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Abstract—Relevance feedback (RF) is an interactive process which refines the retrievals to a particular query by utilizing the user’s

feedback on previously retrieved results. Most researchers strive to develop new RF techniques and ignore the advantages of existing

ones. In this paper, we propose an image relevance reinforcement learning (IRRL) model for integrating existing RF techniques in a

content-based image retrieval system. Various integration schemes are presented and a long-term shared memory is used to exploit

the retrieval experience from multiple users. Also, a concept digesting method is proposed to reduce the complexity of storage

demand. The experimental results manifest that the integration of multiple RF approaches gives better retrieval performance than

using one RF technique alone, and that the sharing of relevance knowledge between multiple query sessions significantly improves the

performance. Further, the storage demand is significantly reduced by the concept digesting technique. This shows the scalability of the

proposed model with the increasing-size of database.

Index Terms—Content-based image retrieval, long-term learning, reinforcement learning, relevance feedback, short-term learning.
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1 INTRODUCTION

TRADITIONAL database systems are not capable of manip-
ulating pictorial data since they manage data in

alphanumeric form. Recently, content-based image retrieval
(CBIR) systems [1], [2], [3], [4] have been developed that
allow the users to submit a query by an image sample,
namely, query_by_example, such that the database images
that are “similar in content” to the query image are
retrieved. Other human interaction models such as allowing
the user to select multiple regions-of-interest and to specify
the relevance of their spatial layout are also proposed [5].
The search for content-based image retrieval can be broadly
classified into two classes according to its purpose: target
search and category search. The purpose of target search is to
find exactly a specific image, while the purpose of category
search is to find a group of similar images. This paper is
focused on the latter with the query_by_example interface.

Although CBIR systems are queried by image content, a
raw query image still needs to be formulated into an
abstract form to execute it efficiently. Since end users, in
general, do not know the make-up (kinds of images) of the
image database and the content representation and search
techniques used in the environment (what types of features
and indexing methods are employed), it is hard for them to
choose an appropriate query at the first trial. Therefore, the

query formulation process is treated as a series of tentative
trials until the target images are found.

A relevance feedback (RF) technique is an interactive
process which can fulfill the requirements of query
formulation. The principal idea behind the RF is as follows:
The user initializes a query session by submitting an image.
The system then compares the query image to each image in
the database and returns t images that are the nearest
neighbors to the query. If the user is not satisfied with the
retrieved result, he or she can activate an RF process by
identifying which retrieved images are relevant and which
are nonrelevant. The system then updates the relevance
information, such as the reformulated query vector, feature
weights, and prior probabilities of relevance, to include as
many user-desired images as possible in the next retrieved
result. The process is repeated until the user is satisfied or
the results cannot be further improved. The general system
flow chart of the RF process is depicted in Fig. 1.

The RF techniques provide a way to bridge the gap
between the machine subject in terms of low-level features
and the human subject that is driven by high-level semantics.
Most researchers strive to develop a newRF techniquewhich
can attain better retrieval performance than the existing ones.
However, they ignore the fact that, for a given image
database, an RF technique that brings the best retrievals to
a certain class of query images may be inferior to other
RF approaches for another class of query images. Even for a
specific query, wemay need to apply different RF techniques
at various feedback iterations to achieve the highest retrieval
performance. By integrating existing RF algorithms, this
paper demonstrates that a superior performance can be
obtained. We develop a new model, named image relevance
reinforcement learning (IRRL), that can integrate multiple
RF techniques and makes use of their advantages. The IRRL
model automatically chooses the best RF approaches at
various feedback iterations for a given query. Also, the
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relevance knowledge created duringmultiple query sessions
is stored in a global memory which is shared during future
query sessions and is used to accelerate the relevance
learning.

The remainder of this paper is organized as follows:

Section 2 describes the related research on relevance

feedback and our motivation. Section 3 presents the

proposed IRRL model. Section 4 gives the experimental

results and provides comparative performances. Finally,

Section 5 presents the conclusions of the paper.
Notations. The notations of the variables used in the

paper are presented in Table 1.

2 RELATED RESEARCH, MOTIVATION, AND
CONTRIBUTIONS

2.1 Relevance Feedback Techniques

Let the query image and a database image be represented

by feature vectorsX¼ðx1; x2; . . . ; xdÞ and Y ¼ðy1; y2; . . . ; ydÞ,
respectively, where d is the number of selected features and

xi and yi are the values of the ith feature. The system

derives the similarity between X and Y by computing the

distance under the given dissimilarity metric. The normal-
ized Euclidean metric

DistðX;Y Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd
i¼1

ðxi � yiÞ2=d

vuut

is generally used for this purpose. The top t database
images that are the nearest neighbors of the query are then
returned to the user. If the user is not satisfied with the
retrieved result, he or she can activate an iterative RF
process until satisfied. In the following sections, the most
popular RF techniques are presented.

2.1.1 Query Vector Modification

The query vector modification (QVM) approach repeatedly
reformulates the query vector through user’s feedback so as
to move the query toward relevant images and away from
nonrelevant ones. Let a user submit the ith database image
as the query and have experienced j RF iterations, and let
X

ðjÞ
i denote the current query formulation. Also, let the set of

relevant images identified at the jth iteration be R, and the
set of identified nonrelevant images be N . For the ðjþ 1Þth
RF iteration, the reformulated query vector [6], [7] is
calculated as

X
ðjþ1Þ
i ¼ �X

ðjÞ
i þ �

X
Yk2R

Yk

jRj � �
X
Yk2N

Yk

jN j ;

where Yk are images that belong to region R or N , and �, �,
and � are the parameters controlling the relative contribu-
tion of each component. The effect of the QVM can be
illustrated in Fig. 2. For simplicity, let us assume that only
two features, f1 and f2, are used for image similarity
matching. All of the database images spreading over the
feature space are either relevant (indicated by symbol “+”)
or nonrelevant (indicated by symbol “-”) to the current
query X

ðjÞ
i according to the user’s intention. However, the

most “similar” images to the query according to the
machine subject (KNN algorithm) in the sense of Euclidean
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Fig. 1. The general system flow chart of the relevance feedback

process.

TABLE 1
The Notations of the Variables in the Paper



metric are those residing at the interior of the circle centered
at X

ðjÞ
i (see Fig. 2a). Thus, a simple query reformulation

derived from the QVM formula can move the query to a
location that is expected to be in a region involving more
relevant images (see Fig. 2b).

2.1.2 Feature Relevance Estimation

The feature relevance estimation (FRE) approach assumes,
for a given query, some specific features may be more
important than others when computing the similarities
between images and the query. The relevance of each
feature varies in different proportion and should be
estimated before the similarity measure is derived. The
most natural way of estimating the individual feature
relevance is to verify the retrieval ability using each feature
alone [8], [9], [10], [11]. The process is as follows: First, all
features have equivalent significance of relevance to the
query, the set of the top t most similar images can be found
by using Euclidean distance. The user is then required to
identify the relevant and nonrelevant images from the
retrieved t images. To examine the retrieval ability of each
feature, all the database images are projected onto the cor-
responding feature axis, and the new t closest images to the
query are computed. Then, the relevance of the feature is
evaluated by counting how many of the newly retrieved
t images are identified as relevant. The larger the number,
the better the retrieval ability of the tested feature and, thus,
the feature is more relevant to the query. Finally, the feature
relevance is used as a weight incorporated into the
dissimilarity metric to express the degree of emphasis on
the corresponding feature, viz.,

DistðX;Y Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd
i¼1

wiðxi � yiÞ2
vuut ;

where wi is the relevance value or relative weight of the ith
feature and

Pd
i¼1 wi ¼ 1. The process is illustrated in Fig. 3.

Again, we assume that only two features are used for image
similarity matching and that X

ðjÞ
i denotes the current query

formulation. If we let w1 ¼ w2 at the jth RF iteration, the
boundary that defines the nearest neighborhood of X

ðjÞ
i will

form a circle centered at X
ðjÞ
i (see Fig. 3a). For the ðjþ 1Þth

RF iteration, the system learns that feature f1 is more
relevant to the query than feature f2 by assessing the
retrieval ability of each feature, the weightings are adapted
so that w1 > w2. The resulting new boundary of the nearest

neighborhood of X
ðjþ1Þ
i will include more relevant images

and form an ellipse elongated along the direction of the less
relevant feature axis. Note that the query formulation is not
changed during all RF iterations, i.e., X

ðjþ1Þ
i ¼ Xj

i for all j.

2.1.3 Bayesian Inference

The Bayesian inference (BI) approaches use a Bayesian
framework to estimate the a posteriori probability that a
database image is relevant to the query given the prior
history of feedbacks [12], [13], [14]. Since the probability
distribution over all database images is updated after each
feedback iteration, the system is, therefore, able to improve
the retrieval performance. Bayesian theory provides a
framework to compute the a posteriori probabilities
pðRjY Þ ¼ pðY jRÞpðRÞ=pðY Þ and

pðN jY Þ ¼ pðY jNÞpðNÞ=pðY Þ:

Then, the system can judge whether a database image Y is
relevant to the query using the classifier

J�ðY Þ ¼ pðRjY Þ=pðNjY Þ ¼ pðY jRÞpðRÞ=pðY jNÞpðNÞ:

The conditional probabilities pðY jRÞ and pðY jNÞ can be
approximated by parametric models such as Gaussian
kernels using the feature vectors that are identified as
relevant or nonrelevant, and pðRÞ=pðNÞ can be treated as a
small constant since the number of relevant images is much
less than that of nonrelevant images. Thus, the retrieval
system can output the top t images with the highest values
of J�ðY Þ.

2.2 Exploitation of Experience from Multiple Users

TheRF techniques discussed in Section 2.1 concentrate on the
improvement of retrieval performance for a given query
based on the knowledge derived from the retrieval experi-
ence and relevance feedback within that query session only.
A query session is the period that consists of the submittal of
the original query and all the subsequent feedback iterations.
So, the relevance process always starts with no assumption
about the query formulation, feature weights, and prior
probabilities of relevant and nonrelevant images when a
query session is initiated. The information generated during
this process is erased after the user has terminated the
feedback iterations, and it is not used for the next query
processing. Nevertheless, there exists agreement, to some
extent, among multiple users for judging image relevance
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Fig. 2. Illustration of the query vector modification approach. (a) The
closest neighbors to the current query are retrieved. (b) A query
reformulation can move the query to a region involving more relevant
images.

Fig. 3. Illustration of the feature relevance estimation approach. (a) The
nearest neighborhood boundary forms a circle when the feature
relevance values are equal. (b) The nearest neighborhood boundary
forms an ellipse elongated along the direction of the less relevant feature
axis to include more relevant images.



and it would benefit future query performances if the
retrieval experiences obtained from multiple users can be
preserved and carefully exploited. Since real image data-
bases experience retrievals frommany users, the metaknow-
ledge derived from such retrieval experiences can be
exploited to learn visual concepts and refine them incremen-
tally [15]. Recently, Bhanu and Dong [16] used a semisu-
pervised fuzzy clustering approach in conjunctionwith prior
retrieval experience to partition the database into clusters
related to high-level concepts, which can be used for efficient
indexing. Yin et al. [17] proposed a systematic framework
that extends the ability of traditional relevance feedback
techniques to the exploitation of accumulated retrieval
experiences by the use of virtual features, which are a form
of shared long-term memory storing the semantic concepts
learned from multiple users.

2.3 Motivation for Our Approach

There are two motivations inspiring us to develop the
proposed approach. First, for a given image database an
RF technique that brings the best retrievals to a certain class
of query images may be inferior to other RF approaches for
another class of query images. Second, the experience from
long-term interactions with multiple users could be
exploited and the derived knowledge can improve future
retrieval performance.

2.3.1 Reinforcement Learning

Reinforcement learning addresses the issue of how an agent
can learn a task through a sequence of trial-and-error
interactions with its environment [18], [19]. It has been
successfully applied to several computer vision problems
such as image segmentation, feature extraction, and object
recognition [20], [21]. In this paper, we intend to apply
reinforcement learning for the optimal integration of
multiple RF techniques. The reasons are threefold.

. Each RF technique has its own assumptions and
limitations (see Table 2). In particular, the QVM does
not have the mechanism that gives various relevance
significance to different features, so the shape of the
nearest neighborhood of the query cannot be
changed. On the other hand, the FRE does not
modify the query vector at all iterations, the retrieval

performance cannot be further improved if the initial
query is far from most relevant images. The BI is
statistics-based and needs experience with more
feedback iterations to accumulate statistically suffi-
cient amount of samples to make correct inference.
Also, the probability estimation for BI is more
complicated than the formulations for QVM and
FRE and, thus, requires more computations.

. Different RF techniques applied at consecutive
iterations may be complementary to each other (see
Table 2). Heesch and Ruger [22] have pointed out
that through the integration of QVM and FRE the
query center can be updated and each feature can be
assigned a weight. As for the BI, if the number of
available samples is limited in practice, the selection
of these samples plays an important role on the
accuracy of probability distribution estimation. Since
BI statistically infers the probability distributions
based on the observed samples only, it does not
make progressive prediction about the unseen
samples. QVM progressively predicts the center of
mass of relevant images and if this prediction is
correct, it provides good Gaussian kernels for
probability density estimation for BI. Similarly,
FRE usually expedites the convergence of the feature
weights through a higher order weighting function
such as quadratic or exponential functions [10], it
may provide good predictions for the standard
deviations of Gaussians for BI. Several previous
works [23], [24], [25] have been built on the
combination of multiple features and similarity
models. However, this paper is focused on the
integration for multiple RF techniques.

. It is very common that the collected images of an
image database have extremely diverse content,
therefore, the distributions of feature vectors for
relevant and nonrelevant images can vary signifi-
cantly from query to query. Some of the cases may
be easily modeled by the QVM, while others may be
more appropriately modeled by FRE or BI. For a
given image database an RF technique that brings
the best retrievals to a certain class of query images
may be inferior to other RF approaches for another
class of query images. Even for a specific query
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Shortcomings of RF Techniques and Advantages of Integrating Multiple RF Methods



image, we usually cannot find an RF technique that
is the most suitable one to be applied at all feedback
iterations. So, the choice of the optimal RF technique
is query and iteration-dependent.

Although reinforcement learning improves the next
retrieval by applying the optimal RF technique, it does
not affect the first retrieval of every query session. With the
long-term learning scheme, the reinforcement learning
model can provide higher initial retrieval performance.

2.3.2 Long-Term Learning

There are two learning issues when dealing with multiple
query sessions. First, it is desirable that a retrieval system
conduct an effective relevance learning based on the prior
knowledge acquired at previous query sessions. The
traditional short-term relevance leaning scheme always
starts a new query session without any assumption about
the query formulations, feature weights, or probability
distributions of relevant and nonrelevant images. The
original query with equally weighted features is referred
to as the first retrievals. In contrast, the long-term relevance
learning scheme presented here keeps a global memory for
each database image for storing the last query formulation,
feature weights, and the a priori probabilities of relevant
and nonrelevant images when the database image is
previously used as a query. Thus, the relevance learning
for a new query session can start from its previous state to
expedite the learning process. The long-term relevance
learning scheme can greatly improve the retrieval perfor-
mances, especially for the first retrievals of query sessions.

Second, the task of learning the optimal strategy of
selecting multiple RF techniques for a specific query is done
by evaluating the retrieval performance obtained using each
strategy alone. The accuracy of the evaluation depends
upon how many users’ retrieval experiences have been
considered since there may exist a range of differences
between users’ subjectivity about relevance. The long-term
strategy learning stores the performance estimate of every
strategy for each database image based on experiences from
multiple users. When the convergence of the learning task
has taken place (this status can be detected by a mechanism
such as the entropy analysis as will be discussed in
Section 3.3), the system can select the optimal RF technique
at a specific feedback iteration for a given query to provide
the highest possible performance.

2.4 Contributions of the Paper

The original contribution of this paper includes the
following aspects.

1. We present two integration schemes, a) combination
and b) hybridization, to achieve the maximum
synergism between different RF techniques.

2. Our system is the first one that can automatically
choose the optimal RF approach for a given query at
a particular feedback iteration.

3. Weuse a shared long-termmemory to accumulate the
relevance knowledge acquired from multiple users’
experiences. The long-term relevance knowledge
significantly improves the retrieval performance.

4. The efficacy of the proposed system is validated
using a real image database. The results show that
our integrated approach is better than any single

relevance feedback approach with or without long-
term learning.

3 THE PROPOSED APPROACH

In this section, we propose our model (see Fig. 4) for image
relevance reinforcement learning (IRRL). When a user starts
a new query session, the prior relevance information about
this query is first retrieved. With the relevance information
derived by long-term learning, the model performs retrie-
vals based on previous learning state. When entering the
session, the reinforcement learning navigates the model to
select the optimal RF technique for the query at every
feedback iteration, and the most probable relevant images
are searched and returned to the user for feedback
interactions. When the user terminates the session, the
latest relevance information is captured in the knowledge
base for updating the corresponding entry.

3.1 Integration Schemes for Multiple
RF Approaches

The integration scheme addresses the issue of how the
multiple RF techniques applied within a query session
interact with each other. We present two schemes named
combination and hybridization. Let us assume that the retrieval
system has a set of the three major existing RF techniques,
namely, theQVM, FRE, andBI, and also the system is capable
to improve the retrieval performance of a query session by
executing several RF iterations. We define an RF strategy as a
sequence of selected RF techniques to be applied at various
feedback iterations for a given query. The assumptions yield
many possible strategies as shown in Fig. 5. Each strategy
corresponds to a path originating from the leftmost node
(initial state of a query session) and ending at any of the
rightmost nodes (terminating states of a query session). For
the target search, it is possible that the target image is not
found within the first few feedback iterations but can be
found by experiencing more iterations. Since the perfor-
mance of a target search is evaluated in bilevel setting, i.e.,
whether the target image is found or not, the number of
experienced feedback iterationswould be a critical factor and
should be large enough to guarantee a fair analysis.
However, the purpose of this paper is for category search
and the performance is evaluated by calculating the precision
rate (the ratio of the number of positive retrievals divided by
the number of total retrievals in the same display). The
precision rate is not a binary value (success or not) as used in
target search, but rather it is a real number between 0 and 1. In
our experiments with a large real image database (more than
10,000 images), the precision rate of a typical query session
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Fig. 4. The system diagram for the image relevance reinforcement
learning (IRRL) model.



improves significantly during the first two feedback itera-
tions, and won’t change much afterwards. Hence, in the
following, we focus our discussion on the integration of RF
techniques applied at two feedback iterations.

For the strategies that apply the same RF technique at
both iterations, the RF process can be performed by the
corresponding formulation. While for those strategies that
apply distinct RF techniques at various iterations, for
example, apply the QVM at the first iteration and FRE at
the second, there are two means for integrating them. The
first type of integration, called combination, simply applies
one RF technique at the first iteration and applies the other
RF technique at the second. However, the second type of
integration, called hybridization, applies one RF technique at
the first iteration and when the second iteration is entered,
both RF techniques are applied simultaneously to strength-
en the synergetic effect. In particular, we embed the three
most popular RF approaches, namely, the QVM, FRE, and
BI, in our IRRL model and propose three specific ways to
hybridize two of them. It behaves algebraically the same at
the second iteration if we reverse the order of the two
RF approaches applied at consecutive iterations, although
the RF applied at the first iteration is different if we reverse
the order. So, there are exactly three ways to implement the
hybridization scheme, each of which corresponds to
hybridization of every two RF techniques. We do not make
the hybridization scheme different when the order of

applied RF techniques is reversed because each RF

technique has its unique formulation and complements

the other in a particular way. The details of the two types of

within-session integration schemes are described as follows:

. Integration between QVM and FRE. Without loss of

generality, we assume QVM is applied at the first

iteration and FRE at the second. Fig. 6 gives an

illustration. Let the original query be the ith database

image and be denoted by X
ð0Þ
i . The system returns

the closest images to X
ð0Þ
i with feature weights

w1 ¼ w2, i.e., returns those images residing at the

interior of the circle centered atX
ð0Þ
i (see Fig. 6a), and

requests for relevance feedback. The user identifies

relevant and nonrelevant images from the retrievals.

By performing QVM at the first RF iteration, the new

query vector X
ð1Þ
i is derived by X

ð1Þ
i ¼ �X

ð0Þ
i þ

�
P

Yj2R Yj=jRj � �
P

Yj2N Yj=jN j, while the feature

weights remain unchanged. Thus, the new query

vector is moved to a location closer to the mass

centroid of relevant images (see Fig. 6b). At the

second RF iteration where FRE is applied, there are

two integration schemes. For the combination

scheme (see Fig. 6c), the query vector is not changed

(X
ð2Þ
i ¼ X

ð1Þ
i ) because the QVM is not applied at this

iteration, only the feature weights are updated

(w1 > w2) according to the FRE so as to stretch the

boundary of the query’s neighborhood to involve

more relevant images. For the hybridization scheme

(see Fig. 6d), in addition to updating the feature

weights (w1 > w2) based on FRE, the query vector

X
ð2Þ
i is reformulated byX

ð2Þ
i ¼ �X

ð1Þ
i þ �

P
Yj2R Yj=jRj

� �
P

Yj2N Yj=jN j. As such, the FRE is hybridized

with the QVM at the second iteration. It is observed

that both types of integration schemes for QVM and

FRE preserve the advantages of each approach, and

improve the retrieval performance than using the

same approach at all feedback iterations (with and

without long-term learning).
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Fig. 5. Many possible RF strategies in a query session for selecting
RF techniques at different iterations.

Fig. 6. Illustration of combination and hybridization schemes of QVM and FRE. (a) The system returns the initial retrievals to the original query. (b) The
query vector is reformulated by QVM and is moved closer to the mass centroid of relevant images. (c) The FRE is applied to stretch the neighborhood
while the query vector is unchanged. (d) In addition to stretch the neighborhood by FRE, the query vector is further reformulated by QVM.



. Integration between QVM and BI. Again, without

loss of generality, we assume QVM is applied at the

first iteration and BI at the second. Fig. 7 gives an

illustration. The situations of the first retrievals and

the retrievals after the first RF iteration (see Figs. 7a

and 7b) are the same as those in the previous case. At

the second RF iteration where BI is applied, there are

two possibilities. For the combination scheme (see

Fig. 7c), the apriori probabilities of pðY jRÞ and pðY jNÞ
are estimated using the observed samples inR andN ,

respectively, identified at the second RF iteration. If

we assume the relevant images form a Gaussian

density, then pðY jRÞ�Nð�R; �RÞwith�R¼�ðfY j8Y 2
RgÞ and �R¼�ðfY j8Y 2RgÞ, where �ð�Þ and �ð�Þ
denote the vectors of mean and standard deviation

of the observed samples. Although the nonrelevant

images may belong to multiple classes, we intend, for

the problem discussed here, to make a 2-class

discrimination between relevant and nonrelevant

classes. So, we use a Gaussian density to model

nonrelevant images and let pðY jNÞ�Nð�N; �NÞ with

�N ¼�ðfY j8Y 2NgÞ and �N ¼�ðfY j8Y 2Ng. Fig. 7c
sketches the estimations of pðY jRÞ and pðY jNÞ using
solid and dashed borders, respectively. The most

relevant images are determined using the Bayesian

classifier. On the other hand, for the hybridization

scheme (see Fig. 7d), the query vector X
ð2Þ
i is

reformulated, according to QVM, by X
ð2Þ
i ¼ �X

ð1Þ
i þ

�
P

Yj2R Yj=jRj��
P

Yj2N Yj=jN j. Since X
ð2Þ
i is an esti-

mate for the mass centroid of all possible relevant

images based on both relevant and nonrelevant

observed samples, it is also an estimate for the

mean vector of the assumed Gaussian density of

relevant images. Hence, we set �R¼X
ð2Þ
i . Similarly,

the mean vector of nonrelevant images can be

determined based on the QVM formulation, we get

�N¼�
P

Yj2N Yj=jN j��
P

Yj2R Yj=jRj, where � and �

are parameters controlling the relative contribution of

each component. The standard deviation vectors are

derived as in the combination scheme. The estima-

tions of pðY jRÞ and pðY jNÞ for the hybridization
scheme are sketched in Fig. 7d. As such, the BI is

hybridized with the QVM by replacing the estimates

for the mean vectors with those obtained using the

QVM.

. Integration between FRE and BI. Without loss of

generality, we assume FRE is applied at the first

iteration and BI at the second. Fig. 8 gives an

illustration. Following the samenotations used above,

the system first retrieves the closest images to X
ð0Þ
i

with w1 ¼ w2 (see Fig. 8a), and requests for relevance

feedback. The user then identifies relevant and

nonrelevant images. By performing FRE at the first

RF iteration, the weights are updated as w1>w2 and

the query vector remains unchanged (X
ð1Þ
i ¼X

ð0Þ
i ), as

illustrated in Fig. 8b. At the second RF iteration, the BI

is to be applied. For the combination scheme (see

Fig. 8c), the a priori probabilities of pðY jRÞ and

pðY jNÞ are simply estimated using observed samples

in R and N identified at the second RF iteration.

However, for the hybridization scheme (see Fig. 8d),

the weights are further updated due to FRE (say,w1 is

nowmuch larger thanw2). In the sense of FRE, a larger

featureweight has resulted fromadenser distribution

of images on the corresponding feature component.

Hence, the standarddeviation of theGaussiandensity

is inversely proportional to the corresponding feature

weight for the feature component. We, thus, set

�R
j ¼ ð1� wjÞ

Pd
k¼1 �

R
k =

Pd
k¼1ð1� wkÞ, where �Rj de-

notes the standard deviation of the Gaussian density

of relevant images on the jth feature component.

Also, the standard deviation vector of nonrelevant

images is similarly derived as �N
j ¼ ð1� wjÞ

Pd
k¼1 �

N
k

=
Pd

k¼1ð1� wkÞ. The mean vectors �R and �N are

computed as in the combination scheme. Fig. 8d

sketches the estimations of pðY jRÞ and pðY jNÞ for the

1542 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 10, OCTOBER 2005

Fig. 7. Illustration of combination and hybridization schemes of QVM and BI. (a) The system returns the initial retrievals to the original query. (b) The
query vector is reformulated by QVM and is moved closer to the mass centroid of relevant images. (c) The BI is applied to estimate the a posteriori
probabilities. (d) The BI is applied with the mean vectors estimated using QVM.



hybridization scheme. As such, the BI is hybridized

with the FRE by replacing the estimates for the

standard deviation vectors with those derived from

the FRE.

Let us consider again an RF process with two
iterations, there are three strategies applying the same
RF approach at both iterations and six strategies applying
distinct RF approaches at different iterations. Since each of
the six strategies can be facilitated with combination or
hybridization schemes, there are 15 ways of performing
the RF process for a given query.

We have conducted extensive experiments on a testing
database of 10,038 images to evaluate the comparative
performances between the 15 RF processes. There is no
statistically significant evidence emerged from our experi-
ment that says that any particular RF process is superior to
others for all query images. There are some queries for
which a particular RF process gives much better retrieval
performance than the others, and there also exist some
queries for which the same RF process produces worse
retrievals. Therefore, the choice for an optimal strategy for
selecting RF techniques at various feedback iterations and
the choice for the best within-session integration scheme of
the selected RF techniques are both query-dependent.

3.2 Reinforcement Learning for Image Relevance

To learn the optimal strategy and the best within-session
integration scheme for using multiple RF techniques, we
propose an image relevance reinforcement learning (IRRL)
model as sketched in Fig. 9. A user initializes a query session
by submitting a query image to an agent which is a CBIR
system with multiple RF mechanisms. We define that an RF
mechanism is an existing RF approach facilitated with a
particular within-session integration scheme, for example,
the RF mechanism FRE/hybridization instructs the agent to
apply FRE at the current feedback iteration and hybridize
FRE with the RF technique that is applied at the preceding
iteration, if it exists. The agent applies an action selection
rule to perform an action from the set of possible
RF mechanisms. The nearest t images to the query are
computed by calculating the similarity measure which is

defined by the selected RFmechanism, these images are then

returned to the environment (the end user) for requesting a

relevance feedback. The user identifies relevant and non-

relevant images from the retrieved result, and a precision

rate about the retrievals can be computed. The state of the

environment is, therefore, changed to another state. The

precision rate is also provided to the agent as a reward that

reveals the desirability about the state transition. The agent

observes the new state and repeats the cycle again. This

produces a sequence of states si, actions ai, and rewards ri as

shown at the bottom of Fig. 9. The agent’s goal is to learn an

optimal strategy for selecting an action in a given state that

maximizes the expected sum of total rewards.

3.2.1 IRRL Model

Let the image database contain a collection of n images, and

let the agent be allowed to perform an RF process on a

specific query for at most m iterations. Assume the agent is

provided a set of u possible RF mechanisms to choose from.

Some notations of the IRRL model are defined as follows:

. A set of states, S ¼ si;j;k
� �

1�i�n;0�j�m;0�k�u
. A state is

characterized by three elements, namely, the query

image i, feedback iteration j, and the last RF
mechanism k performed to this query. Note that

j ¼ 0 indicates the state before any relevance feed-

back is performed within the current query session,

and k ¼ 0 describes that no RF mechanism has ever

been performed to this query image. The index

structure is designed to express that the underlying

task of learning the optimal RF strategy depends

upon the query image, the number of current
iteration, and the last performed RF mechanism.

. A set of actions, A ¼ ahf g1�h�u. Performing an action
corresponds to executing an existing RF mechanism
to the query image. The possible RF mechanisms are
precoded in the agent and, once they are called
upon, they will replace the similarity metric with
their own definitive formulations.
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Fig. 8. Illustration of combination and hybridization schemes of FRE and BI. (a) The system returns the initial retrievals to the original query. (b) The
neighborhood of the query vector is stretched by FRE to involve more relevant images. (c) The BI is applied to estimate the a posteriori probabilities.
(d) The BI is applied with the standard deviation vectors estimated using FRE.



. Positive real-valued rewards, r 2 Rþ, where Rþ is the
set of positive real numbers. The reward can be
described by the precision rate regarding the user’s
desirability about the current retrievals and it is
given by r ¼ Positive Retrievals=Total Retrievals.

. A state transition function, 	 : S �A ! S. In particular,
by the above definitions, we have 	ðsi;j;k; ahÞ ¼ si;jþ1;h,
that is, when the agent performs an RF action, it will
sense a new state describing the transition to the next
feedback iteration and the action just performed.

. A reward function, 
 : S �A ! Rþ. In particular,

ðsi;j;k; ahÞ will return the precision rate on the
current retrievals obtained when the agent performs
action ah in state si;j;k.

The IRRL model learns the optimal strategy, �� : S ! A,
that maximizes the cumulative rewards received over time
(or the expected sum of the precision rates obtained at all
feedback iterations), that is, �� ¼ argmax

�
fr0 þ �r1 þ �2r2 þ

� � �g ¼ argmax�
P1

v¼0 �
vrv; where rv is the reward received

� steps into the future using strategy � to select actions, and
� 2 ½0; 1� is the discounting factor that determines the
relative value of immediate and delayed rewards.

3.2.2 Methodology

We apply the Q-learning algorithm [26], which is the most
popular method for conducting a reinforcement learning
task, to learn the optimal RF strategy. The Q-learning
algorithm could have a slow convergence speed for real-
time applications, but it is applicable in our system for three
reasons. First, most other systems which employ reinforce-
ment learning should wait for the completion of the training
process then use the output strategy for deriving the final
solution. While our system trains, the CBIR agent in the
background when users are using it. The users initially meet
a level of performance no worse than those of existing RF
techniques, and then achieve a gradual performance im-
provement in the future. Second, the proposed system is
highly adaptive to users’ intention by updating the Q̂Q
estimates. This is an important property in a multiuser
environment where a mechanism handling the transition
between different intentions is necessary. Third, there is
currently no similar system which can be used for compar-
ison on convergence speed. Our system is the first one that
integrates multiple RF techniques and maximizes their
synergetic performance. In Section 4, we provide a compar-
ison with a single RF technique with and without long-term
learning. LetQðsi;j;k; ahÞ be themaximumcumulative reward
which can be received by performing action ah in state si;j;k
and, then, proceeding optimally using ��. The Q-learning

algorithm iteratively approximates the Q function by the

following recursive definition:

Qðsi;j;k; ahÞ ¼ 
ðsi;j;k; ahÞ þ �max
al

Qð	ðsi;j;k; ahÞ; alÞ

¼ rþ �max
al

Qðsi;jþ1;h; alÞ;

where r is the observed immediate reward and si;jþ1;h is the

observed new state.
The Q-learning algorithm for the IRRL model is pre-

sented in Fig. 10 and is explained as follows: First, the

algorithm initializes a table of estimate of the Q function for

each possible state-action pair. When a user starts a new

query session by submitting a query, say, image i, if the

image was never used as a query before, the algorithm

computes the t nearest images according to the Euclidean

distance; otherwise, the algorithm retrieves all relevance

knowledge (involving query formulation, feature weights,

and prior probabilities of relevant and nonrelevant images)

about this query from a global shared memory, and then

computes the t nearest images according to the last

performed action when image i was previously used as a

query. Next, if the user is not satisfied with the retrieved

results, he/she can perform an RF process to improve the

retrievals. At each RF iteration, the user marks the retrievals

as relevant or nonrelevant. The algorithm performs an

action based on the selection probability. We have experi-

mented with a probabilistic action selection rule according

to which actions with higher Q̂Q values will be assigned

higher selection probabilities. Let the agent in state si;j;k be

going to choose an action from a set of u alternatives. The

probability with which the agent chooses action ah is given

by pðahjsi;j;kÞ ¼ Q̂Qðsi;j;k; ahÞ=
Pu

l¼1 Q̂Qðsi;j;k; alÞ. As such, the

probability with which an action is chosen is linearly

proportional to the corresponding Q̂Q estimate, and every

action is assigned a nonzero probability. Note that the ties

with respect to pðahjsi;j;kÞ are broken randomly.
Then, the algorithm computes t nearest images according

to the performed action, observes an immediate reward and

a new state, then updates the corresponding Q̂Q table entry.

The algorithm iteratively approximates the optimal strategy

for choosing an action (one of existing RF mechanisms) to

perform in a given state, and guide the agent to maximize

the expected sum of total rewards (retrieval precisions

obtained at all feedback iterations).
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Fig. 9. The image relevance reinforcement learning (IRRL) model.



3.3 Convergence Analysis and Storage Reduction

When a database image is used as a query, one may ask a
question about whether the CBIR agent has learned a near-
optimal RF strategy with proper within-session integration
schemes for this query. This can be answered by examining
the current values of the estimates for the Q function. Since
the estimate approximates the maximal expected sum of
precision rates, a near-optimal selection for an RF strategy is
learned if the value of the corresponding estimate is
significantly larger than those of other possible choices.
Consider that the agent is provided three RF techniques and
two within-session integration schemes, this totally results
in six available RF mechanisms. Let the agent be in state
si;j;k and have six choices of possible actions, each of which
is assigned a selection probability, pðahjsi;j;kÞ, h ¼ 1; 2; . . . ; 6.
We compute the information entropy regarding to action
selection probabilities in state si;j;k by

Eðsi;j;kÞ ¼ �
X6
h¼1

pðahjsi;j;kÞ log2 pðahjsi;j;kÞ:

The smaller the value of Eðsi;j;kÞ, the more deterministic the
action selection in state si;j;k. Thus, the CBIR agent has
learned a dominant strategy �ðXiÞ for query Xi if the
entropy values in the initial state and those states sensed
during all subsequent feedback iterations using this
strategy are less than a small real-valued threshold e, that
is, �ðXiÞ is determined if Eðsi;0;0Þ < e and

Eð	ðsi;j;k; arg max
al

fQ̂Qðsi;j;k; alÞgÞÞ < e;

for j ¼ 0; 1; 2; . . . .

Thus, the Q-learning algorithm has reached a “mature”
convergence for query Xi if the dominant strategy �ðXiÞ is
determined. To save the storage demand incurred by storing
the Q̂Q estimate for each state-action pair, we present a concept
digesting method as follows: Recall that, if an image has
determined a dominant strategy, the selection probabilities
for the actions along the dominant path are significantly
higher than others. Thus, if two images determine the same
dominant strategy, the distributions of selection probabilities
are very similar, so are the relative entry values of the two
Q̂Q tables. It would have little impact on computing selection
probabilities if we merge the two Q̂Q tables by averaging the
corresponding entry values. Accordingly, we let the IRRL
agent merge, by averaging, the Q̂Q tables of those images that
determine the same dominant strategy. The Q̂Q entry update
of these images is then operated on the same table. Never-
theless, for those images that have not determined their
dominant strategy yet, each of them should still be prepared
for a separate Q̂Q table for learning the optimal strategy. So,
there are two types of concepts existing in our system. A
determined concept consists of those images that determine the
same dominant strategy, while a nondetermined concept has
only one elementwhich is an image that has not determined a
dominant strategy. Note that here the concept should not be
referred to images with high similarity in visual content;
instead, the concept is a class of query images that are
optimally treated with the same RF strategy. The CBIR agent
keeps a separate Q̂Q table for every concept of both types.
Hence, the storage demand is proportional to the number of
concepts existing at that moment. When the database is just
created, the number of concepts is equivalent to the number
of database images since there is no determined concept
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Fig. 10. Q-learning algorithm for the IRRL model.



digested and each database image corresponds to a non-
determined concept. As the agent experiences more query
sessions, it digests a determined concept by merging many
nondetermined concepts and the number of total concepts
decreases. The storage demand is reduced and it provides a
room for adding new images to the database. Consequently,
the CBIR agent is scalable against a dynamic database with
growing size.

4 EXPERIMENTAL RESULTS AND COMPARATIVE

PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to
evaluate the performance. We have implemented the three
major RF techniques, namely, the QVM, FRE, and BI, and
integrated them with the IRRL model with various schemes
(combination and hybridization). The programs are coded
in C++ language and executed on a PC Web server with a
Pentium IV 2.4 GHz CPU and 248 MB RAM. To simulate
the practical situation of online users, the sequence of query
images used in our experiments is generated at random.
Each query session is allowed to refine its retrievals by
executing a relevance feedback process for two iterations.
The average precision rates over all query images obtained
at three different stages, namely, the one before any
relevance feedback (PR0), the one after the first iteration
of relevance feedback (PR1), and the one after the second
iteration of relevance feedback (PR2), are computed. The

UCR database is chosen for the experiments and its content

is briefly described as follows:

. Real Image Database. The database is obtained from
the UCR Visualization and Intelligent Systems
Laboratory (VISLab) [27]. There are 10,038 images
covering a variety of real-world scenes such as
castles, cars, humans, animals, etc. In order to
generate the ground-truth for each of the images,
three persons are asked to make independent
judgment regarding the class assignment with 56
possible class names given to them. Each image is
assigned to the appropriate class when the majority
of these three persons agreed with this assignment.
For the images which are assigned to three distinct
classes by the three persons, the prelabeling pro-
vided by the image processing and computer vision
expert is used as the ground-truth. The number of
images in each class varies from 20 to 695. The
histogram of this distribution is shown in Fig. 11.
The sample images from each class are shown in
Fig. 12. Each image in the database is represented by
a 22-dimensional feature vector having 16 Gabor
features [10] (the mean and standard deviation of
filtered images at 4 orientation and 2 scales) and six
color features (the mean and standard deviation
from the HSV color domain [28]).

. Experiment 1: Integration of reinforcement learn-
ing with relevance feedback. The first experiment is
conducted to show that the integration of multiple
existing RF approaches using the proposed IRRL
model provides better retrieval performance than
using the same RF approach at all iterations. We
experiment with 200,000 random queries and com-
pute the average precision of each competing
method. The first three rows of Table 3 report the
average precision using each existing short-term RF
approach alone. It is seen that the three RF
approaches have comparable performances. The
fourth row gives the average retrieval performances
of the three methods and the results will be referred
to as baseline short-term precisions for assessing the
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Fig. 11. Real image database: histogram of the distribution of the
numbers of images in each class.

Fig. 12. Real image database: sample images from each class (arranged from left to right and from top to bottom).



performance of the proposed model. Also, we add
long-term mechanism to each existing RF approach
by storing the parameter values derived from
historic sessions. As seen from the next three rows
in Table 3, the long-term learning can improve the
retrieval performance even if the researcher works
on making the single favorite RF technique better.
The baseline long-term retrieval performances are
also given. Further, we apply separately the short-
term learning scheme and the long-term learning
scheme for cross-session integration in the proposed
IRRL model. Since the relevance concepts of a
particular user rarely change during the same query
session, we skip the nonrelevant images which have
been annotated in the same query session. The
average precision rates and the improvement ratios
to the baseline precisions are shown at the bottom of
Table 3. The improvement ratio is defined as the
increment on the precision rate divided by the
corresponding baseline precision. It is seen that the
proposed model using either cross-session integra-
tion schemes obtains higher retrieval precision than
the baseline performance of using a single RF
approach at all feedback iterations. This hints us
that the development of a good RF integration model
is as important as that of a new RF approach. The
improvement ratio of the proposed model ranges
from 31.65 percent to 41.59 percent for the short-term
learning, and from 39.04 percent to 68.12 percent for
the long-term learning. Note that there is no
improvement ratio gain on PR0 for the short-term
learning since no relevance knowledge is shared
between multiple query sessions. However, the
long-term learning is useful for improving the
retrieval performances at all iterations, and is

particularly more significant in improving PR0. This
is because the previous relevance knowledge is
retrieved and used when the algorithm computes
the first retrievals of a query session. Further, there is
no RF strategy facilitated with either combination or
hybridization schemes is superior to the others for
all queries. An RF strategy is best suited to only a
certain class of images. This implies that the within-
session relevance learning is image-dependent.

Table 3 also shows the processing times (in
seconds) of all the approaches used. It is observed
that BI is the most computationally expensive
method as expected, FRE is the fastest, while the
IRRL model has moderate CPU time cost because it
conducts alternative RF techniques and will not
resort to a single approach. The results also reveal
that the additional processing time for Q value
updating used in the IRRL model is negligible.

Fig. 13 shows the first retrieval result of a particular
query session obtained by IRRL with short-term
learning, that is, no relevance information is retrieved
at the beginning of this session. All the retrieved
images are sorted in increasing order of their
Euclidean distances from the query, and the first
retrieved image is also the query image itself.With the
human-labeled ground-truth, three images are iden-
tified as relevant (a precision rate of 30 percent), and
the others as nonrelevant. Fig. 14 shows the retrieval
result using the short-term IRRL based on the feed-
backs given in Fig. 13, a retrieval precision of
50 percent (five images are identified as relevant) is
achieved. On the other hand, we also submit the same
query image to the long-term IRRL agent, that is, the
cross-session relevance knowledge is retrieved at the
beginning of this query session. Fig. 15 shows the
retrieval result after the first feedback iteration, a
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TABLE 3
Comparative Performances of the Proposed IRRL Model with the Existing RF Approaches

Fig. 13. Retrieval result without relevance feedback using IRRL with short-term learning scheme, three images are identified as relevant (images 1,
2, and 4), the others are identified as nonrelevant. The precision is 3/10.



higher retrieval precision of 70 percent (seven images
are identified as relevant) is achieved as compared to
that obtained by short-term IRRL.

Fig. 16 shows the first retrieval result of another
query session obtained by IRRL with long-term
learning scheme. In this case, a relatively high
precision rate of 50 percent (five relevant images)
has been already achieved in the first retrieval result
since long-term relevance learning provides valuable
information for the initial query formulation. Fig. 17
shows the retrieval result based on the relevance
feedback given in Fig. 16, it is observed that two
additional relevant images are included at this
iteration (a precision rate of 70 percent).

. Experiment 2: Convergence analysis. This experi-
ment consists of two parts: convergence analysis of
the retrieval precision and convergence analysis of

the probabilistic action selection rule. Fig. 18a shows
the accumulated average precision rates of the
proposed model versus the number of already
processed queries from 0 to 1,000 using the short-
term learning scheme, and Fig. 18b corresponds to
that for all processed query sessions from 0 to 200,000.
It is observed that, at the initial learning stage as
shown in Fig. 18a, the accumulated average precision
rates fluctuate depending on which images are
initially selected as query images since some images
may involve extremely high precision rates and some
others may cause extremely low precision rates when
the feedback history is too short. However, if we look
at a longer period as shown in Fig. 18b, the plotted
curves for the accumulated average PR1 and PR2
climb up as the number of queries that are already
processed increases. This is because the IRRL agent
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Fig. 14. Retrieval result after the first relevance feedback using IRRL with short-term learning scheme, five images are identified as relevant (images
1, 2, 3, 4, and 6), the others are identified as nonrelevant. The precision is 5/10.

Fig. 15. Retrieval result after the first relevance feedback using IRRL with long-term learning scheme, seven images are identified as relevant
(images 1, 2, 3, 4, 5, 6, and 9), the others are identified as nonrelevant. The precision is 7/10.

Fig. 16. Retrieval result without relevance feedback using IRRL with long-term learning scheme, five images are identified as relevant (images 1, 2,
3, 6, and 8), the others are identified as nonrelevant. The precision is 5/10.

Fig. 17. Retrieval result after the first relevance feedback using IRRL with long-term learning scheme, seven images are identified as relevant
(images 1, 2, 3, 4, 5, 8, and 10), the others are identified as nonrelevant. The precision is 7/10.

Fig. 18. Accumulated average precision rates versus the number of processed queries using the proposed IRRL model with short-term learning

scheme. (a) The accumulated average precision rates fluctuate during early query sessions from 0 to 1,000. (b) The accumulated average precision

rates improve with the number of processed queries except PR0.



can approximate the optimal RF strategy and find the
best within-session integration scheme for most
query images. The slopes of these curves then become
gentle and theprecision rates finally converge to some
upper bounds when little new relevance information
can be learned and the performance is hardly
improved further. Note that the accumulated average
PR0 is not improved with the number of processed
queries since no prior relevance information across
sessions has ever been derived and utilized at the
beginning of a query session. Fig. 19 shows the
accumulated average precision rates of the proposed
model versus the number of already processed
queries using the long-term learning scheme. It
reveals similar phenomena as those shown in Fig. 18
except that the accumulated average PR0 is also
improved with the number of processed queries due
to the use of prior relevance knowledge derived
across sessions. On the other hand, Fig. 20 corre-
sponds to those obtained using the traditional QVM
approach at all iterations. It is seen that all the
accumulated average precision rates are almost fixed
no matter how many query images have been
processed. This is because that no experiences from
processed queries are utilized and that the sameQVM
approach is used at various feedback iterations for
every query image.

For the convergence analysis of the probabilistic
action selection rule, we compute the probability for
choosing the actions with maximum Q values as the
number of experienced query sessions increases. As
shown in Fig. 21, the convergence probability of the
action selection rule is increasing as the system
experiences more queries. The curve reaches 55 per-
cent after experiencing 50,000 query sessions, which
means more than half of the users have consensus
behavior with the action selection rule performed by
the IRRL model.
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Fig. 19. Accumulated average precision rates versus the number of processed queries using the proposed IRRL model with long-term learning
scheme. (a) The accumulated average precision rates fluctuate during early query sessions from 0 to 1,000. (b) The accumulated average precision
rates improve with the number of processed queries. The PR0 is also improved due to the use of prior relevance knowledge.

Fig. 20. Accumulated average precision rates versus the number of processed queries using the traditional QVM approach. (a) The accumulated
average precision rates fluctuate during early query sessions from 0 to 1,000. (b) The accumulated average precision rates stay at fixed values since
no relevance knowledge is exploited across sessions.

Fig. 21. Convergence probability of the action selection rule.



. Experiment 3: Demonstration of concept digesting

method. The third experiment is intended to show
that the concept digesting method can be applied to
reduce the storage demand incurred by the within-
session relevance learning. Fig. 22 shows the number
of concepts digested with an entropy threshold e ¼
1:0 versus the number of already processed queries.
When the database is just created, the number of
concepts is equivalent to the number of images
(10,038) in the database since every image corre-
sponds to a nondetermined concept. As the IRRL
agent experiences with more query sessions and
digests determined concepts by merging many
nondetermined concepts with the same dominant
strategy, the number of total concepts decreases.
Finally, when the system has dealt with 200,000 query
sessions, the number of concepts is reduced to 1,296
which is only about 13 percent of the original number.
Since the IRRL agent keeps a separate Q̂Q table for
every concept, the storage demand of within-session
relevance learning is also reduced to 13 percent of its
original complexity. Fig. 23 shows the accumulated
average precision rates of the long-term IRRL model
with the concept digesting method applied. It is seen
that the precision rates converge to PR0 = 43.71 per-
cent, PR1 = 54.87 percent, and PR2 = 55.86, which are
very close to the precision rates obtained without
applying the concept digest-ing method (PR0 =
48.72 percent, PR1 = 60.90 percent, and PR2 = 61.96,
as shown in Table 3). Thus, the IRRL agent is suited to
work with a dynamic database and is able to perform
relevance learning for newly added images.

5 CONCLUSIONS

Most researchers in the relevance learning community
strive to develop a new relevance feedback approach.
However, they ignore the possible synergetic contribution
due to the integration of multiple existing techniques. In
this paper, we have proposed an image relevance reinforce-
ment learning model that learns the optimal strategy for
selecting the right relevance feedback technique, at the right
iteration, for a given query image. A long-term learning
scheme has been presented to derive the prior relevance
knowledge about a query, such that, the relevance learning
can start from the preceding state. The average precision
rates obtained using the proposed model are significantly
higher than those obtained using the traditional methods
with and without long-term learning. The improvement
ratio ranges from 31.65 percent to 68.12 percent at various
feedback iterations. To save the storage demand, we also
proposed a concept digesting method. Experimental results
manifest that the storage demand can be reduced to
13 percent of its original complexity. Hence, the proposed
model is scalable to a large dynamic database.
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