEEE

Abstract—In this paper, we present a new generic model-based
approach for building 3-D models of vehicles from color video
from a single uncalibrated traffic-surveillance camera. We pro-
pose a novel directional template method that uses trigonometric
relations of the 2-D features and geometric relations of a single 3-D
generic vehicle model to map 2-D features to 3-D in the face of pro-
jection and foreshortening effects. We use novel hierarchical struc-
tural similarity measures to evaluate these single-frame-based
3-D estimates with respect to the generic vehicle model. Using
these similarities, we adopt a weighted clustering technique to
build a 3-D model of the vehicle for the current frame. The
3-D features are then adaptively clustered again over the frame
sequence to generate an incremental 3-D model of the vehicle.
Results are shown for several simulated and real traffic videos
in an uncontrolled setup. Finally, the results are evaluated by the
same structural performance measure, underscoring the useful-
ness of incremental learning. The performance of the proposed
method for several types of vehicles in two considerably different
traffic spots is very promising to encourage its applicability in 3-D
reconstruction of other rigid objects in video.

Index Terms—Clustering, generic vehicle models, traffic sur-
veillance, video-based 3-D modeling, 3-D vehicle modeling.

I. INTRODUCTION

INTELLIGENT transportation systems (ITSs) and traffic-
surveillance applications, such as vehicle tracking,

automated highway tollbooths, autopilot vehicles, vehicle-type-
based protected parking, etc., heavily depend on fair
recognition/classification of moving vehicles. Present traffic-
surveillance systems depend on license plate extraction [1],
which is not robust to illumination variations. In addition,
license plate recognition does not directly help in most of the
applications other than detecting traffic-law-breaking cases.
Hence, considerable research effort has been reported in vehicle
detection, tracking, recognition, and classification, although
predominantly in 2-D (see Table I). However, perspective
projection in a 2-D image plane reduces classification accuracy,
and the results are affected by occlusion and clutter. Recon-
structed 3-D models of the vehicles are expected to improve
performance in such traffic applications. Three-dimensional

Manuscript received February 19, 2009; revised July 10, 2009,
September 29, 2009, and January 25, 2010; accepted March 30, 2010.
Date of current version May 25, 2010. This work was supported in part by the
National Science Foundation under Grant 0551741 and Grant 0905671. The
Associate Editor for this paper was R. I. Hammoud.

N. Ghosh is with the Department of Pediatrics, Loma Linda University,
Loma Linda, CA 92354 USA (e-mail: nirmalya@ee.ucr.edu).

B. Bhanu is with the Center for Research in Intelligent Systems, University
of California, Riverside, CA 92521 USA (e-mail: bhanu@cris.ucr.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2010.2047500

reconstruction of an object generally requires multiple views of
the object, which can come from either a multiple-camera setup
for static object or a static camera watching a moving object,
where the views of the object change. In this paper, we use a
static uncalibrated video camera watching moving vehicles. It
provides different views in a partially redundant manner and
has the potential for incremental 3-D modeling of vehicles
from a video frame sequence. We have used a single generic
3-D vehicle model to evaluate correctness and to find weighted
estimates of the incremental model over the frame sequences.
Note that the focus of this paper is not vehicle tracking but 3-D
model reconstruction of vehicles from video. There is no other
work on incremental and unsupervised 3-D model reconstruc-
tion of moving vehicles from uncalibrated traffic color video.

In the next section, we provide an overview of the related
work, the motivations for our work, and the contribution of this
paper. In Section III, we begin with a novel template library
approach for mapping 2-D features to 3-D model parameters
for a single frame. We use these estimations in an adaptive-
clustering-based incremental learning of the 3-D model of the
vehicles from the video frame sequence and compute structure
reliability scores that are used as both weights in 3-D model
estimation and performance measures at different levels of
abstractions. We end this section with the feature extraction
technique used. In Section IV, we describe different traffic
video data used and 3-D modeling results by the proposed
approach. Finally, we conclude with a discussion of the results
and future work in Section V.

II. RELATED WORK, MOTIVATION, AND CONTRIBUTION

A. Related Work and Motivation

In a large proportion of the research on vehicle modeling
and recognition [2], video/image data have been collected from
a camera mounted on a vehicle, which is called the ego-
vehicle, for autonomous navigation or autopilot applications
[3], [4]. After moving vehicles are detected [5], stereovision
is sometimes used to distinguish overlapping cars in 2-D [6].
For illumination invariance, infrared modality alone [7], [8],
multimodality fusion [9], Gabor texture descriptors [10], and
wavelet-based features [11] have been used. However, most of
such works have been in 2-D (see Table I).

However, 2-D-based vehicle-surveillance systems suffer
from the following: 1) Perspective projection may cause dif-
ferent vehicles to have similar silhouettes. For example, the
frontal view of different vehicles may look quite similar in
2-D, whereas they have widely different 3-D structures. This

1524-9050/$26.00 © 2010 IEEE

424 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

TABLE I
RELATED WORK ON VEHICLE MODELING AND RECOGNITION IN 2-D

TABLE II
SELECTED RECENT 3-D MODEL BUILDING APPROACHES

creates ambiguity in classification. 2) Orientation changes are
problematic. 3) Occlusion could be a major problem in 2-D,
and it is better handled in 3-D than in 2-D. Hence, 3-D computer
vision has long been a major area of research, and this requires
3-D model reconstruction from video. However, in most cases,
researchers [12], [13] use range data collected by a laser sensor
for 3-D reconstruction (see Table II).

Unfortunately, 3-D range cameras are far more costly to
be used in rugged traffic environments. The availability of
cheap video cameras and structure-from-motion methods have
driven 3-D model building from video or image sequences
(see Table II) in general [26]–[30]. With the exception of [27],
the key shortcomings of the aforementioned work on vehicle
modeling [26]–[30] are given as follows: 1) They work for
detection or 2-D vehicle recognition, without building a 3-D
model. A 3-D model can perform much better for occlusions
and classifications. 2) They consider no adaptation and learning

and are, hence, less robust to environmental variations. Even in
[27], 3-D pose estimation and, then, 3-D–2-D transformation
and matching are performed in 2-D for tracking over the video
frames.

We find that little research has been done on 3-D vehicle
model reconstruction from video and view-invariant vehicle
recognition remains a challenging task. Current research on
unsupervised learning of scale-invariant local features from 2-D
structures [22] is in this direction but has yet to reconstruct a
3-D model. While detection [38], segmentation, and tracking
[25], [39] have been addressed, 3-D model reconstruction has
been ignored in most cases. Frontal 3-D deformation modeling
in [35] and [36] uses 3-D computer-aided design (CAD) models
(but does not build them from video) that are not always avail-
able for traffic vehicles. The close placement of the calibrated
camera in [37] restricts the method only to constrained slowly
moving vehicles and suffers from the reflections (visible due to

GHOSH AND BHANU: INCREMENTAL UNSUPERVISED THREE-DIMENSIONAL VEHICLE MODEL LEARNING FROM VIDEO 425

Fig. 1. Schematic of the technical approach.

closeness, and Lucas-Kanade Tracker (LKT) may be fooled).
Similarly, classification by height profiles from radar [40] or
multiscale texture-based key-component identification from a
single view [41] is not cost effective, and it does not consider
all the views. Rich information in the form of interframe view
relations [42] in video data has not been utilized for 3-D model
building.

General object-tracking strategies [43] do not always work
well in real-world traffic scenarios. There are many model-
based vehicle-tracking methods such as [44]–[49] for traffic-
accident prediction or autonomous navigation. In some cases,
known 3-D models and projected poses are used for vehicle
localization. However, in all these methods, one needs reliable
3-D models of the vehicles, and often, the models used are too
simple or too detailed to cover a wide variety of vehicles in
traffic [50]. A standard 3-D reconstruction method is fitting a
deformable 3-D vehicle model to an image sequence by edge
matching in a 2-D image plane [50]. However, for this, we need
a 2-D projection of a complete vehicle. This assumption of the
complete vehicle being visible at different orientations is not
true for traffic videos. The proposed method can take features
from a partially visible vehicle (when entering the camera view)
and start incremental 3-D reconstruction. A deformable model-
based method will have to wait until the complete vehicle is
visible. The bottom-up proposed approach does not start with
a complete 3-D deformable model. Hence, this work is the
first of its kind to use vehicular motion and view integration in
video to incrementally reconstruct 3-D models of vehicles from
uncalibrated static color video. It incrementally adds the model
parts as they are gradually encountered in the video. The real
applications need incremental 3-D reconstruction, with partial
visibility of a vehicle in frames.

B. Contribution of This Paper

Our approach proposes incremental view integration and un-
supervised incremental learning to produce reliable 3-D models
of ground vehicles. The approach estimates frame-based 3-D
features of a partially seen vehicle in the current frame, adap-
tively clusters the same features over the video frames seen until
that point in time, and incrementally learns the parameters of a
3-D generic model for that particular vehicle. We use a cross-
correlation-based 2-D tracking approach for feature extraction
and correspondence and consider a wide variety of vehicles
to validate the performance of our approach. The estimated
3-D model can be used for vehicle-type-based applications,
such as automated toll stations, traffic-flow monitoring, and
surveillance applications, e.g., the monitoring activity of a
particular vehicle. The specific contributions of this paper are
given as follows: 1) novel template-based matching to estimate
3-D orientation of a vehicle from a 2-D frame and to account

foreshortening in projection, 2) incremental 3-D model building
using correspondence across the frame sequence, 3) novel
performance measures for 3-D modeling, and 4) experimental
results using real video data of several vehicles.

III. TECHNICAL APPROACH

The proposed technical approach is summarized in Fig. 1.
The extracted 2-D features of a vehicle and the parameters of
a single 3-D generic vehicle model are used as inputs to a new
template library-based approach to map 2-D features estimated
to 3-D model parameters for a single video frame. Then, an
unsupervised incremental learning method fuses the estimates
from all the video frames up to the current point in time to
obtain an incremental 3-D model of the vehicle. Hierarchical
structural similarities are computed between the incremental
model up to the last point in time and the 3-D model estimated
using the current video frame only. These similarity measures
(which are called reliabilities in this paper) are used in incre-
mental learning as fusion weights and as performance measures
at different abstraction levels. In Table III, we define all the
mathematical symbols that are used in this paper.

A. Template Library Approach for 2-D/3-D Mapping for a
Single Frame

In traffic scenarios, it is not cost effective to use laser cameras
that can give 3-D depth information for 3-D model building
of the vehicles. For using camera projection models, we need
calibrated cameras. These are also not always possible because
of the rugged traffic environment. Hence, we propose a novel
template library approach to work with video data from a
single static/fixed uncalibrated video camera to map the 2-D
corners to 3-D to build the 3-D model of vehicles. The key
assumptions are given as follows: 1) Vehicle 3-D surfaces are
planar, and edge segments are linear. This is a valid assumption
to some extent, and it has been utilized in feature extraction
in Section III-D. 2) The vehicle can rotate in 3-D around the
Z-axis only. This is generally true due to ground constraints
of the streets. 3) There are different but constant 3-D to 2-D
projection scales (Sx, Sy, Sz) for different 3-D directions. This
is valid only when the distance from the camera to the vehicle
is not too far for orthographic projection and not too close for
perspective projection. The vehicle-to-camera distance should
not vary too much for these constants to be fixed.

1) Generation of Template Library: Due to the perspective
projection, linear distances are foreshortened, and 3-D solid
angles between parts are nonlinearly mapped to their 2-D
counterparts in the projected images. In addition, while working
with uncalibrated traffic cameras, it is difficult to estimate
the projection matrix. Furthermore, to add to the complexity,
due to nonlinear perspective mapping and variations in the

426 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

TABLE III
LIST OF SYMBOLS USED IN THIS PAPER

distance/angle of the vehicle from the camera, the projection
matrix needs to be updated. This is cumbersome and sometimes
somewhat redundant, as will be shown in this paper.

In this work, we use a novel approach called “template
library” to approximately estimate the 3-D-to-2-D nonlinear
mapping relations in perspective projection. When assump-
tion 3 is valid

D3D = S ∗ D2D (1)

holds true with different scale factors S for different line ori-
entations. Multiplicative factor S converts the 2-D pixel length
D2D to 3-D distance D3D.

Computing the projection matrix from multiple views of a
vehicle [51] is not possible when the distance between the
vehicle and the camera is not exactly known. Vehicular linear
ridges between the 3-D surfaces are primarily along three prin-
cipal 3-D directions (i.e., along three object-centered coordinate
(OCC) axes) [21], [44]. This saves us from determining an
infinite number of S’s for an infinite number of possible line
orientations, even for a particular azimuth of the vehicle. As
most of the 3-D linear edge segments of vehicles are parallel
to one of the coordinate axes in OCC, we just need three

Fig. 2. (a) Sample template frame and corresponding template vector, with
angles computed with respect to the image X-axis Ximg. (b) OCC origin (O),
corresponding axes, and motion direction (best viewed in color).

such constants (see Fig. 2) along each of the coordinate axes
[Sx, Sy, Sz]. These scale factors vary for different possible
azimuths, and we need to find ([SR,x, SR,y, SR,z]) for each of
360 possible azimuths (R). (Note that 180 of these are mirror
reflections of the other 180.) Hence, a 3-D coordinate axes
system, with each 3-D axis of unit length, is rotated around
the Z-axis for 360 possible azimuths, and 360 templates are
generated. For each frame, a template vector TR is computed
(offline) as in

TR = [R,αR, βR, γR, SR,x, SR,y, SR,z]. (2)

One sample frame with 5◦ orientation (azimuth) angle is
shown in Fig. 2(a). The template library is the collection
of 360 such vectors (TR;R = 1, 2, . . . , 360) for 360 possible
azimuths.

2) Finding 3-D Orientation and Projection Scales: For the
current work, we assume that, for the entire video sequence,
the frontal plane of the moving vehicle is visible, and we
take the lower right vertex of this plane as the origin of the
OCC. Note that this constraint can be relaxed if the OCC can
dynamically be relocated to the left-hand lower corner of the
rear plane of the vehicle or, in general, to any corner with three
lines meeting at that point, where each line is along the principal
directions of the vehicle 3-D edges. We decide the OCC origin
for the first frame as the 2-D corner closest to the Ximg-axis
for all the video sequences considered. Then, we use matching
in terms of the concurrent lines and the proximity over the
consecutive frames to track the 2-D OCC origin.

The 2-D angles subtended by the three lines concurrent at
the OCC origin in the image plane are computed as shown in
Fig. 2(b). If the street is not too inclined (which is valid in
most cases), the orientation constraint [by assumption 2] makes
certain that the Z line in Fig. 2(b) is parallel to the image plane
Yimg-axis. This is the OCC Z3D-axis. To disambiguate between
X3D and Y3D directions from the remaining two lines [X and
Y lines in Fig. 2(b)] at the OCC origin, we use the global 2-D
motion vector. This vector is decided by the following:

a) finding corner correspondence by proximity;
b) local motion vectors for the individual corners;
c) binning the motion angles in the histogram;
d) taking the most voted motion direction;
e) comparing with the last frame motion because the street

constrains only smooth variation of the motion direction;
if it varies significantly, take the last frame motion direc-
tion as the motion direction for the current frame.

GHOSH AND BHANU: INCREMENTAL UNSUPERVISED THREE-DIMENSIONAL VEHICLE MODEL LEARNING FROM VIDEO 427

We compute the interframe motion from 2-D feature
displacement to find the motion angle Φ. As shown in Fig. 2(b),
in general, vehicle-motion direction is close to the direction
of the OCC Y3D-axis. The 2-D line (at OCC) closely parallel
to the motion direction is the OCC Y3D-axis. The remaining
one is the OCC X3D-axis. Note that Φ and β are not always
exactly the same because of possible rotations in the vehicular
motion.

After getting the orientation [α β γ] of [X3D Y3D Z3D]
directions, as in Fig. 2(b), we find the best Euclidian match of
[α, β, γ] over the corresponding columns [[αR, βR, γR] in (2)]
of the template vectors in the library. The best match provides
the estimate of the 3-D orientation of the vehicle R and esti-
mated projection scales [Sx, Sy, Sz] in principal directions, i.e.,
the OCC axis directions.

For finding the Euclidian match with the template vectors
in the template library, all the similarities along different axis
directions may not always be equally important. When the
OCC line parallel to the Y3D-axis is not visible, the Y3D-axis
direction is estimated by the motion direction, which may not
be exactly in the same direction as of the actual Y3D-axis (may
be seen a few frames away), due to the rotation in the vehicular
motion. Hence, we compute the weighted Euclidian distance
with weight vector W = [0.9 0.1 0.0]. As the OCC Z3D-axis
is always very close to 90◦, it has no importance in estimating
the orientation. Similarly, when all OCC axis lines are visible,
we take W = [0.5 0.5 0.0]. On the other hand, when, due to
increased distance, orthogonal nature (orthographic projection)
creeps in the projection of the lines and X3D-axis line depth
information is the most affected (due to being nearly parallel to
the camera optical axis), to decide the template vector, we as-
sign more weights on the Y3D similarity, i.e., W = [0.1 0.9 0.0].

3) 3-D Estimates: Vertices and Corresponding Lines: Two-
dimensional/3-D location mapping starts by assigning the
OCC 2-D origin to [0 0 0] and then uses the projection scales
[Sx, Sy, Sz] in different directions to map the 2-D line dis-
tances to 3-D distances along different propagation paths to
get the 3-D locations of other corners. The key steps are in
Algorithm 1.

Algorithm 1: 2-D/3-D mapping of features by the template
library approach.

1. Enforce the parallelism between lines (see
Section III-A3a).

2. Iterate for (iter < maxIter) OR (not all visible V2D are
mapped in 3-D).

3. For each of the 2-D visible corners (V2D = [x, y])
a. If it is already mapped to 3-D, consider the next visible

2-D corner.
b. If it is the OCC origin in 2-D, assign 3-D location

[0 0 0].
c. If none of the other corners connected to V2D are

mapped to 3-D, then it cannot be mapped now, and it
will be considered in later iterations when some of its
connected vertices are mapped.

d. If (V2D is connected to a 2-D corner (V 12D =
[x1, y1]) that is already mapped to 3-D) AND (the

connected line is parallel to one OCC axis), then map
V2D by OCC parallelism (see Section III-A3b).

e. If (none of the completely visible lines connected
to V2D is parallel to OCC axes) AND (V2D is con-
nected by an OCC nonparallel line to another cor-
ner V 12D that has already been mapped to 3-D),
then map V2D by OCC nonparallelism approximations
(see Section III-A3c).

4. If all the 2-D corners are not yet mapped to 3-D locations,
then go to step 3 for the next iteration.

5. Modify the final 3-D mappings using structural con-
gruities (see Section III-A3d).

a) Enforcing parallelism: For the propagation of esti-
mated values and the symmetry of the vehicle rigid structures,
we apply parallelism constraints. The lines that are nearly
parallel to the OCC axis directions are enforced to be parallel.
In this case, we use different angular similarity thresholds
(angSimTh) for different vehicle-to-camera distances. The same
angSimTh are used to enforce parallelism between pairs of
lines that are not parallel to any of the OCC axes (i.e., the
lines at the side of the windshield, back shield, or bonnet
inclination).

b) 2-D/3-D mapping by lines parallel to the OCC axis:
If 2-D corner V2D ([x, y]) is connected to another 2-D corner
V 12D ([x1, y1]) that has already been mapped to its 3-D
location [X1, Y 1, Z1] and the connecting line is parallel to one
of the OCC axes, then we directly use the projection scales
[Sx, Sy, Sz] (see Section III-A2). We compute the 2-D length
(L2D) of the connecting line Ln in pixels and find to which
OCC axis Ln is parallel. We use

if line Ln is parallel to X3D : L3D = (L2D/Sx) and

V3D =
{

[X1 + L3D Y 1 Z1], if (x > x1)
[X1 − L3D Y 1 Z1], if (x < x1) (3)

if line Ln is parallel to Y3D : L3D = (L2D/Sy) and

V3D =
{

[X1 Y 1 + L3D Z1], if (x < x1)
[X1 Y 1 − L3D Z1], if (x > x1) (4)

if line Ln is parallel to Z3D : L3D = (L2D/Sz) and

V3D =
{

[X1 Y 1 Z1 + L3D], if (y > y1)
[X1 Y 1 Z1 − L3D], if (y < y1) (5)

between directions of image plane axis and OCC 3-D axes to
map V2D into V3D.

c) 2-D/3-D mapping for lines that are not parallel to the
OCC axis: If none of the completely visible lines connected
to corner V2D ([x, y]) is parallel to any of the OCC axis AND

2-D corner V2D is connected by an OCC nonparallel line (Ln)
to another 2-D corner V 12D ([x1, y1]) that has already been
mapped to 3-D location V 13D ([X1, Y 1, Z1]), then we use
geometric approximations and trigonometric relations to map
V2D to 3-D location V3D ([X,Y,Z]) (see Fig. 3).

Note that all OCC nonparallel lines in common vehicles lie
in one of the two possible Y3D-Z3D planes in OCC. Hence, the
X3D-axis coordinate of V 13D and V3D will remain the same.
We find the 2-D slope angle (C2D in Fig. 3) of line Ln made

428 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

Fig. 3. Estimating 3-D vertex locations connected by edges that are not in
parallel to any of the OCC axes (best viewed in color).

with the Ximg-axis. As the projection of OCC Y3D-axis makes
a 2-D angle β (in Fig. 3) with the image plane Ximg-axis, the
2-D angle B2D subtended by Ln with the OCC Y3D-axis on the
OCC Y3D-Z3D plane is given by

∠B2D = ∠β − ∠C2D. (6)

Then, we find 2-D angle (A2D) subtended by the OCC Y3D-axis
and OCC Z3D-axis on the OCC Y3D-Z3D plane by

∠A2D = ∠β − 90◦ and
∠ A2D (in 2D) ⇒ ∠ A3D (in 3D) = 90◦. (7)

Now, we postulate that the ratio of the two concurrent 3-D
solid angles (A3D and B3D) on the same 3-D plane will be equal
to the ratio of the 2-D angles (A2D and B2D) of the projection
of those 3-D angles on the image plane. This is strictly true
if the assumptions mentioned in Section III-A hold true. This
implies that 2-D angles in the image plane can be mapped to
their 3-D counterpart by linear interpolation. Thus, we find the
3-D counterpart (B3D) of B2D (see Fig. 3) by

On the same 3D plane,
A3D

B3D
=

A2D

B2D
⇒∠B3D =

∠B2D

∠A2D
∗ 90◦.

(8)

If the length of the line Ln is L2D, then the components
of L3D along Y3D and Z3D (Ly,3D and Lz,3D) in the OCC
Y3D-Z3D plane are computed by (9), shown at the bottom of
the page, and then using assumption 2 under Section III-A
and (10), shown at the bottom of the page, based on the 2-D

relations between V2D ([x, y]) and V 12D ([x1, y1]) to map V2D

to its 3-D location.
d) Modification by structural congruity: Finally, we ap-

ply the structural constraints from the generic 3-D model to
modify the 3-D mapped coordinates so that, for all X3D-axis,
Y3D-axis, and Z3D-axis parallel lines, corners at both ends will
be different only in the X , Y , and Z coordinates, respectively.
This gradual correction is an iterative process.

B. Adaptive Clustering for Incremental Learning of Vehicle
3-D Model From Frame Sequence

1) 3-D Features: Using the template-library-based method
described in Section III-A, we get the 3-D locations of the
corners and the 2-D connectivity structure among the corners
for a single video frame. Due to the limits of the view volume
of the camera and the nonvisibility from self-occlusion, not
all the corners and the corresponding connecting lines are
completely seen in every frame. In addition, due to multiple
possible paths to reach a particular corner from the OCC origin,
we may obtain different estimates of the 3-D location from
different paths. As more completely connected lines are seen
for a corner, more different estimates are possible. We used
an incremental clustering-based technique to integrate/fuse all
this information to build a 3-D model of a vehicle. All the
3-D vertices are decoupled according to the connected lines,
and each decoupled line terminal is called subvertex. The 3-D
location of each subvertex is computed. From the 2-D corner
connectivity structure, 3-D lines are automatically inferred.
Thus, there are 3-D view-invariant features from a single frame.

a) Three-dimensional locations of the seen subvertices

V3D = [X,Y,Z]. (11)

b) Directional parameters of the completely seen edge
segment, e.g., for edge segments Ln connecting
V 13D [X1, Y 1, Z1] and V 23D[X2, Y 2, Z2], i.e.,

DPLn
= V 13D − V 23D

= [(X1 − X2) (Y 1 − Y 2) (Z1 − Z2)] . (12)

2) Incremental Learning Using Adaptive Clustering: Fea-
tures estimated from a single frame are not very robust due
to the approximations used. As more frames are considered,

LY,3D =
cos(B3D) ∗ L2D

Sy
and LZ,3D =

sin(B3D) ∗ L2D

Sz
(9)

V3D =

⎧⎪⎨
⎪⎩

[X1 Y 1 + LY,3D Z1 + LZ,3D], if (x < x1)&(y > y1)
[X1 Y 1 − LY,3D Z1 − LZ,3D], if (x > x1)&(y < y1)
[X1 Y 1 + LY,3D Z1 − LZ,3D], if (x < x1)&(y < y1)
[X1 Y 1 − LY,3D Z1 + LZ,3D], if (x > x1)&(y > y1)

(10)

GHOSH AND BHANU: INCREMENTAL UNSUPERVISED THREE-DIMENSIONAL VEHICLE MODEL LEARNING FROM VIDEO 429

incremental estimates are expected to become more reliable.
As, in general, traffic video ground truth is not available (i.e.,
the 3-D model of any particular vehicle is not available), un-
supervised learning has been adapted. Steps in the incremental
unsupervised learning are shown in Algorithm 2. Each step is
detailed in the succeeding sections.

Algorithm 2: Incremental learning of the 3-D model.
For each frame:

1. Extract corners and their connectivity structure for the
current frame (see Section III-D). If any of the single-
frame-based 3-D estimate is negative due to estimation
propagation over lines with noisy edge points, discard that
frame altogether.

2. Decide completeness of the vertices (see Section III-B2a).
3. For each corner

a. Find its generic number in the 3-D generic model, and
allot all its visible subvertices (see Section III-B2b).

b. Clustering: Accumulate 3-D estimates for all vis-
ible subvertices over the frames seen so far (see
Section III-B2c).

c. Structural congruity: Compute LnCong, DirCong,
LnAngErr (E), LnCompRatio (C), and
subV disp (D) (see Section III-B2d) of the 3-D esti-
mates with respect to the 3-D generic model.

d. Adaptation and outlier rejection: Fit 3-D Gaussian
distribution for individual subvertices: Get mean (μ1)
and standard deviation (σ1). Remove points outside
(μ1 ± 2σ1) (see Section III-B2e).

e. Unsupervised learning: Fit 3-D Gaussian for
the remaining feature points, and get (μ, σ) (see
Section III-B2f).

f. Exponential forgetting: For each subvertex, the re-
maining estimates from step 3(d) are used with expo-
nential forgetting to get the incremental estimates and
reliabilities (subV rlb) (see Section III-B2g).

g. Incrementally learning: Vertices are estimated by the
weighted mean of subvertices and vertex reliabilities
(V rlb) by mean of corresponding subvertex reliability
subV rlb (see Section III-B2h).

4. Incrementally learned line reliabilities: Compute
single-frame reliabilities, and then use exponential for-
getting and incremental learning for the frames seen so
far (see Section III-B2h).

5. Model reliability: Computed as a function of vertex
reliability scores from step 3(g) (see Section III-B2i).

a) Deciding the completeness of the vertices: After dis-
carding the frames with erroneous negative 3-D estimates of
the vertices (from a single frame), we find the correspondence
matrix (Pt2LnCorr) between vertices and lines for the current
frame. Then, the completeness of the vertices is found using
the number of concurrent lines at that vertex. Complete vertices
have more-than-one concurrent lines, whereas incomplete ver-
tices can have only one.

b) Deciding proper subvertex allotment from generic
model: In the generic 3-D vehicle model, for any 3-D generic
vertex (V ′

3D), line and vertex numberings follow two rules:
1) The line connecting the other vertex (V 1′3D) with the
lowest generic number is counted first and then with next
lowest generic number and so on, considering generic numbers
in ascending order. 2) Vertices (V ′

3D) are also considered in
ascending order of the generic numbers. These rules specify
unique subvertex numbers due to the corresponding lines and
ensure that subvertex-level clustering is done with estimates
that are computed in a similar manner.

For complete vertices, their actual generic model vertex
numbers are found from the order of first appearance in the
video sequence. For finding the exact subvertex number, current
single-frame-based 3-D location estimates are saved and used
in the following frames.

For each incomplete vertex (V2D), there is only one line
connected to it. We take four steps.

1) Find the other vertex (V 12D), which must be a complete
vertex, connected to V2D.

2) From the generic 3-D vehicle model, find the generic
vertex number of V 13D and its generic connectivity order
for the other vertices to which V 13D is connected to in the
generic 3-D model.

3) Among the connectivity list of V 13D, discard those ver-
tices that are already completely visible (as V3D is not
visible yet), and among the rest, find the best match for
V3D by the slope angle of the connecting line (by the
method in Section III-A3c).

4) Store the estimate of the incomplete vertex at the correct
subvertex variable based on the connectivity order of V3D

in the generic 3-D vehicle model.

c) Clustering: During subvertex-level clustering, note
that the estimates, like subvertex [X, Y, Z] locations, may vary,
depending on the 2-D path taken during estimation propagation.
Thus, different subvertices of the same vertex are estimated
in different ways and are to be clustered individually. This is
ensured by the method employed in Section III-B2b. As the
single-frame-based 3-D location estimates are valid up to a
scale factor, we normalize the coordinates to make the width of
the vehicle fixed as this remains the same for nearly all vehicles
due to fixed lane width in standard highways.

d) Structural congruity measurement: Structural con-
gruity indices are the measures of similarity of the estimates to
the corresponding counterpart in the generic 3-D model or the
one incrementally learned until the last frame. They are used
in incremental learning and estimation and as a performance
measure at different levels of abstraction of the estimated
3-D model. For each complete 3-D vertex (V3D), we consider
each of its connected lines (Ln) and the other 3-D vertex
(V 13D) to which V3D is connected. Thus, we consider cor-
responding subvertices v3D and v13D, for V3D and V 13D,
respectively, for the line Ln to check the structural congruity.
Two cases are possible: case 1, where both the terminal vertices
are complete (when Ln is complete), and case 2, where only
one of them is complete (when Ln is incomplete).

430 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

Case 1: Complete line Ln between V3D and V 13D:

1) Find the line congruity (LnCong) defined by the paral-
lelism of line Ln to different OCC axes, i.e.,

LnCong(Ln) =

⎧⎪⎨
⎪⎩

1, if Ln is X3D-parallel
2, if Ln is Y3D-parallel
3, if Ln is Z3D-parallel
4, if Ln is nonparallel.

(13)

2) Find the directional congruity matrix (DirCong) defin-
ing the congruity of the line Ln between V3D and V 13D,
i.e.,

DirCong(V3D, V 13D) = LnCong(Ln). (14)

3) Find the subvertex disparity (D) that measures the
weighted distance between the estimated V3D and its
generic counterpart V ′

3D. The weights (dispW) change
[see (15), shown at the bottom of the page], depending on
the importance of different OCC coordinates ([X Y Z])
for that vertex and the completeness of the connected line
(see the detailed discussion in Section III-C1).

4) Find the line completion ratio (C) of the line between V3D

and V 13D with respect to its ground-truth counterpart
between V ′

3D and V 1′3D by (see also Section III-C1)

C = ‖V3D − V 13D‖/ ‖V ′
3D − V 1′3D‖ . (16)

5) Find the 3-D slope angle of the estimated line (θ) and
then the angle error (LnAngErr), using

E = abs(θ − ϕ)/ϕ. (17)

which measures the error between θ and its ground-truth
counterpart (ϕ) in the generic model. For OCC nonparal-
lel lines, the approximations described in Section III-A3c
are followed.

Case 2: V3D is a complete vertex, but V 13D is an incomplete
one; then, the line Ln between them is an incomplete one. The
generic vertex number of V3D is known, and the generic vertex
number of V 13D is decided by the similarity of the directional
coefficients of 2-D line Ln and 2-D projections of the possible
3-D lines in generic or incremental model concurring on V 13D.
The directional/angular matching is done in the image plane.
For two incomplete lines converging to the same corner, we
will have the same generic vertex number, but correct 3-D sub-
vertices are used in incremental clustering (see Algorithm 2).
In this case, steps in the last paragraph are used with different
dispW in (15) to emphasize more dependence on those coordi-

nates that are expected to be the same from the generic model
constraints.

e) Adaptation and outlier rejection: For each of the com-
plete 3-D vertices (V3D) encountered in the current frame,
we find the other vertices V 13D (complete or incomplete)
connected to V3D. Note that the incomplete vertices are au-
tomatically considered through the complete vertex to which
it is connected. We accumulate corresponding subvertex 3-D
estimations over the frames seen up to this point. We fit a
3-D Gaussian distribution with 95% confidence interval to get
the mean (μ1) and standard deviation (σ1) of the subvertex-
level clusters. Adaptation is basically an outlier rejection step
before the final unsupervised learning step. We discard the 3-D
estimations outside the interval (μ1 ± 2∗σ1).

f) Unsupervised learning: After discarding the outliers
(in the last section), we fit another 3-D Gaussian distribution
(with 95% confidence interval) with the remaining estimated
locations of the same subvertex and find mean μ and standard
deviation σ. Learned subvertex 3-D estimates are the corre-
sponding means (μ’s). Normalized standard deviation (σ′) is
the cluster variance that also measures the learning perfor-
mance, i.e.,

σ′ = σ/ (1 + ‖μ‖) . (18)

Note that, as the incomplete lines gradually appear over the
frames, the location estimates of the corresponding (incom-
plete) subvertex change. Hence, σ′ is not significant to show
cluster performance in these cases. Subvertex-level reliabilities
(subV rlb) for each vertex (V3D) are computed by the following.

For complete vertices, with rlbW = [1 1 2 5]/9

subV rlb = rlbW ∗ [C 1/(1 + D) (1 − E) 1/(1 + σ′)]T

and for incomplete vertices, with rlbW = [1 1 5]/7

subV rlb = rlbW ∗ [C 1/(1 + D) (1 − E)]T (19)

with different reliability weights (rlbW) for complete and
incomplete vertices (as detailed in Section III-C1).

g) Exponential forgetting: It is noteworthy that, although
we are estimating a rigid 3-D model of the vehicle in videos,
the estimates from different frames are not the same due to
different noise levels and different estimation errors due to
approximations in Section III-A. For the incrementally learned
estimate of the 3-D vertex locations of the model, exponential
forgetting has been applied on the final cluster, as the feature
points seen long before in a frame are less relevant for estimates
in the current frame.

D = (V3D − V ′
3D) ∗ dispW ∗ (V3D − V ′

3D) / ‖V3D − V ′
3D‖ , where

dispW =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lnis complete, Lnis incomplete
[1 3 3]/7 [1 5 5]/11, if Ln is X3D-parallel
[3 1 3]/7 [5 1 5]/11, if Ln is Y3D-parallel
[3 3 1]/7 [5 5 1]/11, if Ln is Z3D-parallel
[5 3 3]/11 [5 1 1]/7, if Ln is nonparallel

(15)

GHOSH AND BHANU: INCREMENTAL UNSUPERVISED THREE-DIMENSIONAL VEHICLE MODEL LEARNING FROM VIDEO 431

Individual incremental 3-D estimates of a visible subvertex
(v3D) and its corresponding incremental subvertex reliability
values (subV rlb) are computed using (20), shown at the bottom
of the page, with corresponding entries across the frames. Q
is the exponential forgetting factor. We use the incremental
estimates of V3D and subV rlb for incremental 3-D model
reconstructions.

h) Incremental learning of vertices and lines: Using the
v3D and subV rlb from (20), we compute the incremental
estimates of the vertices (V3D) by (21), shown at the bottom
of the page, and the corresponding vertex reliabilities (V rlb)
by (22), shown at the bottom of the page.

Note that, once we have the estimates of the 3-D locations of
the vertices and the 2-D connectivity matrix (Pt2LnCorr) for
the current frame, we have the 3-D lines in the current frame.
Line reliabilities for an individual frame are found by (23),
shown at the bottom of the page, using the structural congruity
measures and reliabilities of the connected subvertices. How-
ever, different reliability weights (rlbW) are used (explained
in Section III-C3) based on the completeness of the line itself
and completeness of the connected vertices. Then, we apply the
exponential forgetting principle in (20) to get the incremental
line reliabilities (Erlb).

i) Incremental 3-D model of the vehicle: With the in-
cremental estimates of the 3-D locations of the visible ver-
tices of the vehicle and the 2-D vertex connectivity matrix
(Pt2LnCorr) from the 2-D features, we reconstruct the 3-D
model of the vehicle. For performance verification, we define a

unified reliability value of the 3-D model (Mrlb), which is the
mean of the vertex reliabilities, i.e.,

Mrlb =
∑

i:all visible vertices

V rlbi

/ ∑
i:all visible vertices

1. (24)

C. Reliability Scores as Performance Measures

Reliability scores are structural congruity measures of the
estimates of 3-D corner locations and the lines connecting
between them, with respect to the generic 3-D vehicle model.
These measures serve two purposes in this work: 1) They
act as dynamically adaptive weights for estimates of the 3-D
model parameters incrementally modified at different abstrac-
tion levels (see Sections III-B2d–III-B2i), and 2) they act as
performance measures at different finer levels to evaluate the
estimated 3-D model at any time. Reliability scores have been
measured at different abstraction levels, as follows.

1) Subvertex Reliability: Four factors govern the subvertex
reliability.

a) Normalized standard deviation (σ′): This is measured
by (18) to quantify the divergence of the cluster used for
unsupervised learning (see Sections III-B2f). In a way,
this factor shows some idea of congruency in the data
itself and the subvertex-level learning performance.

b) Subvertex location disparity (D): This measures (15)
the weighted disparity of the estimated and generic lo-
cations of a vertex. The weight (dispW) changes for

Incremental estimate of F (V3D or v3D or subV rlb or Erlb) at frame t :

F (t) =

t∑
fr=1

e−Q(t−fr) ∗ k(fr) ∗ F (fr)

t∑
fr=1

e−(t−fr) ∗ k(fr)

where : Q = scale factor for forgetting

k(fr) =
{

0, if F (fr) is outlier
1, otherwise

and fr = 0, 1, . . . , N (total frames)

(20)

V3D =
∑

i:visible subvertices

subV rlbi ∗ v3D(i)
/ ∑

i:visible subvertices

subV rlbi (21)

V rlb =
∑

i:visible subvertices

subV rlbi

/ ∑
i:visible subvertices

1 (22)

Erlb = rlbW ∗ [C (1 − E) 1/(1 + D1) 1/(1 + D2) subV rlb1 subV rlb2]
T

where, rlbW =

⎧⎨
⎩

[2 4 2 1 4 2]/15, if V 13D is complete, V 23D is incomplete
[2 4 1 2 2 4]/15, if V 13D is incomplete, V 23D is complete
[1 4 2 2 4 4]/17, if V 13D and V 23D are both complete

(23)

432 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

different cases. For example, with complete X3D-parallel
lines, the Y and Z coordinates of the estimated and the
generic subvertex are expected to be more similar than
the X coordinate, and hence, (dispW = [1 3 3]/7) is
selected. For incomplete X3D-parallel lines, (dispW =
[1 5 5]/11) emphasizes less congruency in X coordinates
of the estimated vertex to that in the generic model and,
hence, less relative weight for X .

c) Line completion ratio (C): This is computed by (16). As
the line lengths are unique for different vehicles, we adapt
the ground-truth line length [denominator in (16)] from
the incrementally built 3-D model at that point in time.

d) Line angle error (E): In (17), we gradually adapt the
ground-truth line angle (ϕ) with that in the incremen-
tally built 3-D model to accommodate uniqueness of
vehicles.

Reliabilities of the subvertices (subV rlb) are computed as
the weighted sum of the factors where the weights (rlbW) are
decided according to their importance based on line complete-
ness (19). Note that, for incomplete vertices, as the subvertex
3-D location changes fast (as the vehicle enters or exits or
changes view), clustering divergence (σ′) is bound to be high
and need not be considered for reliability consideration. How-
ever, in this case, angular similarity is more important than that
for the complete vertex case. This knowledge is reflected in
rlbW selection in (19). In case of complete vertices, factors for
completion (C) and location similarity (1/(1 + D)) are already
resolved, and hence, fewer relative weights (importance) are
assigned than the factors for angular similarity of the connected
line (1 − E) and cluster congruity (1/(1 + σ′)), and we assign
rlbW = [1 1 2 5]/9. For incomplete vertices, the cluster of cor-
responding subvertex locations is not reliable, yet the angular
similarity of the line connected (1 − E) is more likely to be
similar to that of generic or previous incremental 3-D model;
hence, we select [1 1 5]/7.

2) Incremental Vertex Estimate: Incremental estimates V3D

are found by the weighted mean (21) of the corresponding visi-
ble subvertices (v3D) with their reliabilities (19) as the weights.
Vertex reliability (V rlb) is the mean (22) of the subV rlb values
of the corresponding visible subvertices (v3D) in the current
frame.

3) Incremental Line Reliability: Line reliability scores are
computed by (23) from the line disparity factors and the dis-
parity and reliability of the terminal subvertices from (19).
Reliability weights (rlbW) also change with the completeness
of the line and the terminal vertices (more complete means
more reliable). As disparity-based similarity (1/(1 + D)) and
subvertex reliability values (subV rlb) of incomplete vertices
are expected to be low, they are given less weight [see (23)]. For
example, when V 13D is complete and V 23D is incomplete, then
(1/(1 + D1)) and subV rl1 are expected to be high; (1/(1 +
D2)) and subV rlb2 are to be low; and the values of subV rlb
are more reliable than disparities. Hence, we have selected
rlbW = [2 4 2 1 4 2]/15. When both V 13D and V 23D are
complete, symmetric relative weights are used, with rlbW =
[1 4 2 2 4 4]/17, where less weight is assigned to C as it is less
relevant there.

4) Model Reliability: Once we have the 3-D vertex loca-
tions and their 2-D connectivity (from the Pt2LnCorr ma-

trix), we practically have the entire wire frame 3-D model
incrementally built. Hence, for computing the unified model
reliability (Mrlb) over the frame sequence, we only consider
the reliabilities of the visible vertices in the current frame and
use the mean as the incremental model reliability, as in (24).

D. Feature Extraction by Structural Tracking

Due to the smooth surface boundaries of automobiles, au-
tomatic 2-D corner detection in real video data is very error
prone. Shadows, specular reflections, etc., in the uncontrolled
traffic video add to the complexity. For this reason, we manually
initialize the 2-D corners and connectivity between them (the
Pt2LnCorr matrix) only in the frame where they appear for the
first time, and subsequently, we automatically track, predict,
and extract the corners and lines for all the other frames. Note
that the surveillance video for a particular vehicle is often
short. The fully automated feature extraction is not the focus
of this paper. Existing methods, such as in [21], [24], [25],
[27], and [39], can contribute toward the development of a fully
automated system. Tracking of individual corners may change
the rigid structure of a vehicle in 3-D, which is not expected.
Thus, we use the entire visible vehicle structure to track features
over the frames. The key steps are summarized in Algorithm 3.

Algorithm 3: Feature extraction by structural tracking.

1. Detect moving vehicle by image subtraction and morpho-
logical cleaning. Then, get the merged bounding box that
is tracked across the frames.

2. Get image evidences of the 2-D corner and line for
tracking and feature reliability of the predictions.

3. Manually initialize the 2-D corners and line connectivity
for the first frame and for frames where new features are
encountered.

4. Form a corner structure to pass across the frames.
5. Track the wire frame (formed by 2-D corners and con-

necting lines) in its entirety by cross-correlation-based
neighborhood search.

6. Estimate 2-D corners for the current frame from the
tracked wire frame.

1) Moving Vehicle Detection: In the preprocessing, we take
out the even field of every frame and convert color (R =
red,G = green,B = blue) frames to a grayscale one (I = (R +
G + B)/3) to reduce the computational complexity. The first
frame of the video sequence is used as the base frame that
is subtracted from every following frame to get the moving
regions in that frame. To extract silhouettes of the moving
regions, at first, we do binarization, and then, several mor-
phological operations are employed, five times each, in this
order: 1) spurious noise (isolated dangling edges) removal;
2) morphological cleaning; 3) morphological closing; and
4) majority filtering. Then, the connected components of the
moving regions are labeled with 8-neighorhood connectivity.
Regions with an area of less than 10 pixels are discarded. A
minimum rectangular bounding box of the moving region is

GHOSH AND BHANU: INCREMENTAL UNSUPERVISED THREE-DIMENSIONAL VEHICLE MODEL LEARNING FROM VIDEO 433

TABLE IV
CORNER STRUCTURE: EACH LOCATION IN [COL ROW] FORMAT

tracked over the frames to reduce the computational complexity
of searching the particular vehicle.

2) Evidences for Tracking and Feature Reliability: We use
cross-correlation-based neighborhood matching for tracking
and finding the confidence score of the automatically extracted
features. In addition to intensity information, we also find the
edge directions (carEdir) and magnitudes (carEmag) for the
cropped areas. We first smooth by a 3 × 3 Gaussian filter
with standard deviation (sigma) equal to 0.5. Then, we use
second-order discrete partial derivatives to find the direction
and magnitude of the edges. We consider directional angles
only in 30◦ of intervals. We extract the silhouette (carSilh)
and boundary (carBnd, which is computed from the perimeter
of carSilh) of the moving vehicle. This is extracted, because,
due to the smoothness of the surfaces, edges are not always
definitive, and carBnd can help to decide the presence of
lines between two corners. Thus, for each frame, we get an
evidence set Evd (gray image, edge direction, edge magnitude,
moving silhouette, and moving boundary). This is used for
finding the corners and lines of the moving vehicle in the
video.

3) Corner Structure for Passing Information Over Frames:
We use a data structure (see Table IV) for storing frame-based
information on the corners and the lines connecting them, and
we pass the structure to the next frame to predict the new 2-D
locations of the corners and lines.

4) Wire-Frame Global Tracking: Local motion-based track-
ing and prediction of individual corners may become zigzag due
to noisy cross correlations and 2-D motion vectors for different
2-D corners may completely be different. This may severely
deform the wire-frame structure, which is unexpected for rigid
objects such as vehicles. A solution is to use the structural
constraints between the 2-D corners. However, it is hard to
decide the starting point (with true prediction) for applying
structural constraints. The entire wire frame can be changed
by small local deformations to fit the 2-D features extracted
without breaking the structural interrelations among them.

We reduce the aforementioned complexity by globally track-
ing the entire wire frame (comprising 2-D corners and 2-D lines
connecting them). We predict the position of the entire wire

frame by the best global cross correlation from the previous
frame to the current frame. The current 2-D features are esti-
mated from this predicted wire frame. When the view of the
moving vehicle severely changes and currently tracked wire
frame cannot fit the new view of the vehicle, relevant corners
are re-initialized. Thus, we consider geometrical deformation of
the frame. Note that we have considered global cross correlation
in this paper. The 3-D model estimated in this paper can
be used for obtaining the best global transformation of the
vehicle.

For tracking the wire frame, different evidences from the
previous and current frames are used. A [7 × 7] window around
the previous location of each corner is searched, and the pixel
with the highest cross correlation is selected as the current
location. Cross correlations are measured for both frames over
5 × 5 pixels patches for evidences. The entire wire frame (with
only complete corners) is moved by exactly the same amount
so that each of the moved corners is within the search window
for its previous frame counterpart. By

confFr =
∑

crn:all visible corners

conf(crn). (25)

we sum up the confidence scores [conf (crn)] of all complete
corners (crn) to get the single confidence value (confFr)
of the entire wire frame for a position. Based on the highest
confidence (confFr) of the entire wire frame, we select its
predicted position.

Individual [conf (crn)] is computed by linear fusion of
similarities between the corner (crn) in the previous frame and
the choices in the current frame (within the 7 × 7 neighborhood
window) by

conf(crn) = 100 ∗ (α1 ∗ GrayCorr + α2 ∗ EmagCorr

+ α3 ∗ EdirSim + α4 ∗ proxIndx)

where
∑

i

αi = 1. (26)

The values of αi’s were determined as α1 = 0.6, α2 = 0.2,
α3 = 0.1, and α4 = 0.1 based on experiments. The similarity
measures [in (26)] are computed as follows:

a) Grayscale value-based cross-correlation index (Gray-
Corr): This measures intensity-based similarity between
5 × 5 patches around the pixel locations in the previous
and current frames, as in (27), shown at the bottom of the
next page. Xcorr(x, y) is the correlation index between two
intensity image patches [x]N×N and [y]N×N with N = 5.
Individual elements [Rxy (m,n)] of the correlation matrix
are computed, as shown in (27). When x and y are the
same image patches, we get an autocorrelation matrix [like
GrayAcorr in (27) and EmagAcorr in (28), shown at the
bottom of the next page], and when x and y are different,
we get the cross-correlation matrix [like GrayXcorr in
(27) and EmagXcorr in (28)]. Only the central elements
(a1, b1) are used to compute the single similarity index, like
grayscale correlation index (GrayCorr) in (27).

434 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

b) Edge-magnitude-based cross correlation (EmagCorr):
This measures the similarity of edge-magnitudes for the
5 × 5 patches around the pixels by (28) [using (27)], where
EmagXcorr and EmagAcorr are cross- and autocorre-
lation matrices, and a2 and b2 are the respective center
elements.
c) Edge-direction similarity (EdirSim): This measures the
similarity of the edge directions by

EdirSim = cos (|currEdir[i, j] − prevEdir[m, n]|) (29)

i.e., prevEdir and currEdir, at pixel (m,n) in the last
frame and pixel (i, j) in the current frame, respectively.
d) Proximity index (proxIndx): This measures distances
between the previous frame corner location (m,n) and the
candidate pixel (i, j) in the current frame, i.e.,

proxIndx = [1/ [1 + ‖(i, j) − (m,n)‖]] . (30)

5) Estimation of 2-D Corners for the Current Frame: From
the tracking result of the entire wire frame, we get the global
motion, which, in our case, is also the local motion. We apply
this motion to each of the complete corners in the previous
frame to get the estimated locations in the current frame (see
Fig. 4). Now, the 2-D linear edge segments can be updated
based on corner connectivity information from the previous cor-
ner structure. Incomplete corners are those not yet seen, and the
connecting lines to them are not complete. These incomplete
corners are predicted by extending the corresponding line in the
previous frame, until the line hits the boundary of the current
frame (generally the left or top margin). Note that we have used
a search window (7 × 7) that is large enough such that corre-

sponding corners are safely within the window. In addition, due
to the frame-subtraction-based silhouette detection of moving
vehicles (described earlier), the search window never falls back,
and it is always current. Thus, we have not considered the use
of an adaptive window whose size may vary with the speed of
the motion.

The line reliability values are updated for the current frame
by counting the number of nonzero pixels (nnz) in the close
neighborhood of line Ln, which was normalized by the length
of the line (L2D), as in

Erlb(Ln)=100 ∗ min
[
1,max

[
nnz(Emag)

1+L2D

nnz(silhBnd)
1+L2D

]]
.

(31)

Edge magnitude (Emag) is not always a good evidence for line
reliability because of the blunt ridges of the vehicles. Hence, we
use both Emag and silhouette boundary (silhBnd) to compute
reliabilities as evidences, and the maximum of them is selected.

Finally, the corner reliabilities are computed by the mean of
the reliabilities of the concurring lines, i.e.,

CrnRlb =
1

LineCnt

LineCnt∑
i=1

Erlb(i). (32)

When any new corner or line feature appears in the video se-
quence, it is initialized for the first time and then automatically
tracked with the other parts of the wire frame in the following
frames.

Xcorr(x, y) = �Rxy�(2N−1)×(2N−1), where [x]N×N and [y]N×N , and N = 5

Rxy(m,n) =

⎧⎨
⎩

N−m−1∑
i=0

N−n−1∑
j=0

x[i + m, j + n] ∗ y[i, j], m, n ≥ 0

Rxy(−m,−n), m, n < 0
where m,n ∈ [−N,N]

GrayXcorr =Xcorr(currGrayPatch, prevGrayPatch)

GrayAcorr =Xcorr(currGrayPatch, currGrayPatch)

a1 =GrayXcorr[N,N] : Center element of the square matrix

b1 =GrayAcorr[N,N] : Center element of the square matrix

GrayCorr = [1/ [1 + (|a1 − b1|/ (a1 + b1))]] (27)

EmagXcorr =Xcorr(currEmagPatch, prevEmagPatch)

EmagAcorr =Xcorr(currEmagPatch, currEmagPatch)

a2 =EmagXcorr [N,N] : Center element of the square matrix and N = 5

b2 =EmagAcorr[N, N] : Center element of the square matrix and N = 5

EmagCorr = [1/ [1 + (|a2 − b2|/(a2 + b2))]] (28)

GHOSH AND BHANU: INCREMENTAL UNSUPERVISED THREE-DIMENSIONAL VEHICLE MODEL LEARNING FROM VIDEO 435

Fig. 4. Feature-extraction method. Frame (k − 1): Neighborhood patches of 5 × 5 pixels are considered around each complete corner (1–5). Frame k: A 7 × 7
search window is used to move around the 5 × 5 patch for best match. Best match is found based on the total reliability of all the complete corners. Global motion
[m, n] is used to predict complete corners (1–5) in frame k. New corner 10 is initialized for frame k and tracked thereafter. Incomplete corners (6–8, 11, and 12)
are found by extending corresponding linear edge segments until they cut the left margin of the frame.

Fig. 5. Simulated sedan. (a)–(e) Sample frames (total number of frames: 125). (f)–(i) Incremental models at different stages. Reliabilities of lines are color coded.
(j) Unified model reliability value of the incremental 3-D model over the frame sequence (best viewed in color).

E. Summary of the Proposed Method

As summarized in Fig. 1, we start with a traffic video from
a single static uncalibrated camera where, often, the vehicles
are partially seen. After motion-based vehicle detection and
initialization of the 2-D corner and lines in the frame the first
time they are encountered, 2-D features in subsequent frames
are automatically extracted (see Algorithm 3 in Section III-D)
using the local cross-correlation-based global wire-frame track-
predict-verify method (see Fig. 4). The detected 2-D features
are mapped to 3-D (see Figs. 2 and 3) using a novel direc-
tional template library (DTL) approach (see Algorithm 1) for
each video frame. Three-dimensional vertices and ridges form
the single-frame-based 3-D model (see Section III-B1). A novel
adaptive-clustering approach (see Algorithm 2) incrementally
adds and updates the 3-D model parameters as increasingly
more views of the vehicle are partially or completely seen (see
Section III-B2) using an exponential forgetting and weighted
history. The incrementally learned 3-D model until the last
frame is used as the ground-truth 3-D model at the current
frame. Reliability scores are then computed to measure the
structural congruity of the 3-D model with this ground truth
at different abstraction levels (see Section III-C). These relia-

bility scores also act as the weight factors during incremental
view integration (see Sections III-B2d–B2i) and provide the
final incremental 3-D model at the current time point (video
frame).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Results on Simulated Traffic Data

1) Simulated Traffic Data: A ten-vertex 15-surface block-
based vehicle was generated, and its motion was simulated
with both translation and orientation changes over the frames.
Sample frames are shown in Fig. 5(a)–(e). In (20), we have
selected a scale factor of exponential forgetting Q to be 0.5.

2) Results on Simulated Data: Incremental results for
frames 17, 35, 50, and 100 are shown in Fig. 5(f)–(i). The
numbers of the vertices are shown. Edge segments are color
coded according to reliability values from red (reliability 0) to
violet (reliability 1). The overall reliability of the model is 0.85.
The model reliability value over the complete video sequence
(125 frames) is shown in Fig. 5(j). As expected, the reliability
value gradually increases (see Fig. 6) as more frames are seen
with minor deviations due to newly seen vertices affecting other

436 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

Fig. 6. Simulated sedan: The ground-truth 3-D locations of the vertices in simulated data and their estimated locations at frames 50 and 100 are shown in the
table. Clustering-based 3-D estimates are robust than their single-frame-based counterparts. Generally, the reliabilities of the 3-D vertices increase when more
frames are considered.

Fig. 7. Sample frames of vehicular videos taken at traffic spot 1 (best viewed
in color).

estimations. Note that vertices 18, 19, and 20 are never seen
over the entire video sequence.

B. Results for Real Traffic Video Data

For unsupervised learning, without any ground truth, for
traffic vehicles in real video, the incremental model learned
until the previous video frame is used as the ground truth,
and corresponding parameters and reliabilities are used in the
computation of the values for the current frame.

1) Real Traffic Video Data: Real traffic video data have been
collected by an uncalibrated camera in two right-angle street
curves so that many different views of the vehicle are seen.

Sample frames for the selected vehicles are shown in Figs. 7
and 8. For traffic spot 1 (see Fig. 7), vehicles are at a relatively
closer distance, and there are fewer views and video frames
for each vehicle, whereas, in traffic spot 2 (see Fig. 8), we get
a larger number of views and video frames. This is expected
to improve the 3-D model-building results. Note that, in the
short duration (60–383 frames: 2–13 s) of the traffic videos
used in this paper, we do not expect significant illumination
changes. The small illumination changes are automatically
handled by wire-frame tracking (see Section III-D) by best-
match-based correspondences across consecutive frames. How-
ever, for longer videos, where illumination changes will be
important, an approach such as [25] can be used. In addi-
tion, as one video is independent of the others, illumination
differences between two videos will not affect the results.
Furthermore, there are no significant motion outliers from
shadow [52].

2) Parameters: For all traffic video sequences, we have
considered vehicles that a) enter through the left side margin
of the frame, b) move toward the right side margin, and then
c) either exit through the right side margin of the frame
(traffic spot 1; see Fig. 7) or turn right toward the camera
and exit through the bottom side margin of the frame (traf-
fic spot 2; see Fig. 8). We use angular similarity tolerance
(angSimTh) to enforce parallelism and to decide similarity be-
tween lines in the models at different incremental stages. Note
that most of the traffic vehicles are symmetric and indeed have
parallel 3-D ridges that are mapped to 2-D parallel edges.
The threshold angSimTh can be learned from several traffic
videos. For traffic videos taken at spot 2, due to small lengths
of the lines, one pixel error in the 2-D corner location may
magnify the error in angular the directions; hence, we have

GHOSH AND BHANU: INCREMENTAL UNSUPERVISED THREE-DIMENSIONAL VEHICLE MODEL LEARNING FROM VIDEO 437

Fig. 8. Sample frames of vehicular videos taken at traffic spot 2 (best viewed in color).

used angSimTh = 10◦. On the other hand, for traffic videos
taken at spot 1, due to larger lengths of the lines detected,
the estimation error in the 2-D corner location causes much
less error in the angular direction; hence, angSimTh = 5◦

is used. As the distance between the vehicle and the camera
is not known, single-frame-based estimates of the 3-D vertex
locations are valid up to a scale factor. We normalize the
coordinates to make the width of the vehicle to be 30 units
in OCC. This scale remains the same for nearly all vehicles
due to fixed lane width in standard highways. Note that the
selected width of 30 units is arbitrary just to normalize all
types of vehicles to compare their 3-D models, and any other
fixed number could have been used as well. For real traffic
data, vehicle view changes are fast. In exponential forget-
ting in (20) for subvertices (v3D) and their reliability values
(subV rlb), we use exponential forgetting factor Q = 0.7. For
videos from the same traffic spot, all the parameters are held
constant.

3) Experimental Results on Real Traffic Data: The re-
sults for Car1, SUV2, Pickup5, and Jeep3 are shown
in Figs. 9–12, respectively. In each of the figures, we
show sample frames with superimposed features, incremental
models learned until that time, with individual reliability val-
ues color coded, and overall learning curve for the estimated
3-D models. For the rest of the vehicle videos, we show
the final 3-D model learning curves in Fig. 13. Compared
with our earlier work [53], this paper provides the details
of DTL, incremental learning and feature extraction, and
results on several types of vehicles from different camera
locations.

4) Discussion of Results: For vehicles in traffic spot 1 (see
Figs. 9 and 10), estimations of vertices in the distant side
surface are not robust due to near fronto-parallel views of
the vehicles. On the other hand, for vehicles in traffic spot 2

Fig. 9. Traffic spot 1: Car1. (a), (c), and (e) Feature superimposed sample
video frames. (b), (d), and (f) Incremental 3-D model until frames in (a),
(c), and (e), respectively. Lines are color coded by their reliability values.
(g) Color-coding bar. (h) Learning curve of the incremental 3-D model. The
table shows the estimated locations (inside square brackets) and reliabilities
(inside parentheses) of the vertices (best viewed in color).

(see Figs. 11 and 12), as more views are visible in the video,
vertices on the distant side surfaces are robustly estimated.
For traffic spot 2, as view variation is nearer the end of video
sequences, the wire-frame tracking and feature estimations are
not robust; hence, the model learning trends start to drop down
[see Figs. 11(h), 12(h), and 13(d)–(f)]. For traffic spot 1 with
less view changes, this trend is not seen [see Figs. 9(h), 10(h),
and 13(a)–(c)].

438 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

Fig. 10. Traffic spot 1: SUV2. (a), (c), and (e) Feature superimposed sample
video frames. (b), (d), and (f) Incremental 3-D model until frames in (a),
(c), and (e), respectively. Lines are color coded by their reliability values.
(g) Color-coding bar. (h) Learning curve of the incremental 3-D model. The
table shows the estimated locations (inside square brackets) and reliabilities
(inside parentheses) of the vertices (best viewed in color).

Fig. 11. Traffic spot 2: Pickup5. (a), (c), and (e) Feature superimposed sample
video frames. (b), (d), and (f) Incremental 3-D model until frames in (a),
(c), and (e), respectively. Lines are color coded by their reliability values.
(g) Color-coding bar. (h) Learning curve of the incremental 3-D model. The
table shows the estimated locations (inside square brackets) and reliabilities
(inside parentheses) of the vertices (best viewed in color).

Contrary to the expectation, the model reliability is not
monotonically increasing. This is due to the appearance of new
edge segments and vertices that are sometimes noisy and affect
previous estimates and, hence, the reliability values. Note that
wire-frame tracking could handle small occlusion due to the
“stop sign” in video at traffic spot 2 as unoccluded features
correctly tracked the occluded features.

Fig. 12. Traffic spot 2: Jeep3. (a), (c), and (e) Feature superimposed sample
video frames. (b), (d), and (f) Incremental 3-D model until frames in (a),
(c), and (e), respectively. Lines are color coded by their reliability values.
(g) Color-coding bar. (h) Learning curve of the incremental 3-D model. The
table shows the estimated locations (inside square brackets) and reliabilities
(inside parentheses) of the vertices (best viewed in color).

V. CONCLUSION

This paper has described a learning-based incremental
3-D modeling approach for vehicles from traffic videos
captured by a single static uncalibrated camera. The DTL
approach has effectively overcame the foreshortening effect
in perspective projection and mapped 2-D features to 3-D.
Unsupervised learning has utilized the incrementally learned
3-D model itself to gradually improve the estimations of fea-
tures and the model as more video frames are considered.
Note that, by unsupervised learning, we mean that we do not
need a CAD model of the vehicle or any kind of ground-
truth 3-D model. The incremental model estimated until the last
frame is used instead (with exponential forgetting and weighted
history). The methodology considered 3-D model building of
rigid objects where a single generic 3-D model is utilized.
As the method worked quite well with uncalibrated and noisy
data, it has the potential in applications with streaming video
information. Although the focus in this paper has been 3-D
model reconstruction of vehicles from video, we have used a
wire-frame tracking method to extract 2-D vehicle features.
In the future, we plan to develop a sophisticated method for
automated vehicle detection [54] and tracking [44]–[49], [52]
to improve our incremental 3-D reconstruction results. The
3-D models developed in this paper will help other ITSs, such
as freeway merging [55], urban traffic monitoring [56], different
tolling amount in electronic toll booths [57], and providing
automated parking information [58] to a particular entering
vehicle. In future extensions to a wider variety of vehicles,
occlusion from multiple vehicles (similar to [38]), the effect
of reflection and illumination variations (like in [25]), and
adaptation of the exponential forgetting parameter from the
video data itself will be considered. We also plan to integrate
shadow rejection [52] algorithms to make the proposed method
robust to such moving outliers in future work.

GHOSH AND BHANU: INCREMENTAL UNSUPERVISED THREE-DIMENSIONAL VEHICLE MODEL LEARNING FROM VIDEO 439

Fig. 13. Trends of unsupervised learning for other vehicles. Increasing reliability of the estimated incremental 3-D models of traffic spot 1. (a) Car 2.
(b) SUV 1. (c) Van 1, traffic spot 2. (d) Car 12. (e) Car 14. (f) Van 3. Note that for the videos in traffic spot 1, due to fewer views of the vehicles (at closer
distance) and fewer video frames per vehicle, corners in the far Y –Z plane (in OCC) are not visible, and the learning trend could not reach the steady state
within the lengths of the videos. On the other hand, for the videos in traffic spot 2, near the ends of the videos, due to rapid view changes of the turning vehicles,
wire-frame tracking estimates and predicted 3-D vertex locations are less reliable, which causes oscillations and drags down the overall 3-D model reliabilities.
Better camera view angle and tracking methods are expected to improve the results (see text).

REFERENCES
[1] C.-N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas,

V. Loumos, and E. Kayafas, “License plate recognition from still images
and video sequence: A survey,” IEEE Trans. Intell. Transp. Syst., vol. 9,
no. 3, pp. 377–391, Sep. 2008.

[2] R. Isukapalli and R. Greiner, “Efficient car recognition policies,” in Proc.
IEEE Int. Conf. Robot. Autom., 2001, pp. 2134–2139.

[3] G. L. Foresti, V. Murino, and C. Regazzoni, “Vehicle recognition and
tracking from road image sequences,” IEEE Trans. Veh. Technol., vol. 48,
no. 1, pp. 301–318, Jan. 1999.

[4] M. Betke, E. Haritaoglu, and L. S. Davis, “Highway scene analysis in hard
real-time,” in Proc. IEEE Conf. ITS, 1997, pp. 812–817.

[5] S. Nadimi, “Physics-based evolutionary strategies and dynamic sensor
fusion for moving object detection,” Ph.D. dissertation, Dept. Comput.
Sci., Univ. Calif. Riverside, Riverside, CA, Jun. 2003.

[6] M. Kamachi, Y. Wu, and S. Ogata, “A vehicle recognition method robust
against vehicles’ overlapping based on stereo vision,” in Proc. IEEE Conf.
ITS, 1999, pp. 865–869.

[7] M. Kagesawa, S. Ueno, K. Ikeuchi, and H. Kashiwagi, “Local-feature
based vehicle recognition in infra-red images using parallel vision board,”
in Proc. IEEE Int. Conf. Intell. Robots Syst., 1999, pp. 1828–1833.

[8] M. Kagesawa, S. Ueno, K. Ikeuchi, and H. Kashiwagi, “Recognizing
vehicles in infrared images using IMAP parallel vision board,” IEEE
Trans. Intell. Transp. Syst., vol. 2, no. 1, pp. 10–17, Mar. 2001.

[9] T. Ito, K. Yamada, and K. Nishioka, “Preceding vehicle recognition algo-
rithm using fusion of laser radar and image processing,” in Proc. Intell.
Vehicles Symp., 1993, pp. 420–425.

[10] T. R. Lim and A. T. Guntoro, “Car recognition using Gabor filter fea-
ture extraction,” in Proc. Asia-Pacific Conf. Circuits Syst., 2002, vol. 2,
pp. 451–455.

[11] J. B. Kim, C. W. Lee, K. M. Lee, T. S. Yun, and H. J. Kim, “Wavelet-based
vehicle tracking for automatic traffic surveillance,” in Proc. IEEE Reg. 10
Conf. Elect. Electron. Technol., 2001, vol. 1, pp. 313–316.

[12] S.-Y. Park and M. Subbarao, “Pose estimation and integration
for complete 3D model reconstruction,” in Proc. IEEE WACV , 2002,
pp. 143–147.

[13] F. De Felice, T. Gramegna, F. Renna, G. Attolico, and A. Distante, “A
portable system to build 3D models of cultural heritage and to allow their
exploration by blind people,” in Proc. IEEE Int. Workshop Haptic Audio
Visual Environ. Appl., 2005, pp. 1–6.

[14] J. Wu and X. Zhang, “A PCA classifier and its application in
vehicle-detection,” in Proc. Int. Joint Conf. Neural Netw., 2001, vol. 1,
pp. 600–604.

[15] W. Efenberger, Q.-H. Ta, L. Tsinas, and V. Graefe, “Automatic recognition
of vehicles approaching from behind,” in Proc. Intell. Vehicles Symp.,
1992, pp. 57–62.

[16] A. Watanabe, M. Andoh, N. Chujo, and Y. Harata, “Neocognitron capable
of position detection and vehicle recognition,” in Proc. IEEE IJCNN,
1999, vol. 5, pp. 3170–3173.

[17] W. Wu, Q. S. Zhang, and M. Wang, “A method of vehicle classification
using models and neural networks,” in Proc. IEEE VTC, 2001, vol. 4,
pp. 3022–3026.

[18] X. Limin, “Vehicle shape recovery and recognition using generic models,”
in Proc. World Congr. Intell. Control Autom., 2002, pp. 1055–1059.

[19] G. Medioni, I. Cohen, F. Bremond, S. Hongeng, and R. Nevatia, “Event
detection and analysis from video streams,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 23, no. 8, pp. 873–889, Aug. 2001.

[20] Y. Shan, H. S. Sawhney, and R. Kumar, “Unsupervised learning of dis-
criminative edge measures for vehicle matching between non overlapping
cameras,” in Proc. Conf. CVPR, 2005, vol. 1, pp. 894–901.

[21] Y. Guo, S. Hsu, Y. Shan, H. Sawhney, and R. Kumar, “Vehicle fingerprint-
ing for reacquisition & tracking in videos,” in Proc. IEEE Conf. CVPR,
2005, vol. 2, pp. 761–768.

[22] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by
unsupervised scale-invariant learning,” in Proc. IEEE Conf. CVPR, 2003,
vol. 2, pp. 264–271.

[23] G. D. Sullivan, K. D. Baker, A. D. Worrall, C. I. Attwood, and
P. M. Remagnino, “Model-based vehicle detection and classification us-
ing orthographic approximations,” Image Vis. Comput., vol. 15, no. 8,
pp. 649–654, Aug. 1997.

[24] D. Koller, K. Daniilidis, and H.-H. Nagel, “Model-based object tracking
in monocular image sequences of road traffic scenes,” Int. J. Comput. Vis.,
vol. 10, no. 3, pp. 257–281, Jun. 1993.

[25] D. Freedman and M. W. Turek, “Illumination-invariant tracking via
graph-cuts,” in Proc. IEEE Conf. CVPR, 2005, vol. 2, pp. 10–17.

[26] R. Kumar, H. S. Sawhney, and A. R. Hanson, “3D model acquisition from
monocular image sequences,” in Proc. CVPR, 1992, pp. 209–215.

[27] J. M. Ferryman, A. D. Worrall, and S. J. Maybank, “Learning enhanced
3D models for vehicle tracking,” in Proc. Brit. Mach. Vis. Conf., 1998,
pp. 873–882.

[28] P. M. Q. Aguiar and J. M. F. Moura, “Fast 3D modeling from
video,” in Proc. IEEE 3rd Workshop Multimedia Signal Process., 1999,
pp. 289–294.

[29] S. Noronha and R. Nevatia, “Detection and description of buildings from
multiple aerial images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 5, pp. 501–518, May 2001.

440 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

[30] Z. W. Kim and R. Nevatia, “Expandable Bayesian networks for 3D object
description from multiple views and multiple mode inputs,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 25, no. 6, pp. 769–774, Jun. 2003.

[31] P. Claes, D. Vandermeulen, L. Van Gool, and P. Suetens, “Partial surface
integration based on variational implicit functions and surfaces for 3D mod-
el building,” in Proc. Int. Conf. 3D Dig. Imag. Model., 2005, pp. 31–38.

[32] P. K. Allen, A. Troccoli, B. Smith, S. Murray, I. Stamos, and
M. Leordeanu, “New methods for digital modeling of historic sites,” IEEE
Comput. Graph. Appl., vol. 23, no. 6, pp. 32–41, Nov./Dec. 2003.

[33] K. Jankowska, T. Krzyzynski, and J. Santos-Victor, “Fusion of 3D models
constructed on the basis of omnidirectional images,” in Proc. 3rd Int.
Workshop Robot Motion Control, 2002, pp. 363–368.

[34] Y. K. Ho and C. S. Chua, “3D model building,” in Proc. 7th Int. Conf.
Image Process. Appl., 1999, vol. 1, pp. 270–274.

[35] A. R. Várkonyi-Kóczy, “Autonomous 3D model reconstruction and its
intelligent applications in vehicle system dynamics—Part I: Theory,” in
Proc. IEEE Int. Symp. Intell. Syst. Informat., Aug. 24–25, 2007, pp. 13–18.

[36] A. R. Várkonyi-Kóczy, “Autonomous 3D model reconstruction and
its intelligent applications in vehicle system dynamics—Part II:
Applications,” in Proc. IEEE Int. Symp. Intell. Syst. Informat.,
Aug. 24–25, 2007, pp. 19–24.

[37] A. Aulcair, L. Cohen, and N. Vincent, “A robust approach for 3D cars
reconstruction,” in Proc. SCIA, vol. 4522, LNCS, 2007, pp. 183–192.

[38] W. Zhang, Q. M. J. Wu, X. Yang, and X. Fang, “Multilevel framework
to detect and handle vehicle occlusion,” IEEE Trans. Intell. Transp. Syst.,
vol. 9, no. 1, pp. 161–174, Mar. 2008.

[39] N. K. Kanhere and S. T. Birchfield, “Real-time incremental segmentation
and tracking of vehicles at low camera angles using stable features,” IEEE
Trans. Intell. Transp. Syst., vol. 9, no. 1, pp. 148–160, Mar. 2008.

[40] I. Urazghildiiev, R. Ragnarsson, P. Ridderström, A. Rydberg, E. Öjefors,
K. Wallin, P. Enochsson, M. Ericson, and G. Löfqvist, “Vehicle classifi-
cation based on the radar measurement of height profiles,” IEEE Trans.
Intell. Transp. Syst., vol. 8, no. 2, pp. 245–253, Jun. 2007.

[41] W. W. L. Lam, C. C. C. Pang, and N. H. C. Yung, “Vehicle-component
identification based on multiscale textural couriers,” IEEE Trans. Intell.
Transp. Syst., vol. 8, no. 4, pp. 681–694, Dec. 2007.

[42] B. Li, R. Chellappa, Q. Zheng, and S. Z. Der, “Model-based temporal
object verification using video,” IEEE Trans. Image Process., vol. 10,
no. 6, pp. 897–908, Jun. 2001.

[43] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Comput. Surv., vol. 38, no. 4, pp. 1–45, 2006, Art. 13.

[44] A. Ottlik and H.-H. Nagel, “Initialization of model-based vehicle track-
ing in video sequences of inner-city intersections,” Int. J. Comput. Vis.,
vol. 80, no. 2, pp. 211–225, Nov. 2008.

[45] H. Dahlkamp, H.-H. Nagel, A. Ottlik, and P. Reuter, “A framework for
model-based tracking experiments in image sequences,” Int. J. Comput.
Vis., vol. 73, no. 2, pp. 139–157, Jun. 2007.

[46] Z. W. Kim and J. Malik, “Fast vehicle detection with probabilistic feature
grouping and its application to vehicle tracking,” in Proc. IEEE ICCV ,
2003, pp. 524–531.

[47] J. Lou, T. Tan, W. Hu, H. Yang, and S. J. Maybank, “3-D model-
based vehicle tracking,” IEEE Trans. Image Process., vol. 14, no. 10,
pp. 1561–1569, Oct. 2005.

[48] W. Hu, X. Xiao, D. Xie, T. Tan, and S. Maybank, “Traffic accident
prediction using 3-D model-based vehicle tracking,” IEEE Trans. Veh.
Technol., vol. 53, no. 3, pp. 677–694, May 2004.

[49] A. Petrovskaya and S. Thrun, “Model based vehicle detection and
tracking for autonomous urban driving,” Auton. Robots, vol. 26, no. 2/3,
pp. 123–139, Apr. 2009.

[50] M. J. Leotta and J. L. Mundy, “Predicting high resolution image edges
with a generic, adaptive, 3-D vehicle model,” in Proc. IEEE CVPR, 2009,
pp. 1311–1318.

[51] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[52] S. Nadimi and B. Bhanu, “Physical models for moving shadow and object
detection in video,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 8,
pp. 1079–1087, Aug. 2004.

[53] N. Ghosh and B. Bhanu, “Incremental vehicle 3-D modeling from video,”
in Proc. IEEE ICPR, 2006, vol. 3, pp. 272–275.

[54] C.-C. R. Wang and J.-J. J. Lien, “Automatic vehicle detection using local
features—A statistical approach,” IEEE Trans. Intell. Transp. Syst., vol. 9,
no. 1, pp. 83–96, Mar. 2008.

[55] M. Sarvi and M. Kuwahara, “Using ITS to improve the capacity of free-
way merging sections by transferring freight vehicles,” IEEE Trans. Intell.
Transp. Syst., vol. 9, no. 4, pp. 580–588, Dec. 2008.

[56] Q. J. Kong, Z. Li, Y. Chen, and Y. Liu, “An approach to urban traffic
state estimation by fusing multisource information,” IEEE Trans. Intell.
Transp. Syst., vol. 10, no. 3, pp. 499–511, Sep. 2009.

[57] W.-Y. Shieh, T.-H. Wang, Y.-H. Chou, and C.-C. Huang, “Design of
the radiation pattern of infrared short-range communication systems for
electronic-toll-collection applications,” IEEE Trans. Intell. Transp. Syst.,
vol. 9, no. 3, pp. 548–558, Sep. 2008.

[58] H. G. Jung, Y. H. Cho, P. J. Yoon, and J. Kim, “Scanning laser radar-
based target position designation for parking aid system,” IEEE Trans.
Intell. Transp. Syst., vol. 9, no. 3, pp. 406–424, Sep. 2008.

Nirmalya Ghosh received the B.Tech. and M.S.
degrees from the Indian Institute of Technology,
Kharagpur, India, in 1998 and 2002, respectively,
and the Ph.D. degree from the University of
California, Riverside, in 2007, all in eletrical
engineering.

He is currently a Research Associate with the
Department of Pediatrics, Loma Linda University,
Loma Linda, CA. His research interests include
image and video processing, 3-D model building,
medical image processing, intelligent controls and

process monitoring, machine learning, and pattern recognition.

Bir Bhanu (S’72–M’82–SM’87–F’96) received the
S.M. and E.E. degrees in electrical engineering and
computer science from the Massachusetts Institute of
Technology, Cambridge, the Ph.D. degree in electri-
cal engineering from the Image Processing Institute,
University of Southern California, Los Angeles, and
the MBA degree from the University of California,
Irvine.

He is the Distinguished Professor of Electrical
Engineering and serves as the Founding Director
of the interdisciplinary Center for Research in

Intelligent Systems (CRIS) at the University of California at Riverside (UCR).
He was the founding Professor of electrical engineering and served as its first
chair (1991–1994). He has been the Cooperative Professor of Computer Science
and Engineering (since 1991), Bioengineering (since 2008), Mechanical Engi-
neering (since 2008), and the Director of Visualization and Intelligent Systems
Laboratory (since 1991). Previously, he was a Senior Honeywell Fellow with
Honeywell Inc., Minneapolis, MN. He has been with the faculty of the Depart-
ment of Computer Science, University of Utah, Salt Lake City, and with Ford
Aerospace and Communications Corporation, Newport Beach, CA; INRIA-
France; and IBM San Jose Research Laboratory, San Jose, CA. He has been the
principal investigator of various programs for the National Science Foundation,
the Defense Advanced Research Projects Agency (DARPA), the National Aero-
nautics and Space Administration, the Air Force Office of Scientific Research,
the Office of Naval Research, the Army Research Office, and other agencies
and industries in the areas of video networks, video understanding, video
bioinformatics, learning and vision, image understanding, pattern recognition,
target recognition, biometrics, autonomous navigation, image databases, and
machine-vision applications. He is a coauthor of the books Computational
Learning for Adaptive Computer Vision (forthcoming), Human Ear Recogni-
tion by Computer (Springer-Verlag, 2008), Evolutionary Synthesis of Pattern
Recognition Systems (Springer-Verlag, 2005), Computational Algorithms for
Fingerprint Recognition (Kluwer, 2004), Genetic Learning for Adaptive Image
Segmentation (Kluwer, 1994), and Qualitative Motion Understanding (Kluwer,
1992), and the coeditor of the book Computer Vision Beyond the Visible
Spectrum (Springer-Verlag, 2004). He is the holder of 11 U.S. and international
patents. He has more than 350 reviewed technical publications.

Dr. Bhanu is a Fellow of the IEEE Computer Society, the American Associ-
ation for the Advancement of Science, the International Association of Pattern
Recognition, and the International Society for Optical Engineering. He has been
on the editorial board of various journals and has edited special issues of sev-
eral IEEE TRANSACTIONS (PATTERN ANALYSIS AND MACHINE INTELLI-
GENCE; IMAGE PROCESSING; SYSTEMS, MAN AND CYBERNETICS—PART
B; ROBOTICS AND AUTOMATION; INFORMATION FORENSICS AND SECU-
RITY) and other journals. He was the General Chair for the IEEE Conference on
Computer Vision and Pattern Recognition, the IEEE Conference on Advanced
Video and Signal-based Surveillance, the IEEE Workshops on Applications
of Computer Vision, the IEEE Workshops on Learning in Computer Vision
and Pattern Recognition; the Chair for the DARPA Image Understanding
Workshop and the IEEE Workshops on Computer Vision Beyond the Visible
Spectrum and Multi-Modal Biometrics. He was the recipient of best conference
papers and outstanding journal paper awards and the industrial and university
awards for research excellence, outstanding contributions, and team efforts.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

