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Unlike	pathway	and	multiaccess	keys,	which	use	
diagnostic	morphological	characters,	NemaScope	
uses	point-and-click	visual	matching	 that	allows	
users	 to	navigate	 through	a	collection	of	 images	
until	images	similar	to	specimens	under	investiga-
tion	are	found.	High-definition	multifocal	images	
of	genera	provide	the	basis	for	the	initial	photos	
and	can	be	viewed	when	additional	morphological	
information	is	needed.	
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Rapid	advances	in	digital	imaging	technol-
ogy,	the	low	cost	of	cameras,	scanners,	and	
storage	devices,	and	the	accessibility	of	the	

Web	make	it	possible	to	collect,	store,	and	access	
huge	 numbers	 of	 images.	 Advances	 in	 areas	 of	
digital	instrumentation,	bioinformatics,	and	cyber-	
infrastructure	are	impressive,	but	much	more	is	yet	
to	come	(MacLeod	2007).	The	morphological	data	
inherent	in	these	images	is	enormous	but	largely	
unexplored	by	novel	techniques.	Overall,	morpho-
logical	data	can	be	tedious	to	collect	and	is	often	
qualitative	rather	than	quantitative.	Beyond	tradi-
tional	data	collection,	geometric	morphometrics,	
based	on	Cartesian	coordinates	of	anatomical	land-
marks,	is	widely	used	in	morphometric	analyses,	
but	these	data	are	laborious	to	collect	and	analyze.	
For	human-directed	measurements,	statistics-based	
toolkits	have	functioned	well,	but	have	drawbacks	
(Zelditch	et	al.	2004).

Automated Classification of Skippers based 
on Parts Representation

Bir Bhanu, Rui Li, John Heraty, and Elizabeth Murray

What	if	unidentified	specimen	images	could	be	
amassed	in	a	database	and	then	correctly	classified	
through	 an	 automated	 system?	 	 This	 technique	
could	help	biologists	identify	specimens	and	lead	
to	searches	with	images	instead	of	using	key	words	
as	query	items.	These	kinds	of	searches	are	part	of	
available	 Automated	 Taxon	 Identification	 (ATI)	
systems	such	as	SPecies	IDentification,	Automated	
(SPIDA),	 Automated	 Bee	 Identification	 System	
(ABIS),	 and	 Digital	 Automated	 Identification	
SYstem	(DAISY),	which	are	being	improved	in	ac-
curacy,	accessibility,	scalability,	and	flexibility	for	
image-based	classification	(reviewed	in	MacLeod	
2007).	 All	 systems	 have	 identification	 accuracy	
levels	of	95%	or	higher	for	certain	data	sets.	

These	ATI	systems	rely	upon	classical	human	
recognition	of	taxonomic	landmarks	or	features	for	
accurate	classification.	Conversely,	the	automated	
classification	system	we	describe	relies	on	abstract	
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recognition	 to	 differentiate	 and	 classify	 images.	
Our	goal	is	to	develop	a	system	that	can	recognize	
features	important	for	grouping	(recognition)	and	
separating	(phylogenetics	and	evolution)	groups	of	
organisms	on	the	basis	of	a	variety	of	images.	

For	 biological	 images,	 local	 patterns/features	
are	 critical	 for	 defining	 different	 species.	 We	
propose	a	patch-based	system	of	analysis	for	the	
groups	of	interest	(Fig.	1).	Compared	with	classic	
pattern	 recognition	 approaches	 based	 on	 global	
features,	 we	 use	 information-rich	 local	 patches.	
This	patch-based	representation	could	be	used	to	
explore	significant	differences	between	images	and	
may	help	to	exploit	more	information	on	species	
classification	and	evolution.

Related Work and Contributions 
In	different	applications	of	pattern	recognition,	

researchers	use	various	features,	which	include	raw	
pixel	intensities,	features	obtained	via	global	image	
transformations,	 and	 local	 features	 such	 as	 edge	
fragments,	 rectangle	 features,	 Gabor	 filter-based	
representations,	and	wavelet	features.	Object	parts	
are	extracted	that	are	rich	in	information	content	
and	use	part-based	representation.	As	an	example,	
Agarwal	 et	 al.	 (2004)	 extracted	 square	 patches	
around	interest	points.	Intensity	pixel	values	are	used	
to	represent	the	patches,	and	the	sparse	representa-
tion	is	used	for	describing	the	image.	The	method	
is	shown	to	have	a	good	performance	in	detecting	
motor	vehicles	(cars)	in	side	view.	Compared	with	
this	 algorithm,	our	 approach	 extracts	patches	of	
various	shapes	that	contain	more	precise	local	infor-
mation.	It	also	uses	a	more	compact	description	for	
the	whole	class.	This	representation	can	help	exploit	
the	significant	visual	difference	between	classes.	

Technical Approach
Patch Extraction – Segmentation with Nor-

malized Cut.	Different	from	classic	interest-point	
search	algorithms,	our	system	uses	segmentation	to	

Fig. 1. System diagram.

extract	information-rich	patches.	A	normalized-cut	
algorithm,	related	to	the	graph	theory	of	grouping,	
is	used.	The	sets	of	points	in	an	arbitrary	feature	
space	 are	 represented	 as	 a	 weighted	 undirected	
graph	G = (V, E),	where	the	nodes	of	 the	graph	
(V)	are	the	points	in	feature	space	and	an	edge	(E)	
is	formed	between	each	pair	of	nodes.	The	weight	
on	each	edge,	w(i,	j)	is	a	function	of	the	similarity	
between	nodes	i and	j.	G can	be	partitioned	into	
two	disjoint	sets,	A, B, A ∪ B=V, A ∩ B=φ,	by	sim-
ply	removing	the	edges	connecting	A	and	B.	The	
degree	of	dissimilarity	between	 these	 two	pieces	
can	be	computed	as	a	total	weight	of	the	edges	that	
have	been	removed.	In	graph	theory	language,	this	
is	called	the	cut, so	that	cut(A,B)=Σu∈A,v∈B w(u,v).	

The	optimal	bipartitioning	of	a	graph	minimizes	
this	cut value.	However,	this	minimum	cut	criteria	
favors	cutting	small	sets	of	isolated	nodes	in	the	
graph.	 So	 Shi	 and	 Malik	 (2000)	 defined	 a	 new	
criterion	called	normalized cut	(Ncut). Solving	the	
minimized	 Ncut	 problem	 reduces	 to	 solving	 the	
generalized	eigenvalue	problem.	The	eigenvector	
corresponding	 to	 the	 second	 smallest	 eigenvalue	
is	 used	 to	 bipartition	 the	 graph.	 If	 the	 current	
partition	 should	be	 subdivided,	 the	 algorithm	 is	
recursively	run	to	make	more	segments.

Patch Classification—Unsupervised 
Learning of a Gaussian Mixture Model

After	 segmentation,	 the	 training	 set	 is	 parti-
tioned	into	patches	and	allocated	to	a	patch	data-
base.	A	feature	vector	of	each	patch	is	extracted,	
and	 the	 patches	 classified	 on	 the	 basis	 of	 these	
features.	We	assume	that	feature	vectors	X ={x1,…,	
xN}	are	samples	of	a	Gaussian	mixture	model.	x1,…,	
xN	 represent	 the	 outcome	 of	 a	 random	 variable	
X.	X	 follows	a	C-component	mixture	model,	as	
shown	in	equation	given	below,	where	θi	is	the	set	
of	parameters	for	the	ith	mixture	component,	and	
αi	is	the	component	weight.	All	αi	must	be	posi-
tive	and	sum	to	1.	We	assume	that	all	components	
follow	a	Gaussian Mixture Model	(GMM),	where	
θi	is	the	mean	vector	ui	and	covariance	matrix	Σi.	

p

When	 C	 is	 known,	 the	 classic	 Expectation 
Maximization (EM)	 algorithm	 could	 be	 used	 to	
estimate	 the	 parameters	 and	 classify	 the	 feature	
vectors.	However,	 in	most	cases,	C	 is	unknown.	
Figueriedo	and	Jain	(2002)	proposed	a	variant	of	
EM.	This	 algorithm	 seamlessly	 integrates	model	
selection	 (finding	 the	 number	 of	 clusters)	 and	
model	estimation	(Gaussian	component	parameter	
estimation)	in	the	iterative	process.	It	incorporates	
a	Minimum	Description Length (MDL)	criterion	
for	model	selection	and	achieves	the	best	estimation	
of	the	mixture	parameters.	

This	algorithm	classifies	the	patches	into	several	
classes	and	learns	a	Bayesian	patch	classifier.

Training Model—Patch Histogram Model
Each	patch	in	the	patch	database	is	labeled	after	

the	Bayesian	patch	classifier	is	found.	We	assume	
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K	patch	classes,	and	therefore	a	K-bin	histogram	
can	be	built	for	each	image.	Patch	histograms	for	
all	images	in	one	class	are	averaged	to	form	a patch 
histogram model.

Testing—Patch Histogram Matching
A	 test	 image	 is	 segmented	 into	patches;	 each	

patch	is	labeled	by	the	patch	classifier,	and	then	a	
patch	histogram	is	built.	The	χ2	distance	between	
this	 patch	 histogram	 and	 the	 patch	 histogram	
model	is	calculated	for	every	class.	Classification	
of	the	test	image	corresponds	to	the	one	with	the	
shortest	distance.	

Experimental Results Dataset 
We	built	an	image	dataset	for	six	species	(see	

Table	1	and	Fig.	2)	of	Hesperiidae	containing	138	
training	images	and	66	test	images.	Some	images	
in	 the	 dataset	 have	 shadows	 and	 missing	 body	
parts.		

Patch Extraction
An	Ncut	algorithm	is	applied	to	each	image,	and	

40	segments	are	found	for	each	image.	An	example	
is	shown	in	Fig.	3:	3a	is	the	original	color	image,	
and	3b	is	the	segmentation	result	superimposed	on	
the	 intensity	 image.	 In	3c,	background	segments	
are	removed.	Using	3c,	the	skipper	is	scaled	to	fill	
the	 image	 frame	and	 resized	 to	150×150	pixels,	
as	 shown	 in	3d.	We	call	 this	normalization.	Ev-
ery	 training	and	 testing	 image	 is	 segmented	and	
normalized.	All	patches	from	the	training	dataset	
are	gathered	 to	 form	a	patch	database	of	2,709	
patches.

Patch Classification
We	extract	six	color	features	(means	and	vari-

ances	 for	hue,	 saturation,	value)	 for	each	patch.	
Thus,	the	patch	database	contains	2,709	6D	feature	
vectors.	The	classification	results	for	the	18	patch	
classes	are	shown	in	Fig.	4.

Build Training Model
We	 build	 a	 patch	 histogram	 for	 each	 image	

and	 average	 all	 the	 histograms	 in	 one	 class	 to	
form	 a	 patch	 histogram	 model.	 The	 six	 patch	
histogram	models	are	shown	in	Fig.	5.	Each	has	
18	bins,	corresponding	to	18	patch	classes.	From	

Fig. 3. Image segmentation and normalization. 

Fig. 4. Classified patches.

Table 1. Skipper dataset.

	
No.

	
Subfamily

	
Species	name

Training		
sample	no.

Testing		
sample	no.

1 Hesperiinae Perichares		philetes 15 5

2 Hesperiinae Vettius	aurelius 18 14

3 Pyrginae Astraptes	SENNOV 47 11

4 Pyrginae Entheus	matho 13 5

5 Pyrginae Phocides	pigmalion 13 5

6 Pyrginae Urbanus	belli 32 26

 

Fig. 2. Sample image of each species.
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the	 histogram,	 we	 can	 recognize	 which	 features	
are	most	significant	for	each	species.	For	example,	
for	species	1,	patches	2,	5,	7	and	16	appear	most	
often,	and	for	species	3,	patches	3	and	10	are	most	
common,	so	we	could	use	these	to	differentiate	the	
two	classes	(species).

Testing Results
We	calculate	 the	χ2	distance	between	 the	 test	

image	 and	 each	 species	 histogram	 model.	 The	
classification	precision	 is	 81.8%	 (54	 species	 out	
of	66	species	are	correctly	classified)	(Fig.	6).	The	
taxa	across	the	diagonal	are	correctly	classified	and	
those	across	the	off-diagonal	misclassified.	

Conclusions
Image	 data	 can	 help	 to	 understand	 species	

evolution	 from	a	new	perspective.	 In	 this	paper,	
we	propose	a	parts-based	(patch-based)	represen-
tation	for	biological	images.	Experimental	results	
show	this	compact	model	as	efficient	and	effective	
for	 representing	 and	 classifying	 skipper	 images.	
The	results	can	be	further	improved	by	exploiting	
symmetry	of	the	shape	and	increasing	the	quality	
of	image	segmentation.

Fig. 7. Misclassified test images with their ground-truth labels (species label before arrow 
is the ground-truth label and after the arrow is the misclassification label assigned by the 
system).
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Fig. 5. Patch histogram model for each species.

Fig. 6. Confusion matrix for the test dataset.


