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Abstract—In this paper, we use genetic programming (GP) to synthesize
composite operators and composite features from combinations of primi-
tive operations and primitive features for object detection. The motivation
for using GP is to overcome the human experts’ limitations of focusing only
on conventional combinations of primitive image processing operations in
the feature synthesis. GP attempts many unconventional combinations that
in some cases yield exceptionally good results. To improve the efficiency of
GP and prevent its well-known code bloat problem without imposing se-
vere restriction on the GP search, we design a new fitness function based
on minimum description length principle to incorporate both the pixel la-
beling error and the size of a composite operator into the fitness evaluation
process. To further improve the efficiency of GP, smart crossover, smart
mutation and a public library ideas are incorporated to identify and keep
the effective components of composite operators. Our experiments, which
are performed on selected training regions of a training image to reduce the
training time, show that compared to normal GP, our GP algorithm finds
effective composite operators more quickly and the learned composite op-
erators can be applied to the whole training image and other similar testing
images. Also, compared to a traditional region-of-interest extraction algo-
rithm, the composite operators learned by GP are more effective and effi-
cient for object detection.

Index Terms—Feature learning, minimum description length (MDL),
primitive feature image, primitive operator, synthetic aperture radar
(SAR) image.

I. INTRODUCTION

Automatic object detection is one of the important steps in image
processing and computer vision [1]. The major task of object detec-
tion is to locate objects in images and extract the regions containing
them. The extracted regions are called regions-of-interest (ROIs). The
quality of object detection is highly dependent on the effectiveness of
the features used in detection. Finding or designing appropriate features
to capture the characteristics of objects and building the feature-based
representation of objects are the key to the success of detection. How-
ever, there are many features that can be extracted from images. What
are the appropriate features or how to synthesize features useful for de-
tection from the features extracted from images? Usually, it is not easy
for human experts to figure out a set of features to characterize complex
objects, and sometimes, simple features (also called primitive features
in this paper) directly extracted from images may not be effective in
object detection. At this point, synthesizing composite features, useful
for the current detection task, from those simple ones becomes imper-
ative.

In this paper, we use genetic programming (GP) to synthesize com-
posite features, which are the output of composite operators, to per-
form object detection. Genetic algorithms (GAs) and GP are search
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algorithms inspired by the mechanism used by nature to evolve species
[2], [3]. GP is an extension of GA. GA manipulates a population of
individuals represented by fixed-length bit strings through selection,
crossover, and mutation operations. In GP, individuals can be much
more complicated structures such as trees and graphs. Thus, to apply
GA and GP, we must decide how to represent potential solutions by
bit strings or complicated tree or graph structures, define the fitness of
individuals and the crossover and mutation operations on them so that
GA and GP can evaluate and adapt individuals to improve their perfor-
mance. In this paper, composite operators are individuals in the popu-
lation and they are represented by binary trees whose internal nodes
are the pre-specified primitive operators and the leaf nodes are the
primitive feature images (generated from the original image). It can
be viewed as a way of combining primitive operations on images. The
basic approach is to apply a composite operator on primitive feature im-
ages, segment the composite operator output, called composite feature
image, to obtain a binary image and use the binary image to extract the
region containing the object from the original image. We design a new
fitness function based on the minimum description length (MDL) prin-
ciple [4] that incorporates the size of composite operators into the fit-
ness evaluation process to address the well-known code bloat problem
of GP without imposing severe restriction on the GP search. Our exper-
iments show that the MDL-based fitness function balances the above
two conflicting factors well. To improve the efficiency of GP, we also
design smart crossover, smart mutation and a public library to identify
and keep the effective components of composite operators based on the
analysis of the interactions among the nodes of composite operators.

II. MOTIVATION AND RELATED RESEARCH

GP has a well-known code bloat problem in which the sizes of in-
dividuals become larger and larger. In traditional GP with individuals
represented by tree structures, a crossover operation is performed by
swapping randomly selected subtrees between parents, and one of mu-
tation operations is performed by substituting a randomly selected sub-
tree with another randomly generated tree. The size of one offspring
(i.e., the number of nodes in the binary tree representing the offspring)
may be greater than both parents if crossover and mutation are per-
formed in this simple way. Thus, as GP proceeds, the size of composite
operators in the population becomes larger and larger. It takes a long
time to execute a large composite operator, greatly reducing the speed
of GP. Also, large-size composite operators may overfit training data
by approximating the noise in images. Finally, large composite opera-
tors take up a lot of computer memory.

Usually in traditional GP, a limit on the size of composite operators
is established when performing crossover or mutation. If the size of
an offspring exceeds the size limit, the crossover or mutation opera-
tion is performed again until the sizes of both offspring are within the
limit. Although this simple method prevents the code bloat, the size
limit may greatly restrict the search performed by GP, since after ran-
domly selecting a crossover point in one composite operator, GP cannot
select some nodes of the other composite operator as crossover point
in order to guarantee that both offspring do not exceed the size limit.
Also, the size limit restricts the size of trees used to replace subtrees in
mutation. However, the composite operator space is huge, and to find
effective composite operators, GP must search extensively. Restricting
the search greatly reduces the efficiency of GP, making it less likely
to find good composite operators. Finally, with little knowledge of the
composite operator space and the object characteristics, it is very dif-
ficult to determine the appropriate size limit to prevent code bloat and
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TABLE I
SEVENTEEN PRIMITIVE OPERATORS

overfitting while still allowing the resulting composite operators to cap-
ture the characteristics of objects. One may suggest that let GP perform
crossover twice and keep the offspring of smaller size in each crossover.
This method can enforce the size limit and prevent the size of offspring
composite operators from growing large. Suppose the sizes of parents
are s1 and s2, the sizes of offspring are s3 and s4, and s1 < s2 and
s3 < s4. There are three possibilities: if s2 < s4, then s1 > s3; if
s2 = s4, then s1 = s3; if s2 > s4, then s1 < s3 and s3 < s4 < s2.
It can be seen that the smaller offspring has a size smaller than that of
the larger parent. So after two crossovers and keeping the smaller off-
spring in each crossover, the size of two offspring cannot exceed the
size limit and gradually the size of individuals in the population will be
reduced. But GP now only searches the space of these small composite
operators, which may not capture the characteristics of the objects to
be detected. To avoid restricting the GP search without causing code
bloat is the key to the success of GP search.

The minimum description length principle has been used in com-
puter vision, pattern recognition and machine learning to find simple
effective solutions and avoid overfitting in the training. Quinlan and
Rivest [5] explore the use of the minimum description length principle
for the construction of decision trees. The MDL principle defines the
best decision tree to be the one that yields the minimum combined
length of the decision tree itself plus the description of the misclas-
sified data items. Their experimental results show that MDL provides
a unified framework for both growing and pruning the decision tree,
and these trees seem to compare favorably with those created by other
techniques such as C4.5 algorithm. Gao et al. [6] use MDL principle
to determine the best model granularity such as the sampling interval
between the adjacent sampled points along the curve of Chinese charac-
ters or the number of nodes in the hidden layer of a three layer feed-for-
ward neural network. Their experiments show that in these two quite
different settings the theoretical value determined using the MDL prin-
ciple coincides with the best value found experimentally. In this paper, a
fitness function is designed based on MDL principle [4] to take the size
of a composite operator into the fitness evaluation process. According
to MDL principle, large composite operators effective on training re-
gions may not have good fitness and will be culled out by selection,
taking off the restriction on crossover and mutation while preventing
composite operators from growing too large.

III. TECHNICAL APPROACH

To apply GP to evolve composite operators, we must define: primi-
tive features and primitive operators to form composite operators, the
fitness function to evaluate synthesized composite operators, the search

operators such as selection, crossover and mutation to explore the com-
posite operator space, the parameters and the termination criterion to
control the GP run.

1) The Set of Primitive Features and Primitive Operators: There
are sixteen primitive features [7]: the first one is the original image
(PFIM0); the others are mean (PFIM1-3), deviation (PFIM4-6), max-
imum (PFIM7-9), minimum (PFIM10-12), and median (PFIM13-15)
images obtained by applying templates of sizes 3� 3, 5� 5, and 7� 7,
respectively. These images are the input to composite operators. GP
determines which operations are applied on them and how to combine
the results. Note that although primitive features are very simple in this
paper, in general, they can be any complicated features. They are prim-
itive [7] compared to the composite features synthesized by GP.

A primitive operator takes one or two input images, performs a prim-
itive operation on them and stores the result in a resultant image. Cur-
rently, 17 primitive operators are used by GP to compose composite op-
erators, as shown in Table I, where A and B are input images of the same
size and c is a constant stored in some primitive operators. For operators
such as ADD, SUB, MUL, etc. that take two images as input, the oper-
ations are performed on a pixel-by-pixel basis. In the operators MAX,
MIN, MED, MEAN, and STDV, 3� 3, 5� 5, and 7� 7 neighborhood
are used with equal probability. The neighborhood size of these oper-
ators in a node of a binary tree is determined randomly by GP when
the binary tree is initialized, and this neighborhood does not change
until the primitive operator the node contains is changed or the node
itself is deleted in the later mutation operations. Thus, two nodes may
contain the same primitive operator with different sized neighborhoods
in two different composite operators. Even in the same composite op-
erator, the same primitive operator may appear more than once with
different size of neighborhood as a result of initialization, crossover,
and mutation during the evolutionary process. It is worth noting that
the primitive features and primitive operators are basic, easy to com-
pute and domain-independent (not specific to a kind of imagery), so
our method can be applied to a wide variety of images.

2) MDL-Based Fitness Function: To address the well-known code
bloat problem and prevent severe restriction on the GP search, a MDL-
based fitness function is designed to incorporate the composite oper-
ator size into the fitness evaluation. The fitness of a composite operator
is defined as the sum of the description length of the composite oper-
ator and the description length of the segmented training regions with
respect to this composite operator as a predictor for the label (object
or background) of each pixel in the training regions. Both lengths are
measured in bits. The tradeoff between the simplicity and complexity
of composite operators is that if the size of a composite operator is too
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small, it may not capture the characteristics of objects, on the other
hand, if the size is too large, the composite operator may overfit the
training image, thus performing poorly on the unseen testing images.
With the MDL-based fitness function, the composite operator with the
minimum combined description lengths of both the operator itself and
image-to-operator error is the best composite operator and may per-
form best on unseen testing images. Based on the MDL principle, we
propose the following fitness function for GP to maximize:

F(COi) = �(r � log(Npo)� Size(COi) + (1� r)

�(no + nb)� (log(Wim) + log(Him))) (1)

where COi is the ith composite operator in the population, Npo is
the number of primitive operators (including primitive feature images)
available for GP to synthesize composite operators, Size(COi) is the
size of the composite operator which is the number of nodes in the bi-
nary tree representing it, no and nb are the number of object and back-
ground pixels misclassified, Wim and Him are the width and height of
the training image and r is a parameter determining the relative impor-
tance of the composite operator size and the detection rate, which is
0.7 in this paper. The value 0.7 is selected experimentally. In our ex-
periments, we find 0.7 is an appropriate value to balance the composite
operator size and its performance. Note that the first term (log(Npo)�
Size(COi)) of the fitness function is the description length of a com-
posite operator. The description length is the number of bits needed to
encode a composite operator, and the size of a composite operator is
the number of nodes in the composite operator. Note that the descrip-
tion length is linearly related to the size of a composite operator.

We now give a brief explanation of this fitness function. Suppose a
sender and a receiver both have the training image and the training re-
gions and they agree in advance that the composite operators can be
use to locate the object in the image, that is, to determine the label
(object or background) of each pixel in the training regions. But only
the sender knows the ground truth (the label of each pixel). Now, the
sender wants to tell the receiver which pixels belong to the object and
which pixels belong to the background. One simple approach to do
this is to send a bit sequence of n (n is the number of pixels in the
training regions) bits where 1 represents the object and 0 represents
background, provided that both the sender and receiver know the order
of the training regions and they agree that the pixels are scanned in
the top-to-bottom and left-to-right fashion. However, n is usually very
large, thus the communication burden is very heavy. To reduce the
number of bits to be transmitted, the sender can send the composite
operator to the receiver. Then the receiver applies the composite oper-
ator on the training regions to get segmented training regions. When
sending the composite operator, the sender can send its nodes in a
pre-traversal order. Given Npo primitive operators (including primi-
tive features), log(Npo) bits are needed to encode each node. Thus the
cost of sending composite operator is log(Npo) � Size(COi). How-
ever, some pixels may be misclassified by the composite operator. In
order for the receiver to get the truth, the sender needs to tell the re-
ceiver which pixels are misclassified. Each pixel is represented by its
coordinate in the image. If the width and height of the image are Wim

and Him respectively, then log(Wim) + log(Him) bits are needed to
encode each pixel. Thus, the cost of sending the misclassified pixels is
(no+nb)�(log(Wim)+log(Him)). If the composite operator is very
effective and its size is not too large, then only few pixels are misclas-
sified and the number of bits to send is much smaller than n.

We define the goodness of a composite operator COi as

goodness(COi) = n(G \G0)=n(G [G0) (2)

where G and G0 are foregrounds in the ground-truth image and the re-
sultant image of a composite operator respectively andn(X) denote the

number of pixels within the intersection of region X and the training
region(s). It measures how the ground-truth and the detection results
are overlapped. If G is the output image of another node, rather than
the root node, of a composite operator, it measures the goodness of
that particular node. Note that a composite operator has a higher fit-
ness than another composite operator does not necessarily mean that
it has a higher goodness, since its size may be much smaller than the
composite operator with lower fitness.

3) Operators, Parameters, and Termination: The selection oper-
ation selects composite operators from the current population. We
use tournament selection with tournament size 5. In traditional GP, a
crossover or mutation point is randomly selected in each of two parent
composite operators, leading to the disruption of effective components
in the later stage of GP search. In this paper, smart crossover and smart
mutation are used to identify effective components of a composite
operator so as to prevent disrupting them by carefully choosing the
crossover and mutation points. The identified effective components
are kept in a public library of size 100 for later reuse. If the library is
full, a new effective component replaces the worst one in the library
if the new one is better than the replaced one. To perform smart
crossover and smart mutation [8], GP evaluates the performance
(goodness) of the internal nodes of a composite operator and analyzes
the interactions between them. All this information is used to identify
effective components so as to carefully select crossover and mutation
points to avoid breaking them. For the details on smart crossover and
smart mutation, the reader is referred to [8].

In this paper, the traditional GP with random operators (random
crossover and random mutation) and driven by goodness function de-
fined in (2) is called normal GP. The GP with smart operators (smart
crossover and smart mutation) and driven by MDL-based fitness func-
tion proposed in this paper is called smart GP.

The key parameters are the population size M, the number of genera-
tion N, the crossover rate, the mutation rate and the goodness threshold.
The GP stops whenever it finishes the pre-specified number of gener-
ations or whenever the best composite operator in the population has
goodness value greater than the goodness threshold.

4) Steady-State and Generational Genetic Programming: As
in [8], generational genetic programming and steady-state genetic
programming are used to synthesize composite operators. The major
difference is that in generational GP, the offspring from crossover
are kept aside and do not participate in the crossover operations on
the current population. The current population is not changed during
crossover. But in steady-state GP, the offspring from crossover are
evaluated and replace the worst individuals in the population imme-
diately, and they participate in the following crossover operations on
the current population. In smart GP, MDL-based fitness function is
used, both smart and random GP operators are invoked and a public
library is set up to store the effective components. Also, we adopt an
elitism replacement method to keep the best composite operator from
generation to generation.

IV. EXPERIMENTAL RESULTS

Various experiments were performed to test the efficacy of genetic
programming in extracting regions of interest from real synthetic aper-
ture radar (SAR) images. The size of SAR images is 128� 128, except
the tank SAR images whose size is 80� 80. In this paper, GP is ap-
plied only to a region or regions carefully selected from the training
image to generate the composite operators. The generated composite
operator is then applied to the whole training image and some other
testing images to evaluate it. The advantage of performing training on
a small selected region is that it can greatly reduce the training time,
making it practical for the GP system to be used as a subsystem of
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TABLE II
PERFORMANCE OF THE BEST COMPOSITE OPERATORS FROM NORMAL AND SMART GPs

Fig. 1. Training SAR image containing road. (a) Paved road versus field. (b) Ground-truth. (c) Feature image (normal GP). (d) ROI extracted (normal GP).
(e) Feature image (smart GP). (f) ROI extracted (smart GP).

other larger learning systems so as to improve the efficiency of GP by
adapting its parameters dynamically. In each experiment, both normal
GP and smart GP are applied. For the purpose of objective comparison,
we invoke normal GP and smart GP with the same set of parameters
and training regions ten times and report the results from the run in
which GP finds the best composite operator among the best composite
operators found in all ten runs. The parameters in the experiments are:
population size (100), the number of generations (70), the goodness
threshold value (1.0), the crossover rate (0.6), the mutation rate (0.05),
and the segmentation threshold (0). For normal GP, the size limit of a
composite operator is 30. Table II shows the performance of the best
composite operators learned by GP on various SAR images.

In the following experiments, there is only one training image. Using
a single training image may cause overfitting sometimes. For example,
in the experiments with a complicated SAR image containing road,
lake, field, tree, and shadow in [7], it is difficult for the learned program
to extract road if only one image containing a road is used as the training
image, since road and lake look somewhat similar in SAR images. To
learn composite operators to discriminate lake and road, another image
containing both road and lake is added in the training set.

1) Road Extraction: The training image contains horizontal paved
road and field, as shown in Fig. 1(a). Two training regions are from (5,
19) to (50, 119) and from (82, 48) to (126, 124). Fig. 1(b) shows the
ground-truth. The white region corresponds to the road and only the
portion of ground-truth in the training regions is used in the fitness eval-
uation. Fig. 1(c)–(f) shows the performance of the learned composite
operators on the training image. Testing images contain unpaved road
versus field and vertical paved road versus grass, as shown in Fig. 2(a)
and (f). Fig. 2 also shows the performance of the learned composite
operators on testing images.

The best composite operator has 18 nodes and its depth is 13. It has
three leaf nodes all containing 7� 7 median image, which contains less

speckles due to the median filter’s effectiveness in eliminating speckle
noise. It is shown in Fig. 3, where PFIM15 represents 7� 7 median
image. Compared to smart GP, the best composite operator from normal
GP has 27 nodes and its depth is 16. Note that the best composite oper-
ator shown in Fig. 3 does not use MED primitive operator. MED is very
effective in speckle noise elimination, so it is frequently selected by GP
to build effective composite operators, but Fig. 3 shows that without it,
GP may still generate effective composite operators. The interaction
among primitive operators and primitive features is very complicated,
indicating the high complexity of the search space structure and the
difficulty of the feature synthesis process. Also, some combinations of
other primitive operators and primitive feature images may approxi-
mate the function of MED primitive operator.

Fig. 4 shows how the average fitness of the best composite
operators and the average fitness of the populations over all ten runs
change as GP proceeds. In Fig. 4, the population fitness (average
fitness of all the composite operators in the population) is much
lower than that of the best composite operator even at the end
of GP search. It is reasonable, since the selection of crossover
points is not restricted by a hard size limit on composite operators.
The difference between the sizes of the composite operators in the
population is large and so are their fitness values. The population
fitness is not important since only the best composite operator is
used in testing. If GP finds one effective composite operator, the GP
learning is successful. The large difference between the fitness of the
best composite operator and that of the population indicates that the
diversity of the population is maintained during GP search, which is
very helpful in preventing premature convergence.

2) Lake Extraction: Two SAR images contain lake. The training
image, shown in Fig. 5(a), contains a lake and field, and the testing
image, shown in Fig. 6(a) contains a lake and grass. The training region
is from (85, 85) to (127, 127). Fig. 5(b) shows the ground-truth.
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Fig. 2. Testing SAR images containing road. (a) Unpaved road versus field. (b) Feature image (normal GP). (c) ROI extracted (normal GP). (d) Feature image
(smart GP). (e) ROI extracted (smart GP). (f) Paved road versus grass. (g) Feature image (normal GP). (h) ROI extracted (normal GP). (i) Feature image (smart
GP). (j) ROI extracted (smart GP).

Fig. 3. Learned composite operator tree in LISP notation.

Fig. 4. Fitness versus generation (road versus field).

3) River Extraction: Two SAR images contain river and field.
Fig. 7(a) and (b) shows the original training image and the ground-truth
provided by the user. The white region in Fig. 7(b) corresponds to the
river to be extracted. The training regions are from (68, 31) to (126,
103) and from (2, 8) to (28, 74). The testing SAR image is shown in
Fig. 8(a). In both training and testing images, there are some islands
along with the river around them that are not extracted, since these
islands look similar to the field.

The best composite operator has 13 nodes and its depth is 12. It has
one leaf node containing 3� 3 mean image. Among 13 nodes, seven
of them are MED operators effective in eliminating speckle noises. It
is shown in Fig. 9. Compared to smart GP, the best composite operator
from normal GP has 30 nodes with depth 23. Fig. 10 shows how the av-
erage fitness of the best composite operators and the average fitness of
the populations over all ten runs change as GP searches the composite
operator space.

4) Field Extraction: Two SAR images contain field and grass.
Fig. 11(a) and (b) show the original training image and the
ground-truth. The training regions are from (17, 3) to (75, 61)
and from (79, 62) to (124, 122). Extracting field from a SAR image
containing field and grass is considered as the most difficult task
among the five experiments, since the grass and field are similar to
each other and some small regions between grasses are actually fields.

From the experiment on the field extraction (see Figs. 11 and 12), we
can see that the proposed algorithm has difficulties in dealing with tex-
tures and objects with great variations, and the reason lies in the fact
that only domain-independent primitive operators and primitive fea-
tures are used in the feature synthesis. The predefined primitive opera-
tors and primitive features have a significant impact on the performance
of the learned composite operators. If texture-specific primitive opera-
tors and primitive features are included for the synthesis of composite
operators, GP may learn effective composite operators in dealing with
textures.

5) Tank Extraction: GP is applied to synthesize features for the de-
tection of T72 tanks. Their SAR images are taken under different de-
pression and azimuth angles and the size of the images is 80� 80. The
training image contains T72 tank under depression angle 17� and az-
imuth angle 135�, which is shown in Fig. 13(a). The training region is
from (19, 17) to (68, 66). The ground-truth is shown in Fig. 13(b). The
testing SAR image contains a T72 tank under depression angle 20� and
azimuth angle 225�, which is shown in Fig. 14(a). The testing results
are shown Fig. 14.

The best composite operator has five nodes and a depth of 4. It has
one leaf node containing 3� 3 maximum image. Two internal nodes
are MED operator, which is useful in eliminating speckle noises in
SAR images. It is shown in Fig. 15. Compared to smart GP, the best
composite operator from normal GP has 28 nodes and its depth is 17.
Fig. 16 shows how the average fitness of the best composite operators
and the average fitness of the populations over all ten runs change as
GP proceeds.

A. Comparison Between Normal GP and Smart GP

The comparison is based on the goodness of composite operators
synthesized by normal and smart GPs. The reason for using goodness as
a comparison metric is that a composite operator having higher fitness
than another composite operator does not mean it always has a higher
performance than the composite operator with lower fitness, since its
size may be much smaller. For objective comparison, only the average
performance over all ten runs is used for comparison.

Fig. 17 shows how the average goodness of the best composites
operators improves as normal GP and smart GP proceed. The thick
line stands for the goodness of smart GP and the thin line stands for the
goodness of normal GP. It shows that if normal GP already achieves
very good performance such as in the lake and tank cases, then it
is difficult for smart GP to significantly improve the performance,
since there is not much room for improvement. At this time, smart GP
may achieve similar or a little better performance than normal GP. If
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Fig. 5. Training SAR image containing lake. (a) Lake versus field. (b) Ground-truth. (c) Feature image (normal GP). (d) ROI extracted (normal GP). (e) Feature
image (smart GP). (f) ROI extracted (smart GP).

Fig. 6. Testing SAR image containing lake. (a) Lake versus grass. (b) Feature image (normal GP). (c) ROI extracted (normal GP). (d) Feature image (smart GP).
(e) ROI extracted (smart GP).

Fig. 7. Training SAR image containing river. (a) River versus field. (b) Ground-truth. (c) Feature image (normal GP). (d) ROI extracted (normal GP). (e) Feature
image (smart GP). (f) ROI extracted (smart GP).

Fig. 8. Testing SAR image containing river. (a) River versus field. (b) Feature image (normal GP). (c) ROI extracted (normal GP). (d) Feature image (smart GP).
(e) ROI extracted (smart GP).

Fig. 9. Learned composite operator tree in LISP notation.

Fig. 10. Fitness versus generation (river versus field).

primitive operators and primitive features are not suitable to the tasks
to be solved, both normal and smart GP may not generate effective

composite operators such as in the field case, since primitive operators
and primitive features have significant impact on the effectiveness of
learned composite operators. The smart GP operators have an unde-
sired side effect of restricting the GP search by biasing the selection of
crossover and mutation points to keep the effective components gen-
erated during GP search. If effective components are generated and
assembled together in some composite operators in the first 20 gen-
erations, then it is beneficial to apply the smart GP operators in the
remaining generations to generate effective composite operators. Oth-
erwise, it may be harmful to apply smart GP. From Fig. 17, it can be
seen that on the average, smart GP finds good composite operators more
quickly.

Table III shows the average goodness and standard deviation of the
best composite operator in the initial and final populations. Table IV
shows the average size of the best composite operators from normal
GP and smart GP. It also shows the average performances of the best
composite operators on the whole training image and other testing
image(s). The standard deviations of the size and performance are
also provided. It can be seen that although smart GP does not always
generate composite operators with better performance, on the average,
the best composite operators learned by smart GP have better per-
formance and smaller size than those from normal GP, reducing the
computational expense during testing.
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Fig. 11. Training SAR image containing field. (a) Field versus grass. (b) Ground-truth. (c) Feature image (normal GP). (d) ROI extracted (normal GP). (e) Feature
image (smart GP). (f) ROI extracted (smart GP).

Fig. 12. Testing SAR image containing field. (a) Field versus grass. (b) Feature image (normal GP). (c) ROI extracted (normal GP). (d) Feature image (smart
GP). (e) ROI extracted (smart GP).

Fig. 13. Training SAR image containing tank. (a) T72 tank. (b) Ground-truth. (c) Feature image (normal GP). (d) ROI extracted (normal GP). (e) Feature image
(smart GP). (f) ROI extracted (smart GP).

Fig. 14. Testing SAR image containing tank. (a) T72 tank. (b) Feature image (normal GP). (c) ROI extracted (normal GP). (d) Feature image (smart GP). (e) ROI
extracted (smart GP).

Fig. 15. Learned composite operator tree in LISP notation.

Table V shows the average and standard deviation of running time
of normal GP and smart GP. By intuition, the running time of smart GP
should be much longer than that of normal GP, since in normal GP, only
the output image of the root node is evaluated and smart GP evaluates
the output image of each node of a composite operator. From Table V,
it can be seen that the difference between the running times is not as
much as expected. In the experiments with lake and tank images, the
running time of smart GP is much shorter. The reason lies in the code
bloat problem of GP. In normal GP, a size limit of composite operators
(in this paper, it is 30) is specified. At the later stage of the GP search,
most of the composite operators have size equal or close to the size
limit. In smart GP, the MDL-based fitness function takes the size of

Fig. 16. Fitness versus generation (T72 tank).

composite operators into the fitness evaluation. The difference between
the sizes of composite operators is large, even at the later stage of the
GP search. Although a few composite operators have a size larger than
the size limit in normal GP, many of them have size smaller than the size
limit. If the size limit set in normal GP is large, it can be expected that
the running time of the normal GP will be longer than that of smart GP.
Also, in the above experiments, the goodness threshold value is set to
1.0 to force GP to finish the pre-specified number of generations. If the
goodness threshold value is smaller than 1.0, smart GP may run fewer
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Fig. 17. The average goodness of the best composite operators versus generation. (a) Road. (b) Lake. (c) River. (d) Field. (e) Tank.

TABLE III
AVERAGE GOODNESS OF THE BEST COMPOSITE OPERATORS FROM NORMAL AND SMART GPs

TABLE IV
AVERAGE SIZE AND PERFORMANCE OF THE BEST COMPOSITE OPERATORS FROM NORMAL AND SMART GPs

TABLE V
AVERAGE AND STANDARD DEVIATION OF RUNNING TIME (SECONDS) OF NORMAL GP AND SMART GP

TABLE VI
AVERAGE GOODNESS OF THE BEST COMPOSITE OPERATORS FROM SMART GPs WITH AND WITHOUT THE PUBLIC LIBRARY

generations, since it finds effective composite operators more quickly,
thus reducing its running time.

Table VI shows the average performance (goodness) of the best com-
posite operators from smart GP with and without the public library

on training and testing images containing road and tank over ten runs.
From Table VI, it can be seen that with the public library to keep the
effective components for later reuse, GP can generate more effective
composite operators.
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Fig. 18. ROI extracted by the traditional ROI extraction algorithm. (a) Paved road versus field. (b) Unpaved road versus field. (c) Paved road versus grass. (d) Lake
versus field. (e) Lake versus grass. (f) River versus field. (g) River versus field. (h) Field versus grass. (i) Field versus grass. (j) T72 tank. (k) T72 tank.

TABLE VII
FITNESS VALUES OF THE EXTRACTED ROIs AND THE CORRESPONDING THRESHOLD VALUES

TABLE VIII
AVERAGE RUNNING TIME (IN SECONDS) OF THE COMPOSITE OPERATORS AND THE TRADITIONAL ROI EXTRACTION ALGORITHM

B. Comparison Between Composite and Primitive Feature Images

In order to show the effectiveness of composite operators in ROI
extraction, a traditional ROI extraction algorithm is applied to com-
posite and primitive feature images. The traditional ROI extraction al-
gorithm uses a threshold value to segment an image into foreground
and background. The region consisting of pixels with value greater
than the threshold value is called the bright region and its complement
is called the dark region. When primitive feature images are used, the
threshold value determines the performance of the traditional ROI ex-
traction algorithm. For a particular threshold value, if the bright region
has a higher goodness than the dark region, the bright region is the
foreground. Otherwise, the dark region is the foreground. The fore-
ground is the ROI extracted. To find the best threshold value, every
possible threshold value is tried by the algorithm and its performance
is recorded. In the previous experiments when composite feature im-
ages are used, the threshold value is always 0. There is a significant
difference between constant and variable threshold values. A variable
threshold value is a parameter of the algorithm and it makes the algo-
rithm complicated, since one has to fine-tune it for each image. In this
regard, training loses its meaning. As it is well known, algorithms with
parameters that need manual tuning are not effective algorithms. With
composite feature images, a parameter becomes a constant. The ROI
extracted from composite feature images is compared with the ROI ex-
tracted from primitive feature images when the best threshold value
is used. In order to show the effectiveness of composite features over
that of primitive features, the traditional ROI extraction algorithm is

applied to all the 16 primitive feature images and the best result from
the 16 primitive feature images is reported.

Fig. 18 shows the ROI’s extracted by this traditional algorithm when
the best threshold value is used. The goodness of the ROI’s, their corre-
sponding threshold values and the primitive feature image from which
the result is obtained are shown in Table VII. It can be seen that the
composite operators learned by GP are more effective in ROI extraction
and its performance is better than the best performance of the traditional
ROI extraction algorithm on primitive feature images. Table VIII shows
the average running time of the composite operators and the traditional
ROI extraction algorithm in extracting ROI’s from training and testing
images. The time is measured in seconds. The composite operators are
more efficient, since the traditional algorithm spends a lot of time to de-
termine the best threshold value. For a testing image, the best threshold
value found from the corresponding training image is not used, since
training and testing images may have different best threshold values.
In this regard, training has no meaning.

From the above comparison, it can be seen that composite feature
images are more suitable for the object detection (segmentation) task,
since in the composite feature images, objects are more different from
the background than in primitive feature images or original images.
This shows the effectiveness of composite operators learned by GP.

V. CONCLUSION

In this paper, we use genetic programming to evolve composite oper-
ators for object detection. To improve the efficiency of GP and address
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its well-known code bloat problem, we design a new fitness function
based on the minimum description length principle to take the size of a
composite operator into the fitness evaluation process. We also design
smart crossover and smart mutation to identify and prevent the effec-
tive components of composite operators from being disrupted. The new
fitness function prevents composite operators from growing too large
while at the same time imposes relatively less severe restrictions on the
GP search. Our experimental results with real SAR images show that
with MDL-based fitness function and smart search operators, GP can
learn good composite operators more quickly, thus, improving the effi-
ciency of GP. Compared to normal GP, the composite operators learned
by smart GP have better performance on the training and testing images
and have smaller sizes, reducing the computational expenses during
testing.
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