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Recognition at a Distance in Video
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Abstract—This paper introduces a new video-based recognition
method to recognize noncooperating individuals at a distance in
video who expose side views to the camera. Information from two
biometrics sources, side face and gait, is utilized and integrated
for recognition. For side face, an enhanced side-face image (ESFI),
a higher resolution image compared with the image directly ob-
tained from a single video frame, is constructed, which integrates
face information from multiple video frames. For gait, the gait
energy image (GEI), a spatio-temporal compact representation of
gait in video, is used to characterize human-walking properties.
The features of face and gait are obtained separately using the
principal component analysis and multiple discriminant analysis
combined method from ESFI and GEI, respectively. They are
then integrated at the match score level by using different fusion
strategies. The approach is tested on a database of video sequences,
corresponding to 45 people, which are collected over seven months.
The different fusion methods are compared and analyzed. The
experimental results show that: 1) the idea of constructing ESFI
from multiple frames is promising for human recognition in video,
and better face features are extracted from ESFI compared to
those from the original side-face images (OSFIs); 2) the synchro-
nization of face and gait is not necessary for face template ESFI
and gait template GEI; the synthetic match scores combine infor-
mation from them; and 3) an integrated information from side face
and gait is effective for human recognition in video.

Index Terms—Biometrics fusion, face recognition, gait recog-
nition, video-based recognition.

I. INTRODUCTION

I T HAS BEEN found to be difficult to recognize a person
from arbitrary views when one is walking at a distance. For

optimal performance, a system should use as much information
as possible from the observations. A fusion system, which
combines face and gait cues from video sequences, is a potential
approach to accomplish the task of human recognition. The
general solution to analyze face and gait video data from ar-
bitrary views is to estimate 3-D models. However, the problem
of building reliable 3-D models for nonrigid face, with flexible
neck and articulated human body from low-resolution video
data, remains a hard one. In recent years, integrated face and
gait recognition approaches without resorting to 3-D models
have achieved some success [1]–[4].

Most current gait-recognition algorithms rely on the avail-
ability of the side view of the subject since human gait or the
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style of walking is best exposed when one presents a side view
to the camera. For face recognition, on the other hand, it is
preferred to have frontal views. These conflicting requirements
pose some challenges when one attempts to integrate face and
gait biometrics in real-world applications. In previous fusion
systems [1]–[3], the side view of gait and the frontal view of
a face are used. Kale et al. [1] present a gait-recognition algo-
rithm and a face-recognition algorithm based on sequential im-
portance sampling. The database contains video sequences for
30 subjects walking in a single-camera scenario. For face recog-
nition, only the final segment of the database presents a nearly
frontal view of face, and it is used as the probe. The gallery
consists of static faces for the 30 subjects. Therefore, they
perform still-to-video face recognition. Shakhnarovich et al.
[2], [3] compute an image-based visual hull from a set of
monocular views of multiple cameras. It is then used to render
virtual canonical views for tracking and recognition. They
discuss the issues of cross-modal correlation and score trans-
formations for different modalities, and present the cross-modal
fusion. In their work, four monocular cameras are used to get
both the side view of gait and the frontal view of the face
simultaneously. Recently, Zhou et al. [4] propose a system
which combines cues of face profile and gait silhouette from
the video sequences taken by a single camera. It is based on the
fact that a side view of a face is more likely to be seen than a
frontal view of a face when one exposes the best side view of
the gait to the camera. The data are collected for 14 people with
two video sequences per person. Even though the face profile
in the work of Zhou et al. is used reasonably, it only contains
shape information of the side view of a face and misses the
intensity distribution on the face. In this paper, an innovative
video-based fusion system is proposed, aiming at recognizing
noncooperating individuals at a distance in a single-camera sce-
nario. Information from two biometrics sources, side face and
gait, from the single-camera video sequence, is combined. We
distinguish a side face from a face profile. A face profile refers
to the outline of the shape of a face as seen from the side. A side
face includes not only the outline of the side view of a face, but
also the entire side view of the eye, nose, and mouth, possessing
both shape and intensity information. Therefore, a side face has
more discriminating power for recognition than a face profile.

Table I presents a summary of a related work and compares
it with the work presented in this paper. It is difficult to get
reliable information of a side face directly from a video frame
for a recognition task because of the limited resolution. To
overcome this problem, we construct an enhanced side-face
image (ESFI), a higher resolution image compared with the
image directly obtained from a single video frame, to fuse
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TABLE I
APPROACH FOR INTEGRATING FACE AND GAIT FOR HUMAN RECOGNITION VERSUS THE PREVIOUS WORK

the information of a face from multiple video frames. The
idea relies on the fact that the temporally adjacent frames in
a video sequence, in which one is walking with a side view to
the camera, contain slightly different, but unique information
about a side face. Experiments show that better face features
can be extracted from a constructed ESFI compared to those
from the original side-face images (OSFIs).

The contributions of this paper are as follows.
1) We present a system that integrates side-face and gait

information from video data. The integration of these two
biometrics modalities has not been done before.

2) Both face- and gait-recognition systems integrate infor-
mation over multiple frames in a video sequence for
improved performance. High-resolution face images are
obtained from video, and features from face profile are
used for side-face normalization.

3) The fusion of side-face and gait biometrics is done at
the match score level by obtaining synthetic match scores
and using different fusion schemes. Face features and gait
features are obtained separately using principal compo-
nent analysis (PCA) and multiple discriminant analysis
(MDA) combined method from the ESFI and the gait en-
ergy image (GEI), respectively. The fusion performance
is evaluated using the Q statistic.

4) Various experiments are performed on 45 people with
data from 100 video sequences collected over seven
months. Performance comparisons between different bio-
metrics and different fusion methods are presented.

This paper is organized as follows. Section II presents the
overall technical approach. It explains the construction of ESFI
and describes the generation of GEI. It presents PCA and

MDA combined method for feature extraction using ESFI and
GEI templates. It introduces an approach to generate synthetic
match scores for fusion and provides a description of the clas-
sification method. In Section III, a number of dynamic video
sequences are tested in three experiments using the approach
presented. Experimental results are compared and discussed.
Finally, Section IV concludes this paper.

II. TECHNICAL APPROACH

The overall technical approach is shown in Fig. 1. We first
construct the ESFI as the face template and GEI as the gait tem-
plate from video sequences. During the training procedure, we
perform a component and discriminant analysis separately on
face templates and gait templates obtained from all the training
videos. As a result, transformation matrices and features that
form the feature gallery are obtained. During the recognition
procedure, each testing video is processed to generate both
face templates and gait templates, which are then transformed
by the transformation matrices obtained during the training
procedure to extract face features and gait features, respectively.
These testing features are compared with the gallery features
in the database, and then different fusion strategies are used
to combine the results of face classifier and gait classifier to
improve recognition performance.

A. ESFI Construction

Multiframe resolution enhancement seeks to construct a sin-
gle high-resolution image from multiple low-resolution images.
These low-resolution images must be of the same object, taken
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Fig. 1. Technical approach for integrating side face and gait in video.

from slightly different angles, but not so much as to change the
overall appearance of the object in the image.

We use a simple background subtraction method [5] for
human-body segmentation. A human body is divided into two
parts according to the proportion of its parts [6]: from the
top of the head to the bottom of the chin, and then from the
bottom of the chin to the bottom of the foot. A head tall is
defined as the length from the top of the head to the bottom
of the chin. We regard the adult human body as 7.75 head tall.
Another 0.25 of one head length is added when the height of
hair and the length of the neck are considered. Therefore, the
human head cut from the human body in the image should be
1.25 head tall. The ratio of human head (1.25 head) to human
body (7.75 head) is 0.16. Therefore, we assume that the upper
16% of the segmented human body includes the human head.
In this paper, original low-resolution side-face images are first
localized and then extracted by cutting the upper 16% of the
segmented human body obtained from multiple video frames.

1) Side-Face Image Alignment: Before multiple low-
resolution face images can be fused to construct a high-
resolution image, motion estimates must be computed to
determine pixel displacements between them. It is very impor-
tant since the quality of a high-resolution image relies on the
correctness of low-resolution image alignment. In this paper,
the side-face images are aligned using a two-step procedure.
In the first step, an elastic registration algorithm [7] is used
for motion estimation in low-resolution side-face images. In
the second step, a match statistic is introduced to detect and
discard images that are poorly aligned. Hence, the quality of
constructed high-resolution images can be improved by reject-
ing such errors.

Elastic registration method: Denote f(x, y, t) and
f(x̂, ŷ, t− 1) as the reference side-face image and the image
to be aligned, respectively. Assuming that the image intensities
are conserved at different times, the motion between images is
modeled locally by an affine transform

f(x, y, t) = f(m1x+m2y +m5,m3x+m4y +m6, t− 1)

where m1, m2, m3, and m4 are the linear affine parameters,
and m5 and m6 are the translation parameters. To account for

intensity variations, an explicit change of local contrast and
brightness is incorporated into the affine model. Specifically,
the initial model takes the form

m7f(x, y, t) +m8 = f(m1x+m2y +m5,

m3x+m4y +m6, t− 1) (1)

where m7 and m8 are two new (spatially varying) parameters
that embody a change in contrast and brightness, respectively.
In order to estimate these parameters, the following quadratic
error function is minimized:

E(m) =
∑

x,y∈Ω

[m7f(x, y, t) +m8 − f(m1x+m2y

+ m5,m3x+m4y +m6, t− 1)]2 (2)

where m = (m1,m2, . . . ,m8)T, and Ω denotes a small spatial
neighborhood around (x, y). Since this error function is non-
linear in its unknowns, it cannot be minimized analytically. To
simplify the minimization, this error function is approximated
by using a first-order truncated Taylor series expansion. It now
takes the form below.

E(m) =
∑

x,y∈Ω

(k − cTm)2 (3)

where the scalar k and vector c are given as

k = ft − f + xfx + yfy

c = (xfx yfx xfy yfy fx fy − f − 1)T (4)

where fx(·), fy(·), and ft(·) are the spatial/temporal derivatives
of f(·). Minimization of this error function is accomplished
by differentiating E(m), setting the result equal to zero and
solving for m. The solution is

m =


 ∑

x,y∈Ω

ccT




−1 
 ∑

x,y∈Ω

ck


 . (5)
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Fig. 2. Pseudocode for low-resolution image alignment.

Intensity variations are typically a significant source of error
in differential motion estimation. The addition of the contrast
and brightness terms allows us to accurately register images
in the presence of local intensity variations. Another important
assumption for the model is that the model parameters m vary
smoothly across space. A smoothness constraint on the con-
trast/brightness parameters has the added benefit of avoiding a
degenerate solution where a pure brightness modulation is used
to describe the mapping between images.

To begin, the error function E(m) in (3) is augmented
as follows:

Ê(m) = Eb(m) + Es(m) (6)

where Eb(m) is defined without the summation:

Eb(m) = (k − cTm)2 (7)

with k and c as in (4). The new quadratic error term Es(m)
embodies the smoothness constraint

Es(m) =
8∑

i=1

λi

[(
∂mi

∂x

)2

+
(
∂mi

∂y

)2
]

(8)

where λi is a positive constant that controls the relative weight
given to the smoothness constraint on parameter mi. This error
function is again minimized by differentiating with respect
to the model parameters, setting the result equal to zero and
solving (dÊ(m)/dm)=(dEb(m)/dm)+(dEs(m)/dm)=0.
Since solving for m at each pixel location yields an enormous
linear system which is intractable to solve, an iterative scheme
is used to solve for m [8]. Now, m is expressed as the following
iterative equation:

m(j+1) = (ccT + L)−1
(
ck + Lm(j)

)
(9)

where m is the componentwise average of m over a small
spatial neighborhood, and L is an 8 × 8 diagonal matrix
with diagonal elements λi, and zero off the diagonal. On each
iteration j, m(j) is estimated from the current m(j). The initial
estimate m(0) is estimated from (5).

In this paper, a two-level Gaussian pyramid is constructed
for both the reference side-face image and the side-face image
to be aligned. The global parameters m are first estimated

at each pyramid level as in (5) for the entire image. Then,
the local parameters m are estimated with Ω = 5 × 5 as in
(5) using the least square algorithm. This estimate of m is
used to bootstrap the iterations in (9). At each iteration, λi,
i = 1, . . . , 8, is constant for all m components, and its value
is set to 1011. mi is computed by convolving with the 3 × 3
kernel (1 4 1; 4 0 4; 1 4 1)/20. The number of iterations is
10. This process is repeated at each level of the pyramid. The
values of these parameters are chosen empirically and based
on the previous motion estimation work. Although the contrast
and brightness parameters m7 and m8 are estimated, they are
not used when the side-face image is aligned to the reference
side-face image [7].

Match statistic: A match statistic is designed to indicate
how well a transformed image aligns with the reference image.
It is used to select or reject a low-resolution image during
alignment. If the size of the reference image is M ×N , the
mean-square error (mse) between the aligned image and the
reference image is

E =
M∑

x=1

N∑
y=1

[f(x, y, t) − f(m1x+m2y +m5,m3x

+ m4y +m6, t− 1)]2 /MN.

The match statistic of the aligned image is defined as

S = 1 − E[∑M
x=1

∑N
y=1 f

2(x, y, t)
]
/MN

. (10)

If the value of S is close to 1, the image at time t− 1 is well
aligned with the image at time t. A very low value indicates
misalignment. A perfect match is 1. However, even images that
are very well aligned typically do not achieve 1 due to error in
the transformation and noise. For improving the image quality,
the resolution-enhancement method discussed next works most
effectively when the match values of aligned images are close
to 1. A match threshold is specified, and any aligned image
whose match statistic falls below the threshold will not be
subsequently used.

The pseudocode for the low-resolution image alignment is
shown in Fig. 2. Two alignment results with the match statistic
S are shown in Fig. 3. The reference images and the images
to be aligned are from a video sequence, in which a person is
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Fig. 3. Two examples of alignment results with the match statistic S. (a) Well-aligned image with S = 0.95 and (b) badly aligned image with S = 0.86.
(Left) Reference image. (Middle) Image to be aligned. (Right) Aligned image.

walking and exposes a side view to the camera. The reference
images in Fig. 3(a) and (b) are the same. The time difference
between the image to be aligned in Fig. 3(a) and the reference
image is about 0.033 s, and the time difference between the
image to be aligned in Fig. 3(b) and the reference image is about
0.925 s. The S values are 0.95 and 0.86 for Fig. 3(a) and (b),
respectively. Note the differences in the bottom right part of
each of the aligned images. We specify the match threshold at
0.9. For 28 out of 100 video sequences used in our experiments,
one or two low-resolution images are discarded from each of the
sequences during the image-alignment process.

2) Resolution-Enhancement Algorithm: An iterative method
[9] is used to construct a high-resolution side-face image from
the aligned low-resolution side-face images, whose match
statistics are above the specified threshold.

Imaging model: The imaging process, yielding the ob-
served side-face image sequence fk, is modeled by

fk(m,n) = σk (h (Tk (F (x, y))) + ηk(x, y)) (11)

where
fk sensed image of the tracked side face in the kth frame;
F high-resolution image of the tracked side face in a

desired reconstruction view. Finding F is the objective
of the superresolution algorithm;

Tk 2-D geometric transformation from F to fk, determined
by the 2-D motion parameters m of the tracked side face
in the image plane, which is obtained in Section II-A1;
Tk is assumed to be invertible and does not include the
decrease in the sampling rate between F and fk;

h blurring operator determined by the point spread func-
tion (PSF) of the sensor; we use a circular averaging
filter with radius 2 as PSF;

ηk additive noise term;
σk down sampling operator which digitizes and decimates

the image into pixels and quantizes the resulting pixel
values.

The receptive field (in F ) of a detector whose output is the
pixel fk(m,n) is uniquely defined by its center (x, y) and its
shape. The shape is determined by the region of the blurring
operator h, and by the inverse geometric transformation T−1

k .
Similarly, the center (x, y) is obtained by T−1

k (m,n). The
resolution-enhancement algorithm aims to construct a higher
resolution image F̂ , which approximates F as accurately as
possible and surpasses the visual quality of the observed images
in {fk}.

Algorithm for resolution enhancement: The algorithm
for creating higher resolution images is iterative. Starting with

an initial guess F (0) for the high-resolution side-face image, the
imaging process is simulated to obtain a set of low-resolution
side-face images {f (0)

k }K
k=1 corresponding to the observed

input images {fk}K
k=1. If F (0) were the correct high-resolution

side-face image, then the simulated images {f (0)
k }K

k=1 should
be identical to the observed low-resolution side-face image
{fk}K

k=1. The difference images {fk − f
(0)
k }K

k=1 are used to
improve the initial guess by “back projecting” each value in the
difference images onto its receptive field in F (0), yielding an
improved high-resolution side-face image F (1). This process is
repeated iteratively to minimize the error function

e(n) =

√√√√ 1
K

K∑
k=1

∥∥∥fk − f
(n)
k

∥∥∥2

. (12)

The imaging process of fk at the nth iteration is simulated by

f
(n)
k =

(
Tk(F (n)) ∗ h

)
↓ s (13)

where ↓ s denotes a down sampling operator by a factor s, and
∗ is the convolution operator. The iterative update scheme of the
high-resolution image is expressed by

F (n+1) =F (n) +
1
K

K∑
k=1

T−1
k

(((
fk − f

(n)
k

)
↑ s

)
∗ p

)
(14)

where K is the number of low-resolution side-face images.
↑ s is an up sampling operator by a factor s, and p is a
“back projection” kernel, determined by h. Tk is 2-D motion
parameters. The averaging process reduces the additive noise.

In this paper, we use a sampling factor s = 2. An initial guess
F (0) for the high-resolution image is obtained by up sampling
a low-resolution image using bilinear interpolation. Ten low-
resolution side-face images contribute to a high-resolution side-
face image. The high-resolution image is obtained after ten
iterations (N = 10).

The pseudocode for the high-resolution image construction is
shown in Fig. 4. Fig. 5 shows four examples of low-resolution
face images and reconstructed high-resolution face images. The
resolution of the low-resolution side-face images is 68 × 68,
and the resolution of the high-resolution side-face images is
136 × 136. For comparison, we resize the low-resolution face
images using the bilinear interpolation. From this figure, we can
see that the quality of the reconstructed high-resolution images
is much better than the resized low-resolution images.
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Fig. 4. Pseudocode for high-resolution image construction.

Fig. 5. Four examples of (top) resized low-resolution face images and (bottom) constructed high-resolution face images.

3) Side-Face Normalization: Before feature extraction, all
high-resolution side-face images are normalized. The normal-
ization is based on the locations of nasion, pronasale, and throat
on the face profile. These three fiducial points are identified by
using a curvature-based fiducial extraction method [10]. It is
explained as follows.

We apply a canny edge detector to the side-face image. After
edge linking and thinning, the profile of a side face is extracted
as the leftmost points different from background, which contain
fiducial points like nasion, pronasale, chin, and throat. The
profile consists of a set of points T = (x, y), where x is a row
index and y is a column index of a pixel. Then, a Gaussian
scale-space filter is applied to this 1-D curve to reduce noise.
The convolution between Gaussian kernel g(x, σ) and signal
f(x) depends both on x, the signal’s independent variable, and
on σ, the Gaussian’s standard deviation. It is given by

F (x, σ)=f(x) ⊕ g(x, σ)=

∞∫
−∞

f(u)
1

σ
√

2π
e

−(x−u)2

2σ2 du (15)

where ⊕ denotes convolution with respect to x. The bigger the
σ, the smoother the F (x, σ). The curve T is parameterized as
T (u) = (x(u), y(u)) by the arc length parameter u. An evolved
version of T is Tσ(u) = (X(u, σ), Y (u, σ)), where X(u, σ) =
x(u) ⊕ g(u, σ) and Y (u, σ) = y(u) ⊕ g(u, σ).

Curvature κ on Tσ is computed as

κ(u, σ) =
Xu(u, σ)Yuu(u, σ) −Xuu(u, σ)Yu(u, σ)

(Xu(u, σ)2 + Yu(u, σ)2)1.5 (16)

where the first and second derivatives of X and Y can be
computed as

Xu(u, σ) =x(u) ⊕ gu(u, σ) Xuu(u, σ)=x(u) ⊕ guu(u, σ)

Yu(u, σ) = y(u) ⊕ gu(u, σ) Yuu(u, σ) = y(u) ⊕ guu(u, σ)

where gu(u, σ) and guu(u, σ) are the first derivative and the
second derivative of the Gaussian kernel.

To localize the fiducial points, the curvature of a profile is
first computed at an initial scale, and the locations, where the
local maxima of the absolute values occur, are chosen as corner
candidates. These locations are tracked down, and the fiducial
points are identified at lower scales. The initial scale must be
large enough to remove noise and small enough to retain the
real corners. Our method has advantages, in that, it does not
depend on too many parameters and it does not require any
thresholds. It is also fast and simple. The complete process to
find the fiducial points is described as follows.

Step 1) Compute the curvature of a profile at an initial scale,
find all points with the large absolute curvature
values as corner candidates, and track them down to
lower scales.

Step 2) Regard the rightmost point in the candidate set as the
throat.

Step 3) Regard the pronasale as one of the two leftmost
candidate points in the middle part of the profile
and then identify it using the curvature value around
this point.

Step 4) Assume that there are no candidate points between
pronasale and nasion and identify the first candidate
point above the pronasale as nasion.
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Fig. 6. Extracted face profile and the absolute values of curvature.

Fig. 7. Examples of four people. (a) Resized OSFIs and (b) ESFIs.

Fig. 6 shows the extracted face profile and the absolute
values of curvature. We amplify the absolute values of curvature
20 times in order to show them more clearly. It is clear that
the locations of the fiducial points, including nasion, pronasale,
and throat, have large curvature values. Given a set of high-
resolution images and the three fiducial points of each face
image, affine transformations are computed between the first
image and all the other images. Subsequently, images are
cropped as follows. The highest point is defined as the point
six pixels above nasion; the lowest point is defined as the throat;
the leftmost point is defined as the point four pixels to the left of
pronasion; and the rightmost point is defined as the one, which
is half of the height of the cropped image and is to the right of
the leftmost point. All cropped images are further normalized to
the size of 64 × 32. We call these images as ESFIs. Similarly,
OSFI is a subimage from the normalized version of the low-
resolution side-face image. It is obtained by the similar process
explained above. The size of OSFI is 34 × 18. Examples of
resized OSFIs and ESFIs for four people are shown for compar-
ison in Fig. 7. Clearly, ESFIs have better quality than OSFIs.

B. GEI Construction

In recent years, various techniques have been proposed for
human recognition by gait. These techniques can be divided as

model-based and model-free approaches. Little and Boyd [11]
describe the shape of the human motion with scale-independent
features from moments of the dense optical flow, and recog-
nize individuals by phase vectors estimated from the feature
sequences. Sundaresan et al. [12] propose a hidden-Markov-
models-based framework for individual recognition by gait.
Huang et al. [13] extend the template matching method to gait
recognition by combining the transformation based on canoni-
cal analysis and eigenspace transformation for feature selection.
Sarkar et al. [14] directly measure the similarity between the
testing and training sequences by computing the correlation of
corresponding time-normalized frame pairs. Collins et al. [15]
first extract key frames from a sequence and then compute
the similarity between two sequences using the normalized
correlation. Tao et al. [16] introduce a set of Gabor-based
human-gait appearance models and propose a general tensor
discriminant analysis (GTDA) to solve the carrying status in
gait recognition. GTDA incorporates the information about the
structure of human gait as a constraint. It shows the results only
on human carrying conditions.

In this paper, we focus on a model-free approach that does
not recover a structural model of human motion. Regular human
walking can be considered as a cyclic motion where human mo-
tion repeats at a stable frequency [17]. Therefore, it is possible
to divide the entire gait sequence into cycles. Since the human-
body segmentation is performed on the original human-walking
sequences, we begin with the extracted binary silhouette image
sequences. The silhouette preprocessing includes size normal-
ization (proportionally resizing each silhouette image so that
all silhouettes have the same height) and horizontal alignment
(centering the upper half silhouette part with respect to its
horizontal centroid). In a preprocessed silhouette sequence, the
time series signal of lower half silhouette size from each frame
indicates the gait frequency and phase information. We estimate
the gait frequency and phase by a maximum entropy spectrum
estimation [11] from the time series signal.

Given the preprocessed binary gait silhouette image Bt(x, y)
at time t in a sequence, the gray-level GEI is defined as
follows [17]:

G(x, y) =
1
N

N∑
t=1

Bt(x, y) (17)

where N is the number of frames in the complete cycle(s) of
a silhouette sequence, t is the frame number of the sequence
(moment of time), and x and y are values in the 2-D image
coordinate. Fig. 8 shows the sample silhouette images in a
gait cycle from two people, and the rightmost images are the
corresponding GEIs. As expected, GEI reflects major shapes of
silhouettes and their changes over the gait cycle. It accounts
for human walking at different speeds. It is referred as the
GEI because: 1) each silhouette image is the space-normalized
energy image of human walking at this moment; 2) GEI is the
time-normalized accumulative energy image of human walking
in the complete cycle(s); and 3) a pixel with a higher intensity
value in GEI means that human walking occurs more frequently
at this position (i.e., with higher energy). GEI has several
advantages over the gait representation of a binary silhouette
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Fig. 8. Two examples of normalized and aligned silhouette images in a gait cycle. The rightmost images are the corresponding GEIs.

sequence. GEI is not sensitive to incidental silhouette errors in
individual frames. We perform a controlled experiment where
GEIs of 16 people are constructed with two or three silhouette
images removed. The result demonstrates that with the removal
of frames, there is no effect on gait-recognition performance.
Note that it is different from ESFI construction where the
removal of misaligned images is necessary. Moreover, with
such a 2-D template, we do not need to consider the time
moment of each frame, and the incurred errors can be therefore
minimized.

C. Human Recognition Using ESFI and GEI

1) Feature Learning Using the PCA and MDA Combined
Method: In this paper, a PCA and MDA combined method [18]
is applied to face templates, ESFIs, and gait templates, GEIs,
separately to get a low-dimensional feature representation for
side face and gait. PCA reduces the dimension of the feature
space, and MDA automatically identifies the most discriminat-
ing features.

Let {x1,x2, . . . ,xn}, xk ∈ R
N , be n random vectors rep-

resenting n ESFIs or n GEIs, where N is the dimensional-
ity of the image. The covariance matrix is defined as Σx =
E([x − E(x)][x − E(x)]T), where E(·) is the expectation
operator and T denotes the transpose operation. The covariance
matrix Σx can be factorized into the following form:

Σx = ΦΛΦ (18)

where Φ = [Φ1,Φ2, . . . ,ΦN ] ∈ R
N×N is the orthogonal

eigenvector matrix of Σx; Λ = {Λ1,Λ2, . . . ,ΛN} ∈ R
N×N is

the diagonal eigenvalue matrix of Σx with diagonal elements
in descending order. One important property of PCA is its
optimal signal reconstruction in the sense of minimum mse
when only a subset of principal components is used to represent
the original signal. An immediate application of this property is
the dimensionality reduction

yk = PT
pca [xk − E(x)] , k = 1, . . . , n (19)

where Ppca = [Φ1,Φ2, . . . ,Φm], m ≤ min (n,N). The lower
dimensional vector yk ∈ R

m captures the most expressive fea-
tures of the original data xk.

MDA seeks a transformation matrix W that maximizes the
ratio of the between-class scatter matrix SB to the within-class
scatter matrix SW : J(W) = (|WTSBW|/|WTSWW|).
Suppose that w1,w2, . . . ,wc and n1, n2, . . . , nc denote the
classes and the number of images within each class, respec-
tively, with n = n1 + n2 + · · · + nc and w = w1 ∪ w2 ∪ · · ·
∪ wc. c is the number of classes. The within-class scatter matrix
is SW =

∑c
i=1

∑
y∈wi

(y − Mi)(y − Mi)T and the between-
class scatter matrix is SB =

∑c
i=1 ni(Mi − M)(Mi − M)T,

where Mi = (1/ni)
∑

y∈wi
y and M = (1/n)

∑
y∈w y are

the means of the class i and the grand mean, respectively.
J(W) is maximized when the columns of W are the
generalized eigenvectors of SB and SW corresponding to the
largest generalized eigenvalues in

SBΨi = λiSWΨi. (20)

There are no more than c− 1 nonzero eigenvalues λi and the
corresponding eigenvectors Ψi. The transformed feature vector
is obtained as follows:

zk =PT
mdayk = PT

mdaP
T
pca [xk − E(x)]

=Q [xk − E(x)] , k = 1, . . . , n (21)

where Pmda = [Ψ1,Ψ2, . . . ,Ψr], r ≤ c− 1 and Q is the over-
all transformation matrix. We can choose r to perform feature
selection and dimensionality reduction. The choice of the range
of PCA and the dimension of MDA reflects the energy require-
ment. We choose the threshold of 99% in eigenvalue energy for
eigenvector selection. The lower dimensional vector zk ∈ R

r

captures the most expressive and discriminating features of the
original data xk.

2) Recognition by Integrating ESFI and GEI: We train face
templates and gait templates separately for feature extraction.
Let {F} be the set of all training face templates and Qf be the
corresponding face transformation matrix. Let {G} be the set
of all training gait templates and Qg be the corresponding gait
transformation matrix. Let {fi} be the set of face feature vectors
belonging to the ith class and {gi} be the set of gait feature
vectors belonging to the ith class, i = 1, 2, . . . , c, where c is
the number of classes in the gallery. Given a testing video P ,
we follow the procedure explained in Sections II-A and B to
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generate the set of testing face templates {F̂P } and the set of
testing gait templates {ĜP }, respectively. The corresponding
face and gait feature vector sets are obtained using (21) as
follows:

{f̂P} : f̂Pj =QfF̂Pj , j = 1, 2, . . . , nf

{ĝP} : ĝPj =QgĜPj , j = 1, 2, . . . , ng (22)

where nf is the number of testing face templates and ng is the
number of testing gait templates.

The Euclidean distance is used as the similarity measure for
the face classifier and the gait classifier. From the classifier
based on face templates, we obtain

D(f̂Pj , fi)=‖f̂Pj−mfi‖, i=1, 2, . . . , c j=1, 2, . . . , nf

(23)

where mfi = (1/Nfi)
∑

f∈fi f , i = 1, 2, . . . , c, is the prototype
of class i for face and Nfi is the number of face feature vectors
in {fi}. We assign the testing video P to class k if

D(f̂P , fk) =
c

min
i=1

nf

min
j=1

D(f̂Pj , fi). (24)

From the classifier based on gait templates, we obtain

D(ĝPj ,gi)=‖ĝPj − mgi‖, i=1, 2, . . . , c j=1, 2, . . . , ng

(25)

where mgi = (1/Ngi)
∑

g∈gi
g, i = 1, 2, . . . , c, is the proto-

type of class i for gait and Ngi is the number of gait feature
vectors in {gi}. We assign the testing video P to class k if

D(ĝP ,gk) =
c

min
i=1

ng

min
j=1

D(ĝPj ,gi). (26)

Before a combination of the results of face classifier and the
results of gait classifier, it is necessary to map the distances
obtained from the different classifiers to the same range of
values. We use an exponential transformation here. Given that
the distance for a probe X are D1,D2, . . . , Dc, we obtain the
normalized match scores as

S ′
i =

exp(−Di)∑c
i=1 exp(−Di)

, i = 1, 2, . . . , c. (27)

After normalization, the match scores of face templates and
the match scores of gait templates from the same class are
fused using different fusion methods. Since face and gait can
be regraded as two independent biometrics in our scenario,
synchronization is totally unnecessary for them. To take advan-
tage of information for a walking person in video, we use all
the possible combinations of face match scores and gait match
scores to generate new match scores, which encode information
from both face and gait. The new match scores are called
synthetic match scores, defined as

St

(
{f̂P , ĝP }, {fl,gl}

)
= R

{
S ′(f̂Pi, fl), S ′(ĝPj ,gl)

}
i = 1, 2, . . . , nf j = 1, 2, . . . , ng

t = 1, 2, . . . , nfng l = 1, 2, . . . , c (28)

where S ′ means the normalized match score of the corre-
sponding distance D and R{, } means a fusion method. In this
paper, we use Sum, Product, and Max rules. It is reasonable to
generate synthetic match scores using (28), since the ESFI is
built from multiple video frames and GEI is a compact spatio-
temporal representation of gait in video. In this paper, we use
two face match scores and two gait match scores to generate
four synthetic match scores for one person from each video.

Distances representing dissimilarity become match scores
representing similarity by using (27); therefore, the unknown
person would be classified to the class for which the synthetic
match score is the largest. We assign the testing video P to
class k if

S
(
{f̂P , ĝP }, {fk,gk}

)
=

c
max
l=1

nfng
max
t=1

St

(
{f̂P , ĝP }, {fl,gl}

)
.

(29)

Since we obtain more than one synthetic match scores after
fusion for one testing video sequence, (29) means that the un-
known person is classified to the class which gets the maximum
synthetic match score out of all the synthetic match scores
corresponding to all the classes.

III. EXPERIMENTAL RESULTS

A. Experiments and Parameters

We perform three experiments to test our approach. The data
are obtained by a Sony DCR-VX1000 digital video camera
recorder operating at 30 frames/s. We collect video sequences
of 45 people who are walking in outdoor condition and expose
a side view to the camera. The number of sequences per person
varies from two to three. The resolution of each frame is
720 × 480. The distance between people and the video camera
is about 10 ft. Each video sequence includes only one person.

In Experiment 1, the data consist of 90 video sequences of
45 people. Each person has two video sequences, one for
training and the other one for testing. For the same person,
the clothes are the same in the training sequence and the
testing sequence. In Experiment 2, the data consist of 90 video
sequences of 45 people. Each person has two video sequences,
one for training and the other one for testing. For 10 of
45 people, the clothes are different in the training sequences and
the testing sequences, and the data are collected on two separate
days about one month apart. For the other 35 people, the clothes
are the same in the training sequences and the testing sequences.
In Experiment 3, we use the same data as in Experiment 2.
The difference between them is that we use different number of
ESFIs and GEIs in the testing procedure. Table II summarizes
the key features of the three experiments.

For gait, we obtain two complete walking cycles from a
video sequence according to the gait frequency and gait phase.
Each walking cycle includes about 20 frames. We construct
two GEIs corresponding to two walking cycles from one video
sequence. The resolution of each GEI is 300 × 200. For face,
we also construct two high-resolution side-face images from
one video sequence. The match threshold (the match statistic S)
for aligned low-resolution side-face images is specified at 0.9.
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TABLE II
SUMMARY OF THREE EXPERIMENTS

Each high-resolution side-face image is built from ten low-
resolution side-face images that are extracted from adjacent
video frames. The resolution of low-resolution side-face images
is 68 × 68, and the resolution of the reconstructed high-
resolution side-face images is 136 × 136. After normalization
(see Section II-A3), the resolution of ESFI is 64 × 32. Recog-
nition performance is used to evaluate our method in the three
experiments. For a video sequence, it is defined as the ratio of
the number of the correctly recognized people to the number of
all the people. To analyze the performance of our method more
insightfully, we provide the error index that gives the numbers
of misclassified sequences. For comparison, we also show the
performance using face features from the OSFIs to demonstrate
the performance improvement by using the constructed ESFIs.
The resolution of OSFI is 34 × 18. The procedures of feature
extraction, synthetic match score generation, and classification
are the same for ESFI and OSFI.

Experiment 1: Figs. 9 and 10 show the data used in Experi-
ment 1. We name 45 people from 1 to 45, and each person has
two video sequences. For each of the 45 people, some frames of
the training sequence and the testing sequence are shown. Since
we construct two GEIs and two ESFIs for each sequence, we
totally obtain 90 ESFIs and 90 GEIs as the gallery and another
90 ESFIs and 90 GEIs as the probe. After fusion, as explained
in Section II-C2, four synthetic match scores are generated
based on two face match scores and two gait match scores for
one person from each video. Totally, we have 180 synthetic
match scores corresponding to 45 people in the gallery and
180 synthetic match scores corresponding to 45 people in the
probe. The dimensionality of PCA features is 72 for GEI, 56
for ESFI, and 65 for OSFI. After MDA, the dimensionality of
features is 17 for GEI, 35 for ESFI, and 25 for OSFI. Table III
shows the performance of single biometrics. Table IV shows
the performance of fusion using different combination rules.
In Tables III and IV, the error index gives the number of
misclassified sequences.

From Table III, we can see that 73.3% people are correctly
recognized by OSFI (12 errors out of 45 people), 91.1% people
are correctly recognized by ESFI (four errors out of 45 people),
and 93.3% people are correctly recognized by GEI (three errors
out of 45 people). Among the three people misclassified by
GEI, the person (26) has a backpack in the testing sequence,
but not in the training sequence. The difference causes the
body shape to change enough to make a recognition error. The

changes of the walking style for the other two people (4, 15)
also cause the recognition errors. We show GEIs of the people
who are misclassified by the gait classifier in Fig. 11. Among
the performances of fusion methods in Table IV, Max rule
based on ESFI and GEI performs the best at the recognition rate
of 97.8% (one error out of 45 people), followed by Sum rule and
Product rule at 95.6% (two errors out of 45 people). For fusion
based on OSFI and GEI, the best performance is achieved by
Product rule at 95.6%, followed by Sum rule and Max rule at
93.3%. It is clear that the fusion based on ESFI and GEI always
has better performance than the fusion based on OSFI and GEI,
except using Product rule where they are the same. Fig. 12
shows the people (video sequences) misclassified by integrating
ESFI and GEI using different fusion rules. It is clear that the
only person (26) who is misclassified by the Max rule has a
backpack in the testing sequence that does not occur in the
training sequence. This difference makes both the gait classifier
and the fused classifier unable to recognize him.

Experiment 2: The data used in Experiment 2 are obtained
by substituting ten testing video sequences of Experiment 1
with the other ten testing video sequences shown in Fig. 13.
We use the same order as in Experiment 1 to name 45 people.
Compared with the data in Experiment 1, the ten replaced
testing video sequences are {1, 2, 5, 6, 8, 9, 10, 13, 19, 40}.
Therefore, 10 out of 45 people in Experiment 2 wear different
clothes in the training sequences and the testing sequences, and
for each of the ten people, two video sequences are collected
on two separate days about one month apart. We construct two
GEIs and two ESFIs from each sequence, so we totally obtain
90 ESFIs and 90 GEIs as the gallery and another 90 ESFIs and
90 GEIs as the probe for 45 people. After fusion, as explained in
Section II-C2, we have 180 synthetic match scores correspond-
ing to 45 people in the gallery and 180 synthetic match scores
corresponding to 45 people in the probe. The dimensionality
of PCA features is 72 for GEI, 56 for ESFI, and 65 for OSFI.
After MDA, the dimensionality of features is 17 for GEI,
35 for ESFI, and 25 for OSFI. Table V shows the performance
of individual biometrics. Table VI shows the performance of
fusion using different combination rules. In Tables V and VI,
the error index gives the number of misclassified sequence.

From Table V, we can see that 64.4% people are correctly
recognized by OSFI (16 errors out of 45 people), 80% people
are correctly recognized by ESFI (nine errors out of 45 people),
and 82.2% people are correctly recognized by GEI (eight errors
out of 45 people). Compared with the performance of individual
biometrics in Experiment 1 in Table III, all the performance of
individual biometrics in Experiment 2 decreases to some extent.
It is reasonable since gait recognition based on GEI is not only
affected by the walking style of a person, but also by the shape
of a human body. Changing clothes causes the difference in
the shape of the training sequence and the testing sequence
for the same person. Also, the lighting condition and the color
of clothes cause human-body segmentation to be inaccurate.
Fig. 14 shows GEIs of the people who are misclassified by the
gait classifier. Meanwhile, since the face is sensitive to noise
as well as facial expressions, the different condition in the two
video sequences that are taken one month apart brings face-
recognition errors. Fig. 15 shows ESFIs of the people who
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Fig. 9. Data in Experiment 1. Video sequences from number 1 to 23.

are misclassified by the face classifier. Note the differences in
the training and testing GEIs and ESFIs in Figs. 14 and 15.
From Table VI, we can see that when ESFI and GEI are fused

using appropriate fusion methods, the performance improves.
Specifically, Sum rule and Max rule based on ESFI and GEI
perform the best at the recognition rate of 88.9% (five errors
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Fig. 10. Data in Experiment 1. Video sequences from number 24 to 45.

out of 45 people), and the performance improvement is 6.7%
compared with that of the gait classifier. Fig. 16 shows the
people (video sequences) misclassified by integrating ESFI and
GEI using different fusion rules. For fusion based on OSFI
and GEI, there is no improvement compared with the indi-

vidual classifier. These results demonstrate the importance of
constructing the ESFI. From ESFI, we can extract face features
with more discriminating power. Therefore, the performance
improvement is still achieved when ESFI instead of OSFI is
used for fusion.
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TABLE III
EXPERIMENT 1: SINGLE-BIOMETRICS PERFORMANCE AND ERROR INDEX OF INDIVIDUALS

TABLE IV
EXPERIMENT 1: FUSED BIOMETRICS PERFORMANCE AND ERROR INDEX OF INDIVIDUALS

Fig. 11. Experiment 1: GEIs of people misclassified by the gait classifier (see Table III). For each person, two GEIs of the training video sequence and two GEIs
of the testing video sequence are shown for comparison.

Fig. 12. Experiment 1: People misclassified by the integrated classifier based on ESFI and GEI using different fusion rules (see Table IV). For each person, one
frame of the training video sequence and one frame of the testing video sequence are shown for comparison. (a) Errors by Sum rule. (b) Errors by Product rule.
(c) Errors by Max rule.

Experiment 3: The data used in Experiment 3 are the same as
the data used in Experiment 2. Experiment 3 studies the effect
of using the different number of GEIs and ESFIs in the testing
procedure. In the gallery, we still use two GEIs and two ESFIs
for each of the 45 people. While for the probe, we vary the
number of GEIs and ESFIs for each person. Table VII shows
the performance of fusion by different combination rules when

the different number of GEIs and ESFIs is used. Except the
performance of fusion using two GEIs and two ESFIs, which
is obtained from Experiment 2, the other performance is the
average value on different combination of GEI and ESFI.

From Table VII, it is clear that if more GEIs and ESFIs are
used, i.e., more information in video sequences is used, bet-
ter performance can be achieved. Meanwhile, this experiment
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Fig. 13. Data in Experiment 2: Ten updated video sequences {1, 2, 5, 6, 8, 9, 10, 13, 19, 40}.

TABLE V
EXPERIMENT 2: SINGLE-BIOMETRICS PERFORMANCE AND ERROR INDEX OF INDIVIDUALS

TABLE VI
EXPERIMENT 2: FUSED BIOMETRICS PERFORMANCE AND ERROR INDEX OF INDIVIDUALS

shows that our method to generate the maximum number of
synthetic match scores is a reasonable way to use all the
available information.

B. Performance Analysis

1) Discussion on Experiments: From Experiments 1 and 2,
when ESFI and GEI are used, we can see that Max rule

always achieves the best fusion performance, Sum rule has the
same fusion performance as the Max rule in Experiment 2,
and Product rule does not achieve performance improvement
after fusion.

When we compare Experiment 1 and Experiment 2, it can
be seen that the recognition rates in Experiment 2 decrease
compared with Experiment 1, since 10 out of 45 people change
their clothes in the testing sequences. As explained before, gait
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Fig. 14. Experiment 2: GEIs of people misclassified by the gait classifier (see Table V). For each person, two GEIs of the training video sequence and two GEIs
of the testing video sequence are shown for comparison.

Fig. 15. Experiment 2: ESFIs of people misclassified by the face classifier (see Table V). For each person, two ESFIs of the training video sequence and two
ESFIs of the testing video sequence are shown for comparison.

recognition based on GEI is not only affected by the walking
style of a person, but also by the shape of human body. Face
is sensitive to noise as well as facial expressions; therefore,
the different condition in the training sequence and the testing
sequence affects its reliability. All these factors contribute to
recognition errors of the individual classifiers. However, the
fusion system based on side face and gait overcomes this

problem to some extent. In Experiment 2, there are some people
who are not correctly recognized by gait, but when side-face
information is integrated, the recognition rate is improved. It
is because the clothes or the walking style of these people
are much different between the training and testing video se-
quences, so the gait classifier cannot recognize them correctly.
However, the side face of these people does not change so
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Fig. 16. Experiment 2: People misclassified by the integrated classifier based on ESFI and GEI using different fusion rules (see Table VI). For each person, one
frame of the training video sequence and one frame of the testing video sequence are shown for comparison.

TABLE VII
EXPERIMENT 3: FUSED BIOMETRICS PERFORMANCE USING DIFFERENT NUMBER OF GEI AND ESFI

much in the training and testing sequences, and it brings useful
information for the fusion system and corrects some errors.
Specifically, in Experiment 2, the gait classifier misclassifies
eight people {2, 5, 6, 8, 13, 19, 26, 40}, and after fusion with
ESFI using Sum rule or Max rule, three errors {19, 26, 40}
are corrected. On the other hand, since the face classifier is
comparatively sensitive to the variation of facial expressions
and noise, it cannot get a good recognition rate by itself. When
the gait information is combined, the better performance is
achieved.

Our experimental results demonstrate that the fusion system
using side face and gait has the potential since face and gait are
two complementary biometrics. Compared with gait, face im-
ages are readily interpretable by humans, which allows people
to confirm whether a computer system is functioning correctly,
but the appearance of a face depends on many factors: incident
illumination, head pose, facial expressions, moustache/beard,
eyeglasses, cosmetics, hair style, weight gain/loss, aging, and
so forth. Although gait images can be easily acquired from

a distance, the gait recognition is affected by clothes, shoes,
carrying status, and specific physical condition of an individual.
The fusion system is relatively more robust compared with the
system that uses only one biometrics. For example, face recog-
nition is more sensitive to low lighting conditions, whereas gait
is more reliable under these conditions. Similarly, when the
walker is carrying a heavy baggage or he/she is injured, the
captured face information may contribute more than gait.

In Experiment 1, the gait recognition misclassifies three peo-
ple and achieves the recognition rate of 93.3%. The fusion by
using Max rule performs best at 97.8% with one error, followed
by Sum rule and Product rule at 95.6% with two errors. It may
seem that the improvement is not significant in the number of
people because of the size of our database. In Experiment 2,
where ten of the subjects wear different clothes in the training
data and the testing data, the performance of gait recognition
decreases to 82.2% with eight errors. For this more difficult
database, there is a larger improvement in fusion performance.
The Sum rule and Max rule have an improvement of 6.7%
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with the fusion performance at 88.9% with five errors. These
results demonstrate the effectiveness of integrating ESFI and
GEI for human recognition since the proposed fusion system
still achieves improvement, even a larger improvement for the
more challenging database.

The experimental results in Experiments 1 and 2 clearly
demonstrate the importance of constructing ESFI. From ESFI,
we can extract face features with more discriminating power.
Therefore, better performance is achieved when ESFI instead of
OSFI is used for both of the individual classifier and the fused
classifier. For example, in Experiment 2, OSFI has bad perfor-
mance at 64.4%, but ESFI still achieves the recognition rate of
80%. Fusion based on ESFI and GEI achieves the performance
improvement of 6.7% (from 82.2% to 88.9%) using the Sum
rule and Max rule, while there is no performance improvement
by fusion of OSFI and GEI using any combination rule (see
Table VI). Furthermore, from Experiment 3, we can see that
more information means better performance. This also explains
why the ESFI always performs better than the OSFI, since ESFI
fuses information from multiple frames.

These results also demonstrate that the match score fusion
cannot rectify the misclassification achieved by both of the
face classifier and the gait classifier. People misclassified by
the individual classifiers are likely to be classified correctly
after fusion on the condition that there is at least one of the
two classifiers that works correctly. For example, in Table V,
there are four misclassified people {2, 5, 8, 13} overlapped
between classification using ESFI only and GEI only. There
are eight misclassified people {2, 5, 6, 8, 13, 19, 26, 40}
overlapped between classification using OSFI only and GEI
only. From Table VI, we can see that the set of misclassified
people {2, 5, 8, 13} is always a subset of the error indexes
when ESFI and GEI are combined by any fusion rule. Similarly,
the set of misclassified people {2, 5, 6, 8, 13, 19, 26, 40} is
always a subset of the error indexes when OSFI and GEI are
combined by any fusion rule. It is also the reason that the fusion
performance based on OSFI and GEI can never be better than
the performance of the gait classifier.

2) Performance Characterization Statistic Q: For the per-
formance improvement by fusion compared with the individual
biometrics, if the different classifiers misclassify features for
the same person, we do not expect as much improvement as
in the case where they complement each other [19]. We use a
statistic to demonstrate this point. There are several methods to
assess the interrelationships between the classifiers in a classi-
fier ensemble [20], [21]. Given classifiers i and j corresponding
to feature vectors fi and fj from the same person, respectively,
we compute the Q statistic

Qi,j =
N11N00 −N01N10

N11N00 +N01N10
(30)

where N00 is the number of misclassification by both i and j;
N11 is the number of correct classification by both i and j;
N10 and N01 are the numbers of misclassification by i
or j, but not by both. It can be easily verified that −1 ≤ Q ≤ 1.
The Q-value can be considered as a correlation measure be-
tween the classifier decisions. The best combination is the

TABLE VIII
EXPERIMENT 1: Q STATISTICS

TABLE IX
EXPERIMENT 2: Q STATISTICS

one that minimizes the value of Q statistic, which means that
the smaller the Q-value is, the greater is the potential for
performance improvement by fusion.

Tables VIII and IX show the Q-values in Experiments 1
and 2. N01 is defined as the number of people misclassified by
the face classifier but correctly recognized by the gait classifier.
N10 is defined as the number of people misclassified by the
gait classifier but correctly recognized by the face classifier.
The Q-value based on OSFI and GEI in Experiment 2 is 1,
which means that the performance improvement by fusion will
be zero. The experimental results in Table VI verify it. The
Q-value based on OSFI and GEI in Experiment 1 is 0.1698,
which explains the fact that the fusion performance increases
to 95.6% when Product rule is used (see Table IV). When we
compare the Q-values between the fusion of OSFI and GEI
and fusion of ESFI and GEI, the results show that the Q-values
based on ESFI and GEI are always smaller than the Q-values
based on OSFI and GEI in both of the experiments. It indicates
that the expected performance improvement using ESFI and
GEI is higher than using OSFI and GEI. For example, in
Experiment 1, the Q-value based on fusion of ESFI and GEI is
−1 and theQ-value based on fusion of OSFI and GEI is 0.1698.
The maximum performance increase is 4.5% (from 93.3% to
97.8%) by fusion of ESFI and GEI, while the performance
increase by fusion of OSFI and GEI is only 2.3% (from 93.3%
to 95.6%). On the other hand, even though the Q-value of
0.7297 for fusion performance of ESFI and GEI is smaller than
the Q-value of 1 for fusion performance of OSFI and GEI in
Experiment 2, it is positive and relatively high. This indicates
that many times the gait classifier and the face classifier are both
performing correct classification or incorrect classification for
the same person. In spite of this, our video-based fusion method
using ESFI and GEI always achieves better performance than
either of the individual classifier when the appropriate fusion
strategy is used.

To visualize the correlation of the face classifier and the
gait classifier, we plot the normalized match scores of the two
classifiers. Fig. 17 shows the correlation of the normalized
match scores of the two classifiers in Experiment 1. We can
see that the match scores of the gait classifier using GEI and the
face classifier using OSFI are more correlated than the match
scores of the gait classifier using GEI and the face classifier
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Fig. 17. Experiment 1: (a) Correlation of the normalized match scores of the two classifiers using GEI and OSFI. (b) Correlation of the normalized match scores
of the two classifiers using GEI and ESFI.

Fig. 18. Experiment 2: (a) Correlation of the normalized match scores of the two classifiers using GEI and OSFI. (b) Correlation of the normalized match scores
of the two classifiers using GEI and ESFI.

using ESFI. It is consistent with the Q statistics in Table VIII.
Fig. 18 shows the correlation of the normalized match scores of
the two classifiers in Experiment 2. We can see that the match
scores of the gait classifier using GEI and the face classifier
using OSFI are more correlated than the match scores of the
gait classifier using GEI and the face classifier using ESFI. It
is also consistent with the Q statistics in Table IX. When we
compare Figs. 17 and 18, it is clear that the correlation of the
match scores of the two classifiers in Experiment 2 is higher
than in Experiment 1.

IV. CONCLUSION

This paper proposes an innovative video-based fusion sys-
tem, which aims at recognizing noncooperating individuals at
a distance in a single-camera scenario. Information from two

biometrics sources, side face, and gait, is combined using dif-
ferent fusion methods. Side face includes the entire side views
of eye, nose, and mouth, possessing both shape information
and intensity information. Therefore, it has a more discrimi-
nating power for recognition than face profile. To overcome the
problem of a limited resolution of a side face at a distance in
video, we use ESFI, a higher resolution image constructed from
multiple video frames instead of OSFI directly obtained from a
single video frame, as the face template for an individual. ESFI
serves as a better face template than OSFI since it generates
more discriminating face features. Synthetic match scores are
generated for fusion based on the characteristics of face and
gait. The experimental results show that the integration of
information from side face and gait is effective for individual
recognition in video. The performance improvement is always
archived when appropriate fusion rules, such as the Max rule
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and the Sum rule, are used to integrate information from ESFI
and GEI. Consequently, our fusion system is relatively robust
compared with the system using only one biometrics in the
same scenario.

However, our system has some limitations: 1) gait recogni-
tion based on GEI is affected by the shape of human body
to some extent; 2) the side face contains less information
compared with the frontal face, and it is sensitive to noise as
well as facial expressions; and 3) the system has been tested
on limited video sequences. In spite of these limitations, we
demonstrate that the integration of face and gait can achieve
better recognition performance at a distance in video. Although
our database is not very big, it is of reasonable size (45 people
with 100 video sequences) and shows how the proposed ideas
work. In the future, we will collect more data to evaluate the
performance of our system. We will also focus on problems that
are not addressed in this paper. We will use multiple cameras to
capture different views of a person. To get face images with
high quality, we will actively track the whole human body first
and then zoom in to get better face images. We will speed up
the process of ESFI and GEI constructions so that our system
can operate in real time.
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