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Abstract—Most existing work in 3D object recognition in computer vision has

been on recognizing dissimilar objects using a small database. For rapid indexing

and recognition of highly similar objects, this paper proposes a novel method

which combines the feature embedding for the fast retrieval of surface descriptors,

novel similarity measures for correspondence, and a support vector machine-

based learning technique for ranking the hypotheses. The local surface patch

representation is used to find the correspondences between a model-test pair.

Due to its high dimensionality, an embedding algorithm is used that maps the

feature vectors to a low-dimensional space where distance relationships are

preserved. By searching the nearest neighbors in low dimensions, the similarity

between a model-test pair is computed using the novel features. The similarities

for all model-test pairs are ranked using the learning algorithm to generate a short

list of candidate models for verification. The verification is performed by aligning a

model with the test object. The experimental results, on the University of Notre

Dame data set (302 subjects with 604 images) and the University of California at

Riverside data set (155 subjects with 902 images) which contain 3D human ears,

are presented and compared with the geometric hashing technique to

demonstrate the efficiency and effectiveness of the proposed approach.

Index Terms—3D ear indexing, 3D ear recognition, biometrics, ear databases,

feature embedding, rank learning, local surface patch representation.

Ç

1 INTRODUCTION

THREE-DIMENSIONAL object recognition is an important research
field of computer vision. In this paper, we discuss the problem of
efficient recognition of highly similar 3D objects in range images
using indexing techniques. Various techniques have been pro-
posed for 3D object recognition and indexing, for instance,
geometric hashing and surface descriptor matching [4]. However,
most of the research has focused on the recognition of
3D dissimilar objects using a small database. It is desirable to
design a scalable and efficient 3D object recognition system.

In this paper, we present a new framework which handles the

recognition of highly similar 3D objects with a good scalability

performance on large databases. We use our local surface patch

(LSP) descriptor, which has been shown to be more effective and

efficient than the popular spin image representation [6]. We

develop an efficient framework based on the LSP representation,

but any other representation, such as the spin image, can be used.

The core component of an LSP descriptor is a 2D histogram, whose

dimensionality is large (in hundreds). Search of the closest LSPs in

a high-dimensional space is time consuming. Further, most of the

current 3D object recognition systems identify objects by matching

a test object to every model object. This is definitely not efficient.

As a result, the geometric hashing types of techniques are used. We

present an approach that combines the feature embedding for the

fast retrieval of surface descriptors and an SVM-based technique

for ranking the hypotheses to generate a short list for the
verification.

2 RELATED WORK AND CONTRIBUTIONS

2.1 Related Work

Campbell and Flynn [4] provided a survey on 3D free-form object
recognition. There exists a large amount of work on 3D face
recognition in range images, but it does not consider indexing. In
this paper, we are focused on 3D object recognition using indexing
techniques and the related work is summarized in Table 1.
Geometric hashing has been a popular technique used for
generating the hypotheses for 3D object recognition and finger-
print recognition [3], [7], [14], [18], [19]. However, for 3D object
recognition, experiments on a small data set (�20 objects) of
dissimilar objects are performed and the time and space complex-
ity of hashing is polynomial in the number of feature points.

2.2 Contributions

The main contributions of this paper are as follows: 1) A novel
computational framework that integrates feature embedding and
rank learning for efficient recognition of highly similar 3D objects
is presented. This innovative combination with novel features and
associated similarity measures solves the object recognition
problem with the integrated indexing in a systematic way. There
exists no paper in the computer vision field on indexing using
3D data that used highly similar objects like the human faces or the
human ears, as shown in Figs. 3 and 4. The paper [13] used ground
vehicles (sedans, sport utility vehicles, jeeps and wagons, mini-
vans, buses and vans, construction vehicles, trucks and pickups,
and military vehicles). As compared to human ears, these ground
vehicles are quite distinct from each other. Our approach is general
and applicable to other data sets in computer vision. 2) The
grouping algorithm based on geometric constraints clusters the
correspondences and then new features, devised to measure the
similarity of correspondences, are computed to rank hypotheses
using the SVM learning technique. 3) Extensive experiments on
two large public data sets (155 subjects with 902 images and
302 subjects with 604 images) of highly similar 3D objects are
presented and compared with the geometric hashing to show the
effectiveness of the approach.

3 TECHNICAL APPROACH

The system diagram is illustrated in Fig. 1. Given a model object,
we extract the feature points that are defined as either the local
minimum or the local maximum of shape index values. Then, we
calculate LSP descriptors for the feature points and their neighbors.
An “LSP” is defined as the region consisting of a feature point and
its neighbors. The LSP representation includes a feature point, its
surface type (convex/concave/saddle), the centroid of the patch,
and a 2D histogram of shape index values versus dot product of
the surface normal at the feature point and its neighbors [6]. Based
on the surface type of an LSP, an LSP is classified into three types
(convex/concave/saddle). For each type of LSP, we apply a
feature embedding algorithm to embed the original feature vector
(the 2D histogram of an LSP, concatenated as a feature vector) into
a low-dimensional space such that the distance relationships are
preserved. The K-d tree structure is used to perform the search in
the low-dimensional space. Given a test image, we repeat the same
procedures to map LSPs into the corresponding low-dimensional
embedded space based on its surface type. By searching the
nearest neighbors of the embedded feature vectors, we find the
potential corresponding LSPs between a model-test pair. The
initial correspondences are filtered and grouped to remove false
correspondences using geometric constraints. Based on the set of
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correspondences, a set of features is computed to measure the

similarity between a model-test pair. Then, the hypotheses are

ranked using the SVM rank learning algorithm to generate a short

list of candidate models for verification. The parameters of the

SVM classifier are learned on a subset of the database. For

verification, we perform surface matching by applying the Iterative

Closest Point (ICP) algorithm in which the initial transformation is

obtained from the corresponding LSPs.

3.1 Local Surface Patch Representation

We use our LSP representation as the surface descriptor. The LSP

descriptor has been shown to be effective and distinctive for

recognizing 3D similar objects [6]. An LSP is described by a

2D histogram, surface type, and the centroid. The 2D histogram

and surface type are used for comparison of LSPs and the centroid

is used for computing the rigid transformation. The patch encodes

the geometric information of a local surface.
Since the LSP representation is described by a histogram, the

�2-divergence and Earth Movers Distance (EMD) [17] are two

proper distances. However, the �2-divergence is nonmetric and

EMD is computationally expensive, so we choose euclidean

distance to measure the distance between two descriptors.

3.2 Feature Embedding

Given a query feature vector in a high-dimensional space,

searching its closest matches in a large database is time consuming.

Various methods have been proposed to speed up the nearest-
neighbor retrieval, including hashing and tree structures. How-
ever, the complexity of these methods grows exponentially with
the increasing dimensionality. In recent years, a number of
approaches which embed feature vectors from a high-dimensional
space into a low-dimensional space have been proposed [1], [8],
[10], [16], [20], [21], [24]. Multidimensional scaling (MDS) [24], LLE
[16], and ISOMAP [20] cannot handle online query efficiently.
Lipschitz embedding [10], FastMap [8], MetricMap [21], and
BoostMap [1] can handle online query efficiently.

As compared to the above algorithms, which can handle online
query, the FastMap embedding algorithm has the following
attractive advantages: 1) It only needs OðNkÞ distance calculations
for the offline embedding in which N is the number of feature
vectors and k is the dimensionality of the embedded space.
2) Given a query feature vector, it only takes OðkÞ distance
calculations to map it into the k-dimensional space. 3) It makes no
assumption about data distributions.

The FastMap algorithm is used in this paper to map the high-
dimensional LSP feature vectors to a low-dimensional space where
the distance relationships are preserved. For the FastMap algo-
rithm, a key question is how to choose parameter k, the
dimensionality of the embedded space. In this paper, we use a
Stress function to guide the choice of k. The Stress function, a

measure of the goodness-of-fit, is defined as S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd0
ij
�dijÞ2P
ij
d2
ij

r
, where

dij is the distance between objects i and j in the original space and
d0ij is the distance in the embedded space. Once the embedding has
been obtained, the actual nearest-neighbor search is performed in
the low-dimensional embedded space. In our case, the local surface
descriptor has three different types (convex/concave/saddle) based
on the shape index value of the feature point. For each type of local
surface descriptors, the embedding algorithm is run to map the
original feature vector into a low-dimensional feature space and the
K-d tree structure is used to build the index in the low-dimensional
space. Even though some of the LSP descriptors may map to the
same point in the low-dimensional space, it will not affect the
recognition performance since the correspondences are grouped
and filtered out using geometric constraints, as described below.

3.3 Forming Correspondences

Given a test image, we extract feature points and compute the
LSP descriptors. Then, every descriptor is embedded into a
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TABLE 1
Three-Dimensional Object Recognition from Range Images Using Indexing Techniques

Fig. 1. System diagram for indexing and recognition of highly similar 3D objects.
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low-dimensional space based on its types and the similar LSPs are

retrieved efficiently using the K-d tree structure. The embedding

algorithm introduces some errors in that the closest LSPs in the

original space may not be the closest in the embedded space. This

problem is alleviated by returning a set of nearest neighbors and

using the geometric constraints to group the correspondences. The

potential corresponding LSP pairs are filtered and grouped based

on the geometric constraints of (1), which are illustrated in Fig. 2:

dC1 ;C2
¼ jdLit;Ljt � dLim;Ljm j < �1; maxðdLit;Ljt ; dLim;LjmÞ > �2;

ðj�� �0j; j� � �0; j� � �0jÞ < �3;
ð1Þ

where dLit;L
j
t

and dLim;L
j
m

are the euclidean distances between the

centroids of the two surface patches. In the experiments �1, �2, and

�3 are 9.4 mm, 3.7 mm, and 30 degrees, respectively. � is the angle

between the surface normals at the feature points of the two

surface patches ðLit; L
j
tÞ, � is the angle between the surface normal

of the patch Lit and the line connected by the centroids of the two

patches ðLit; L
j
tÞ, and � is the angle between the surface normal of

the patch Ljt and the line connected by the centroids of the two

patches ðLit; L
j
tÞ. �0, �0, and �0 are defined in the same way. The first

distance constraint and the three orientation constraints guarantee

that the two corresponding pairs ðLit; L
j
tÞ and ðLim; LjmÞ are

consistent; the second constraint removes the correspondences

which are too close. We use these geometric constraints to partition

the potential corresponding pairs into different groups. The larger

the group is, the more likely it is that it contains the true

corresponding pairs. Given a list of corresponding pairs, the

grouping procedure for every pair in the list is as follows: Initialize

each pair of a group. For every group, add other pairs to it if they

satisfy (1), repeat the same procedure for every group, sort the

groups in descending order based on the size of groups, and select

the groups on the top of the list.

3.4 Computing Similarities

Once we find the n corresponding pairs fLim; Litg, i ¼ 1; 2; � � � ; n,

where Lit is the ith local surface descriptor in the test object and

Lim is its corresponding descriptor in the model m, we compute

seven novel features proposed in this paper to measure the

similarity between them. The seven features are computed based

on (2). In (2), Nt is the number of local surface descriptors in the

scene, T is the rigid transformation obtained from the n

correspondences which aligns the model and test, � denotes the

dot product, � ¼ 2
nðn�1Þ ; dð�Þ is the euclidean distance between the

two 3D coordinates, fcðLiÞ gets the 3D coordinates of the LSP Li,

and fn gets the surface normal vector of the LSP Li. The ratio

counts the fraction of local surface descriptors in the scene which

find the correspondences, e1 is the registration error, e2 is the

average pairwise distance between the corresponding LSPs, e3

measures the average distance between the surface normal vectors

of a corresponding LSP pair, and e4, e5, and e6 are the pairwise

angle difference between the corresponding LSPs:

ratio ¼ n

Nt
; e1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

fc L
i
tð Þ � T fc Lim

� �� �� �2

s
;

e2 ¼ �
Xn
i¼1

Xn
j¼1;j 6¼i

dðfcðLitÞ; fcðL
j
tÞÞ � d fc Lim

� �
; fc L

j
m

� �� �� �2
;

e3 ¼
1

n

Xn
i¼1

fn Lit
� �

� T fn Lim
� �� �� �

; e4 ¼ �
Xn
i¼1

Xn
j¼1;j 6¼i

�ij � �0ij
��� ���� �

;

e5 ¼ �
Xn
i¼1

Xn
j¼1;j 6¼i

�ij � �0ij
��� ���� �

; e6 ¼ �
Xn
i¼1

Xn
j¼1;j6¼i

�ij � �0ij
��� ���� �

:

ð2Þ

3.5 Ranking the Hypotheses Using SVM

In [13], a posterior probability of a model, given the scene surface
descriptors, model surface descriptors, and the alignment para-

meter, is computed to rank the candidate models. In order to
compute this probability, several unrealistic assumptions are
made, for instance, the uniform distribution of a model, the
independence of the scene surface descriptors, and the Gaussian
distribution of the residuals. These assumptions may not hold in
the real data. In our case, given a test object, we compute a set of

features as a measure of the similarity for every model in the
database. We rank the candidate models in descending order
based on these features without making any assumptions. We
learn the ranking function, which makes use of the two advantages
of SVM, “large-margin” and “kernel trick,” for supporting the
nonlinear ranking [11].

The problem of ranking is formalized as follows: For a
query q and a collection of data D ¼ fd1; d2; � � � ; dmg, we say
di < rdj or ðdi; djÞ 2 r if di is ranked higher than dj for an
ordering r. The ranking function f can be learned from the

training data. Assume the ranking function is linear such that:
ðdi; djÞ 2 fwðqÞ()wT�ðq; diÞ > wT�ðq; djÞ, in which w is a weight
vector adjusted by learning and �ðq; dÞ is a mapping onto features
that describe the match between query q and data d. Here, �ðq; dÞ is
the feature vector which consists of seven novel features that are
used in computing the similarity between q and d. The task of the

learner is to minimize the number of discordant ranking pairs.
Though this problem is known to be NP-hard, the solution is
approximated by introducing nonnegative slack variables 	i;j;k.
Therefore, the problem is converted to the following optimization
problem:

minimize : V ðw; 		Þ ¼ 1

2
wT �wþ C

X
	i;j;k

subject to :

8ðdi; djÞ 2 r�1 : wT�ðq1; diÞ � wT�ðq1; djÞ þ 1� 	i;j;1
� � �

8ðdi; djÞ 2 r�n : wT�ðqn; diÞ � wT�ðqn; djÞ þ 1� 	i;j;n
8i8j8k : 	i;j;k � 0:

ð3Þ

Here, C is a parameter that controls the trade-off between

the margin size and training error. By rearranging the
constraints in (3) as wT ð�ðqk; diÞ � �ðqk; diÞÞ � 1� 	i;j;k, it be-
comes equivalent to that of SVM classification on pairwise
difference vectors ð�ðqk; diÞ � �ðqk; diÞÞ.

In the training stage, given a test object, its corresponding
model should be ranked at the top. For each test-model pair, we
compute the seven features to measure the similarity between
them. We also know the ranking order of the model objects.
Therefore, this training data is input to the SVM learning algorithm
to learn the optimal ranking function. Given a test q, the model

objects can be sorted in descending order based on the value of
rsvðq; diÞ ¼ w�T�ðq; diÞ ¼

P
��k;l�ðqk; dlÞ

T�ðq; diÞ, where ��k;l is de-
rived from the values of the dual variables as the solution.
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Fig. 2. Geometric constraints for grouping LSPs.
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Therefore, the & percent of the models on the top of sorted list are
selected for the verification.

3.6 Verification

After the initial rigid transformation is estimated from the
corresponding pairs between a model-test pair, the ICP algorithm
[2] is run to refine the transformation, which brings the model and
test into the best alignment. Since the ICP algorithm requires that
the test be a subset of the model database, a method to remove
outliers based on the distance distribution is used [25]. Starting
with the initial transformation, the modified ICP algorithm is run
to refine the transformation by minimizing the distance between
the control points of the model and their closest points of the test.
For every model in the short list selected by the SVM ranking
algorithm, the control points are randomly selected and the
modified ICP is applied to those points. For a selected model
object, we repeat the same procedure 15 times and choose the rigid
transformation with the minimum root-mean-square (RMS) error.
The model in the short list of the database with the minimum error
is declared the recognized object.

4 EXPERIMENTAL RESULTS

We apply the proposed framework to recognize highly similar
3D objects. We perform extensive experiments on two publicly
available large 3D ear databases, part of the University of Notre
Dame (UND) data set Collection F (302 subjects with 604 shots) [22]
and the University of California at Riverside (UCR) data set
(155 subjects with 902 shots) [6], to demonstrate the effectiveness of
the approach. The ears are automatically cropped using the
approach described in our paper [6]. All of the times reported in
the following are measured in seconds on a Linux machine with an
AMD Opteron 1.8 GHz processor. Two data sets are used:

. The UND data set.The data collected at UND were
acquired with a Minolta Vivid 910 camera. The camera

outputs a 480 � 640 range image and its registered color
image of the same size. The UND data set that we used is
from Collection F. At the time when we requested the data
from UND, the Collection F contained 302 subjects with
302 time-lapse pairs of images. It is a subset of 415 person
data set as it exists now. Fig. 3 shows side face range
images of three people from this collection.

. The UCR data set. The data collected at UCR were
captured by a Minolta Vivid 300 camera. The camera
outputs a 200 � 200 range image and its registered color
image. There are 155 subjects with a total of 902 shots and
every person has at least four shots with two frontal views.
For each subject, we capture their images on the same day.
There are three different poses in the data: frontal, left, and
right. Fig. 4 shows side face range images of three people.
The pose variations, the earrings, and the hair occlusions
can be seen.

Using these two data sets, we perform the following experi-
ments.

4.1 Dimensionality of the Embedding

As described in Section 3, the Stress S is used to determine the
dimensionality k of the embedded space. We perform experiments
on a subset of the UCR data set and compute the Stress with respect
to different k. For k ¼ 12, 16, 20, and 24, the computed values of
Stress S are 0.351, 0.312, 0.277, and 0.246, respectively. Similar
results are obtained on the UND data set. We observe that S
decreases as k increases. Since the “curse of dimensionality” is a
problem for the K-d tree, we choose k ¼ 24 for the two data sets. In
Table 2, for different values of k, we show the times for searching
the nearest neighbors with and without feature embedding on the
two data sets. We see that the speed for searching the nearest
neighbors in the embedded space is directly proportional to the
dimensionality k. Since we select k ¼ 24, it results in a speedup of
�90 times as compared with using the sequential search in the
original feature space.

4.2 Correspondences Using the Geometric Constraints

Once the LSPs are embedded in the low-dimensional space, the
correspondences are obtained by searching the nearest neighbors
which are filtered by the geometric constraints. Fig. 5 shows one
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Fig. 3. Examples of side face range images of three people in the UND data set

Collection F.

Fig. 4. Examples of side face range images of three people (six shots) in the UCR

data set.

TABLE 2
Time (in Seconds) for Searching Nearest Neighbors with and without Feature Embedding

The first number is on the UND data set (480,000 LSPs) and the second one is on the UCR data set (300,000 LSPs).
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example of recovered correspondences. Fig. 5a shows the feature

point extraction results marked by the red pluses for a test ear and

Fig. 5b shows the recovered correspondences, in which every pair

is represented by the same number superimposed on the test and

model images. We can see that the true corresponding pairs are

obtained by searching the nearest neighbors and using the

geometric constraints. Each group of the correspondences belongs

to either the matched pairs or to the nonmatched pairs. For each of

them, we compute seven features as a measure of similarity

between a pair. The distributions of these features are shown in

Figs. 6 and 7. If a Bayesian classifier is used to classify a group

either from a matched pair or a nonmatched pair, it may not work

well since the feature distributions for matched and nonmatched

pairs have a significant overlap, which can be clearly observed in

Figs. 6 and 7. Instead, the SVM rank learning algorithm is used to

rank the candidate models based on the proposed seven features,

without making any assumption about the feature distributions.

4.3 SVM Rank Learning Algorithm

To evaluate the performance of the approach, each of the two data

sets is divided into disjoint subsets for training and testing. For the

SVM rank learning, we randomly select 30 percent of the subjects

(90 people for the UND data set and 46 people for the UCR data

set) as the training set to learn the parameters. The range images
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Fig. 5. An example of forming groups for corresponding LSPs for a pair of ears.

(a) Feature points marked by + signs extracted from a test ear. (b) Corresponding

pairs obtained by applying the geometric constraints (1). In (b), the model ear is on

the left side.

Fig. 6. UND data set: Distributions of the seven features for the matched and nonmatched pairs. (a) Ratio. (b) e1. (c) e2. (d) e3. (e) e4. (f) e5. (g) e6.

Fig. 7. UCR data set: Distributions of the seven features for the matched and nonmatched pairs. (a) Ratio. (b) e1. (c) e2. (d) e3. (e) e4. (f) e5. (g) e6.
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associated with the rest of the people in the data set are used to
evaluate the performance of the approach. The UCR data set has at
least four images per person and the UND data set has two images
per person. We put two frontal ears of a subject in the gallery set
and the rest of the ear images of the same subject in the probe set
for the UCR data set and we put one image per person into the
gallery and the other one in the probe set for the UND data set.
When training the SVM, the RBF kernel Kða; bÞ ¼ expð�
ja� bj2Þ
is used. The kernel parameter 
 and the trade-off control
parameter C are selected from C 2 f0:001; 0:01; 1; 10; 100g and 
 2
f0:001; 0:01; 0:1; 0:5; 1; 1:5; 4; 16g by minimizing the 10-fold cross-
validation error on the training set. We repeat the random selection
three times and report the average results in the following.

4.4 Indexing and Recognition Results

The SVM rank learning algorithm outputs a ranked list of
H hypotheses. If the corresponding object is in the list of top
H hypotheses, we take the indexing result as correct. The indexing
performance is evaluated by computing the ratio between the
number of correctly indexed objects in the H hypotheses and the
total number of test objects. Let H, the number of hypotheses, be a
fraction & of M which is the number of models in the database, then
we calculate the indexing performance and perform the verifica-
tion for the selected & candidate models. The indexing and
recognition results are listed in Tables 3 and 4. We observe that
94 percent of the objects are correctly indexed with a list of

30 percent of model objects in the database as hypotheses on the

two data sets. The relatively large number of retrieved models is

due to the high degree of similarity among models.
Table 4 shows results under three cases: Case 1 matching a test

with every model object in the database without the feature

embedding, Case 2 matching a test with every model object in the

database with the feature embedding, and Case 3 matching a test

only with the 30 percent candidate models selected from the

ranked list with the feature embedding and SVM rank learning.

We see that the recognition time per test with the feature

embedding and rank learning is reduced by a factor of 6.6 with

the 2.4 percent degradation recognition performance on the UND

data set, and, on the UCR data set, the time is reduced by a factor

of 6 with the degradation of 5.8 percent in the recognition

performance. This could be reduced if we embed the LSPs into a

higher-dimensional space. We notice that the average recognition

time per test is longer on the UND data set than that on the UCR

data set since the UND data set has a much higher resolution

(640 � 480 on the UND data set versus 200 � 200 on the UCR data

set) and it has a larger number of LSPs. From Tables 3 and 4, we

also observe that the indexing and recognition performances on the

UND data set is better since the UCR data set has more pose

variations. For ear recognition results without indexing, the reader

is referred to [6], [22].
Fig. 8 shows three examples of the correctly recognized model-

test ear pairs. Fig. 8a shows the model ear and the test ear before

alignment and Fig. 8b shows the model ear and the test ear after

alignment. We observe that the model ear is aligned well with the

test ear.
During the recognition, some errors are made and the two error

cases are illustrated in Fig. 9. Figs. 9a and 9b show the range

images of two visually similar test and model ears that belong to

different subjects, Fig. 9c shows the true model ear overlaid on the

3D test ear after registration, and Fig. 9d shows the falsely
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TABLE 3
Indexing and Recognition Performance

The first and second brackets in a row are for the UND and UCR data sets. The
first and the second numbers in a bracket are the indexing and recognition
performance.

TABLE 4
Recognition Time (in Seconds) and the Performance on Three Cases

(See Text)

The first number in the parentheses is on the UND data set and the second one is
on the UCR data set.

Fig. 8. UCR data set: three cases of correctly recognized model-test pairs. Each column shows one case. The model ears represented by the red pluses are overlaid on

the test ears represented by the black dots. (a) Model and test ears before alignment. (b) Model and test ears after alignment. In Case 1, the rotation angle is 12:7	 and

the axis is ½0:4566;�0:8561; 0:2423
T . In Case 2, the rotation angle is 20:3	 and the axis is ½�0:0204;�0:9972; 0:0713
T . In Case 3, the rotation angle is 25:4	 and the axis is

½�0:0496; 0:9970;�0:0598
T .
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recognized model ear overlaid on the 3D test ear after alignment.
In Fig. 9d, the RMS error for the falsely recognized ear is smaller

than the error for the correct ear in Fig. 9c. In this figure, we obtain
good alignment between the model and test ears from different
persons since these ears are quite similar in 3D.

4.5 Effect of Feature Embedding

We would like to evaluate the effect of the feature embedding on

the verification performance for the above first two cases (see
Table 4) with sequential matching. Therefore, we perform
experiments on the first two cases and demonstrate the verification

performance using the receiver operating characteristic (ROC)
curve and the equal error rate (EER). The ROC curve is the plot of
genuine acceptance rate (GAR) versus the corresponding false

acceptance rate (FAR). GAR is defined as the percentage of the
occurrences for which an authorized user is correctly accepted by
the system, while FAR is defined as the percentage of the

occurrences for which a nonauthorized user is falsely accepted
by the system. The EER, which indicates the rate at which the false
rejection rate ðFRR ¼ 1�GARÞ and the FAR are equal, is a

threshold independent performance measure. Figs. 10 and 11 show
the verification performance on the first two cases on the UND and
UCR data sets, respectively. We observe that the verification

performance in Case 2 is slightly worse than that in Case 1 (EER
increases from 0.018 to 0.020). From Table 4 and Figs. 10 and 11, we

observe that the time per test with the feature embedding is
reduced with a slight reduction in performance.

4.6 Comparison of the Proposed Approach with
Geometric Hashing

We compare the proposed indexing approach with the popular
GH technique. All of the LSPs extracted from the model objects are
saved into a hash table. Given a test object, we extract feature
points and get LSPs. Then, we calculate the mean and standard
deviation of the shape index values for each LSP and use them to
access the hash table and cast votes to model objects if the
histogram dissimilarity is small and the surface type is the same.
By tallying the votes from the hash table, the model objects are
ranked in the descending order based on the votes they received.
We perform the experiments described in Experiment 4 above on
the same data sets. The comparison results with GH are listed in
Table 5. We observe that the indexing performance of the proposed
approach outperforms the GH on the two data sets. Although the
search time for the nearest neighbors using GH on the UCR data
set is about half of the time using the proposed approach, there is
not much difference (9.6 versus 11.1) in time on the UND data set
since it contains a larger number of LSPs. We also notice that the
GH performs poorly on the UND data set since a larger number of
LSPs in this data set increase the chances of collisions caused by
the keys hashing to the same index.
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Fig. 9. UCR data set: Two cases of incorrectly recognized gallery-probe pairs. Each row shows one case. The model ears represented by the red pluses are overlaid on

the test ears represented by the black dots. (a) Range images of the test ears. (b) Range images of falsely recognized model ears. (c) True model ears after alignment

are overlaid on the test ears. (d) The falsely recognized model ears after alignment are overlaid on the test ears. Note that, for the incorrect matches, the model ears in

column (d) achieve a smaller value of RMS error than the model ears in column (c).

Fig. 10. UND data set: Verification performance on the first two cases in Table 4. Fig. 11. UCR data set: Verification performance on the first two cases in Table 4.
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5 CONCLUSIONS

In this paper, we have presented a general framework for efficient

recognition of highly similar 3D objects which combines the

feature embedding and SVM rank learning techniques. Unlike the

previous work for fast object recognition in range images, we

achieved a sublinear time complexity on the number of models

without making any assumptions about the feature distributions.

Experimental results on two large real data sets containing highly

similar objects in shape confirmed the effectiveness and efficiency

of the proposed framework. Furthermore, a comparison with the

GH shows that the proposed approach performs much better.
Since the ears are highly similar, one has to examine a larger

part of the database (25-30 percent) to achieve a decent recognition

rate. However, the recognition time per test with feature embed-

ding and SVM rank learning can be reduced by a factor of 6.6 and 6

on the UND and UCR data sets, respectively, as shown in our

experiments. Considering the fact that the two data sets used here

contain a large number of highly similar 3D objects, the proposed

approach is promising for general 3D object indexing and

recognition and it is expected to work better and faster since the

LSP features will be more distinct.
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TABLE 5
Comparison of the Proposed Approach with GH in Terms of the Indexing Performance and the Search Time (in Seconds) for the Nearest Neighbors

The first number in the parentheses is on the UND data set and the second one is on the UCR data set.
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