
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 3, AUGUST 2005 287

Fingerprint Classification Based on Learned Features
Xuejun Tan, Bir Bhanu, Fellow, IEEE, and Yingqiang Lin

Abstract—In this paper, we present a fingerprint classification
approach based on a novel feature-learning algorithm. Unlike cur-
rent research for fingerprint classification that generally uses well
defined meaningful features, our approach is based on Genetic
Programming (GP), which learns to discover composite operators
and features that are evolved from combinations of primitive im-
age processing operations. Our experimental results show that our
approach can find good composite operators to effectively extract
useful features. Using a Bayesian classifier, without rejecting any
fingerprints from the NIST-4 database, the correct rates for 4-
and 5-class classification are 93.3% and 91.6%, respectively, which
compare favorably with other published research and are one of
the best results published to date.

Index Terms—Composite operators, feature learning, finger-
print classification, genetic programming.

I. INTRODUCTION

THE Henry system is a systematic method for classifying
fingerprints into five classes: Right Loop (R), Left Loop

(L), Whorl (W), Arch (A), and Tented Arch (T). Fig. 1 shows an
example of each class. This system of fingerprint classification
is commonly used by most of the developers and users, al-
though the scheme adopted by the FBI defines eight classes [1].
The most widely used approaches for fingerprint classification
are based on the number and relations of the singular points
(SPs), which are defined as the points where a fingerprint’s ori-
entation field is discontinuous. Using SPs as reference points,
Karu and Jain [2] present a classification approach based on
the structural information around SPs. Most other research uses
a similar method: first, find the SPs and then use a classifica-
tion algorithm to find the difference in areas, which are around
the SPs for different classes. Several representations based on
principal components analysis (PCA) [3], a self-organizing map
(SOM) [4], and Gabor filters [5] are used. The problems with
these approaches are

a) it is not easy to detect the SPs and some fingerprints do
not have SPs;

b) the uncertainty about the location of SPs is large, which
has great effect on the classification performance since the
features around the SPs are used.

Cappelli et al. present a structural analysis of a fingerprint’s
orientation field [6]. Based on the orientation field, they also
present a fingerprint classification system based on multispace
KL transform [7]. It uses a different number of principal com-

Manuscript received March 1, 2003; revised December 14, 2003. This work
is supported in part by a grant from SONY, DiMI, I/O Software and F49620-02-
1-0315. The contents and information do not necessarily reflect the positions
or policies of the sponsors. This paper was recommended by Guest Editor
D. Zhang.

The authors are with the Center for Research in Intelligent Systems, Uni-
versity of California, Riverside, CA 92521 USA (e-mail: xtan@cris.ucr.edu;
bhanu@cris.ucr.edu; yqlin@cris.ucr.edu).

Digital Object Identifier 10.1109/TSMCC.2005.848167

ponents for different classes and it is not clear how the number
of these components is determined. Jain and Minut propose a
classification algorithm based on finding the kernel that best fits
the flow field of the given fingerprint [8]. In both approaches it
is unnecessary to find the SPs. Researchers have also tried dif-
ferent methods to combine different classifiers to improve the
classification performance. Senior [9] combines hidden Markov
models (HMM), decision trees, and PCASYS (a standard finger-
print classification algorithm) [3]. Yaoet al. [10] present new fin-
gerprint classification algorithms based on two machine learn-
ing approaches: support vector machines (SVMs) and recursive
neural networks (RNNs). Table I summarizes representative fin-
gerprint classification approaches. The features used in these
approaches are well defined, conventionally known features.
Thus, it is clear that most current approaches in fingerprint clas-
sification are based on the extraction of reference points and
conventional transforms.

Some researchers use learning algorithms to extract minutiae
features from fingerprint images. Prabhakar et al. [11] propose
a feedback system that learns the characteristics of minutiae in
gray-scale images and can be used to verify each detected minu-
tia. They show that a minutiae verification stage, which is based
on reexamining the gray-scale profile in a detected minutia’s
spatial neighborhood in a fingerprint image, could improve the
matching performance. Bhanu and Tan [12] present a learned
template based algorithm for minutiae extraction. Templates are
learned from examples by optimizing a criterion function. Us-
ing Lagrange’s method to detect the presence of minutiae in
fingerprints, templates are applied with appropriate orientations
to the binary fingerprints only at selected potential minutia lo-
cations. However, the above three approaches are for learning
minutiae, which are well-defined structure features in finger-
prints and are commonly used in fingerprint verification. To the
best of our knowledge, unconventional features discovered by
the computer are never used in fingerprint classification.

In most imaging applications, the approach used to extract
feature vectors from images can often be dissected into some
primitive operations on a set of selected features in images. Gen-
erally, the task of finding a good feature is equivalent to finding
a good point in the search space of composite operators, where
a composite operator consists of primitive operators, and it can
be viewed as a selected combination of primitive operations
applied to primitive feature images. Our Genetic Programming
(GP) based approach may try many unconventional ways of
combining primitive operations that may never be imagined by
humans and may yield exceptionally good results. The paral-
lelism of GP and the speed of computers allow the search space
explored by GP to be much larger than that by human experts.
As the search goes on, GP gradually shifts the population of
composite operators to the portion of the space containing good
composite operators.

1094-6977/$20.00 © 2005 IEEE

288 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 3, AUGUST 2005

Fig. 1. Examples of fingerprints from each class of the Henry System for fingerprint classification: (a) Right Loop; (b) Left Loop; (c) Whorl; (d) Arch; and
(e) Tented Arch.

Genetic programming, an extension of genetic algorithms,
was first proposed by Koza in [13]. In GP, the individuals
can be binary trees, graphs, or some other complicated struc-
tures of dynamically varying size. Poli [14] used GP to de-
velop effective image filters to enhance and detect features
of interest or to build pixel-classification-based segmentation
algorithms. Stanhope and Daida [15] used GP paradigm for
the generation of rules for target/clutter classification and rules
for the identification of objects. To perform these tasks, pre-
viously defined feature sets are generated on various images
and GP is used to select relevant features and methods for an-
alyzing these features. Howardet al. [16] applied GP to auto-
matic detection of ships in low-resolution SAR imagery using
an approach that evolves detectors. Roberts and Howard [17]
used GP to develop automatic object detectors in infrared
images.

The contributions of our work are as follows
a) An approach that learns composite operators based on

primitive features automatically. It helps to find some use-
ful unconventional features, which are difficult for humans
to comprehend and visualize. The primitive operators and
features defined in this paper are very basic and easy to
compute.

b) Primitive operators are separated into computation oper-
ators and feature generation operators. Features are com-
puted wherever feature generation operators are used.
These features are used to form a feature vector that rep-
resents a particular fingerprint image and it is used for
subsequent fingerprint classification.

c) Results are shown on the entire NIST-4 fingerprint
database and they are compared with the other published
research.

TAN et al.: FINGERPRINT CLASSIFICATION BASED ON LEARNED FEATURES 289

TABLE I
REPRESENTATIVE FINGERPRINT CLASSIFICATION APPROACHES

Fig. 2. Block diagram of our approach.

II. TECHNICAL APPROACH

Fig. 2 shows the block diagram of our approach. During the
training, GP is used to generate composite operators, which are
applied to the primitive features generated from the original ori-
entation field. Feature vectors used for fingerprint classification
are generated by composite operators. A Bayesian classifier is
used for classification. During training, the fitness value is com-
puted according to the classification result and is monitored
during evolution. During testing, the learned composite opera-
tor is applied directly to generate feature vectors. Note that, in
our approach, we do not need to find the reference points.

In our GP-based approach, individuals are composite opera-
tors, which are represented by binary trees. The search space of

GP is the space of all possible composite operators. The space is
very large. In order to illustrate this, consider only a special kind
of binary tree, where each tree has exactly 30 internal nodes and
one leaf node and each internal node has only one child. For 17
primitive operators and only one primitive feature image, the
total number of such trees is 1730. It is extremely difficult to
find good operators from this vast space unless one has a smart
search strategy.

A. Design Considerations

The major design considerations of GP are explained in the
following.

290 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 3, AUGUST 2005

• The Set of Terminals: For a fingerprint, we can estimate
the orientation field [24]:

θ =
1
2

tan−1

(∑m
i=1

∑m
j=1 2Gx(i, j)Gy(i, j)∑m

i=1

∑m
j=1

(
G2

x(i, j) − G2
y(i, j)

)
)
(1)

where Gx and Gy are the gradient magnitudes of sobel
operators in x and y directions, respectively. And m is the
block size m = 32 in our experiments. θ ∈ [0, 180) and is
measured in a clockwise direction.

The set of terminals used in this paper are called prim-
itive features, which are generated from the orientation
field. They capture some structural relationships of the
orientation field in different areas of a fingerprint. Primi-
tive features used in our experiments are as follows.

• Original orientation image (primitive feature 1).
The orientation image contains important structural
information about a fingerprint.

• Mean, standard deviation, min, max, and median
images obtained by applying 3× 3 and 5× 5 tem-
plates on the orientation image (primitive features
2–11). These images contain information in the
neighborhood of every pixel in the orientation im-
age.

• Edge images obtained by applying sobel filters
along horizontal and vertical directions on the ori-
entation image (primitive features 12–13). Both im-
ages contain information about the changes of ori-
entation along different directions.

• Binary image obtained by thresholding the orienta-
tion image with a threshold of 90 (primitive feature
14). Since θ ∈ [0, 180), the threshold is chosen as
90. If the pixel value in the orientation image is
greater than 90, the corresponding pixel in the bi-
nary image is set to 1, otherwise, 0.

• Images obtained by applying sine and cosine oper-
ations on the orientation image (primitive features
15–16). Both images contain information about the
changes in orientation.

These 16 images are input to the composite operators.
The size of these images is 12× 13. GP determines which
operations are applied to them and how to combine the
results. Fig. 3 shows an example of a fingerprint image
from the NIST-4 fingerprint database and its correspond-
ing primitive feature images. Note that, in order to show
primitive feature images clearly, in each primitive image,
maximum and minimum values in the image are mapped
to 255 and 0, respectively, and other values are linearly
mapped to a value between 0 and 255.

• The Set of Primitive Operators: A primitive operator
takes one or two input images, performs a primitive op-
eration on them, and outputs a resultant image. Suppose:
1) A and B are images of the same size and c is a constant
of real number, c ∈ [−100,+100]; 2) for operators, which
take two images as input, the operations are performed
on a pixel-by-pixel basis. Currently, there are two kinds
of primitive operators in our approach: computation op-

Fig. 3. Example of a fingerprint image from the NIST-4 fingerprint database
and the primitive feature images derived from the original image: (a) original
image, f0760 06; and (b) primitive feature images. Note that 16 primitive feature
images are sorted from left to right and top to bottom.

erators and feature generation operators. Table II explains
the meaning of these operators in detail. For computation
operators, the output is an image, which is generated by
applying the corresponding operations to the input image.
However, for feature generation operators, the output in-
cludes an image and a real number or vector. The output
image is the same as the input image and passed as the
input image to the next node in the composite operator.
The real numbers or the vectors are the elements of the
feature vector, which is used for classification. Thus, the
size of the feature vectors depends on the number of the
feature generation operators that are a part of the com-
posite operator. Fig. 4 shows an example of a composite
operator, which includes three computation operators and
three feature generation operators. Computation opera-
tors do computation and the feature vector is generated by
feature generation operators: SPE MAX OP, SPE U3 OP,
and SPE STD OP.

• The Fitness Measure: During training, at every gener-
ation for each composite operator proposed by GP, we
compute the feature vector and estimate the Probability
Distribution Function (PDF) for each class using all the

TAN et al.: FINGERPRINT CLASSIFICATION BASED ON LEARNED FEATURES 291

TABLE II
PRIMITIVE OPERATORS USED IN OUR APPROACH

Fig. 4. Example of a composite operator, which includes three computation
operators and three feature generation operators. PFs are primitive features.

available feature vectors. For simplicity, we assume fea-
ture vectors for each class have normal distribution, vi,j ,
where i = 1, 2, 3, 4, 5 and j = 1, 2, . . . ni, ni is the num-
ber of feature vectors in the training for class i, ωi. Then,
for each i, we estimate the mean µi and covariance matrix
Σi by all vi,j :

µi = E[x],
∑

i

= E[(x − µi)(x − µi)T] (2)

where x ∈ {vi,1 vi,2 · · · vi,ni
}.

Thus, the PDF of ωi can be expressed as

p(x |ωi) =
1

(2π)n/2|
∑

i |1/2

× exp

(
−1

2
(x − µi)T

−1∑
i

(x − µi)

)
. (3)

According to Bayesian theory, we have

v ∈ ωk, iff · p(v |ωk) · p(ωk) = max
i=1,2,3,4,5

(p(v |ωi)

· p(ωi)) (4)

where n is the size of the feature vector and v is a feature
vector for classification.

During training, we estimate p(x |ωi), then use the en-
tire training set to do the classification. The Percentage of
Correct Classification (PCC) is taken as the fitness value
of the composite operator.

Fitness Value =
nc

ns
× 100% (5)

where nc is the number of correctly classified fingerprints
in the training set and ns is the size of the training set.

Note that, if |Σi| = 0 for ωi in (3), we simply let
the fitness value of the composite operator be 0. During
testing, we still use (4) to obtain the classification results
of the testing set; however, none of the testing fingerprints
is used in the training.

292 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 3, AUGUST 2005

Fig. 5. Example of crossover between two composite operators.

• Parameters and Termination: The key parameters are
maximum size of composite operator (150), population
size (100), number of generations (100), crossover rate
(0.6), and mutation rate (0.05). The GP stops whenever it
finishes the prespecified number of generations.

B. Reproduction, Crossover, and Mutation

The GP searches through the space of composite operators to
generate new operators, which may be better than the previous
ones. By searching through the composite operator space, GP
gradually adapts the population of composite operators from
generation to generation and improves the overall fitness of the
whole population. More importantly, GP may find an excep-
tionally good operator during the search. The search is done by
performing reproduction, crossover, and mutation operations.
The initial population is randomly generated and the fitness of
each individual is evaluated.

• Reproduction: The reproduction operation involves se-
lecting a composite operator from the current population.
In this research, we use tournament selection, where a
number of individuals are randomly selected from the cur-
rent population and the one with the highest fitness value
is copied into the new population.

• Crossover: To perform crossover, two composite opera-
tors are selected on the basis of their fitness values. These
two composite operators are called parents. One inter-
nal node in each of these two parents is randomly se-
lected, and the two subtrees with these two nodes as root
are exchanged between the parents. In this way, two new
composite operators, called offspring, are created. Fig. 5
shows an example of crossover between two composite
operators.

• Mutation: In order to avoid premature convergence, mu-
tation is introduced to randomly change the structure of
some of the individuals to help maintain the diversity of

the population. Once a composite operator is selected to
perform a mutation operation, an internal node of the bi-
nary tree representing this operator is randomly selected,
then the subtree rooted at this node is deleted, including
the node selected. Another binary tree is randomly gener-
ated and this tree replaces the previously deleted subtree.
The resulting new binary tree represents a new composite
operator. This new composite operator replaces the old
one in the population. Fig. 6 shows an example of the
mutation of a composite operator.

C. Steady-state and Generational Genetic Programming

In steady-state GP, two parental composite operators are se-
lected on the basis of their fitness for crossover. The children
of this crossover, perhaps mutated, replace a pair of compos-
ite operators with the smallest fitness values. The two children
are executed immediately and their fitness values are recorded.
Then another two parental composite operators are selected for
crossover. This process is repeated until the crossover rate is
satisfied. In generational GP, two composite operators are se-
lected on the basis of their fitness values for crossover. Then,
the two composite operators with the smallest fitness values,
among those that have not been selected for replacement, are
selected. They will be replaced by the children of the crossover.
At this time, the replacement has not occurred. The above pro-
cess is repeated until the crossover rate is satisfied. A composite
operator may be repeatedly selected for crossover, but it cannot
be repeatedly selected for replacement. After crossover opera-
tions are finished, all the children resulting from the crossover
operations replace all the composite operators selected for re-
placement at once. In addition, we adopt an elitism replacement
method that copies the best composite operator from generation
to generation. The steady-state and generational genetic pro-
gramming algorithms are given in Figs. 7 and 8, respectively.
For simplicity, we use steady-state GP in our experiments.

TAN et al.: FINGERPRINT CLASSIFICATION BASED ON LEARNED FEATURES 293

Fig. 6. Example of mutation.

Fig. 7. Steady-state genetic programming.

Fig. 8. Generational genetic programming.

294 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 3, AUGUST 2005

Fig. 9. Sample fingerprints from NIST-4.

Fig. 10. Average fitness values based on the number of generations: (a) 5-class and (b) 4-class.

Fig. 11. Learned composite operators for 5-class with size of 61.

III. EXPERIMENTS

A. Database

The database used in our experiments is the NIST Special
Database 4 (NIST-4) [3]. The size of the fingerprint images is
480 × 512 pixels with a resolution of 500 DPI. Since finger-
prints’ borders do not have much useful information, we only
use the 384× 416 pixels around the center of fingerprints. Thus,
the size of primitive feature images is 12× 13 pixels. Every
pixel represents the orientation value in a local 32× 32 block.
NIST-4 contains 2000 pairs of fingerprints. One pair of sample
fingerprints is shown in Fig. 9. We use the first 1000 pairs of fin-
gerprints for training and the second 1000 pairs of fingerprints
for testing. In order to reduce the effect of overfitting, for the

1000 pairs of fingerprints in the training set, we use the first 500
pairs to estimate the parameters for each class and use the entire
training set to evaluate the training results. Note that the second
500 pairs in the training set are not used in the estimation of
distribution parameters for each class.

B. Experimental Results

We performed the experiments 10 times and took the best
result as the learned composite operator. Fig. 10 shows the fit-
ness values based on the number of generations in GP. Since the
NIST-4 fingerprint database is a difficult database and includes
many low-quality fingerprints, even in the training, the classifi-
cation performance can not reach 100%. Fig. 11 shows the best

TAN et al.: FINGERPRINT CLASSIFICATION BASED ON LEARNED FEATURES 295

Fig. 12. Tree structure for the composite operator in Fig. 11. All these operators are defined in Table II, and the size of the tree is 61. Feature generation operators
are shown in bold font and start with SPE, and all the others are computation operators. PFs are primitive features.

composite operators for 5-class classification. For 5-class, the
composite operator’s size is 61, out of which there are 21 feature
generation operators and the length of the feature vector is 87.
The tree, which represents this composite operator, is shown in
Fig. 12. For 4-class classification, the composite operator’s size

is 149, out of which there are 23 feature generation operators
and the length of the feature vector is 102. Obviously, these
composite operators are not easily constructed by humans. Note
that it is possible to perform feature selection to reduce the size
of feature vectors by using genetic algorithms (GAs) or carrying

296 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 3, AUGUST 2005

Fig. 13. Output images of each node for the composite operator in Fig. 11. The input fingerprint is s1000 07 as shown in Fig. 8. Those images are sorted from
left to right and top to bottom according to the preorder traversal of the composite operator. The size of the composite operator is 61.

out an analysis like principal component analysis (PCA) or fac-
tor analysis (FA). Fig. 13 shows the output images of each node
for the composite operator shown in Fig. 11. The input image
is s1000 07 and is shown in Fig. 9. Note that those images are
sorted from left to right and top to bottom according to the
preorder traversal of the composite operator. Accordingly, the
feature vector extracted by the composite operator is shown in
Fig. 14. Note that feature vectors are multidimensional vectors;
for simplicity, we show them as signal sequences.

During the training step, since we use GP, the experiments
run slowly. Usually, it takes about 60 minutes to evolve one
generation. However, once training is finished, applying a com-
posite operator is simple and it runs fast. On a SUN Ultra II
workstation with a 200 MHZ CPU, without any code optimiza-
tion, the average run-times for one testing for 5-class and 4-class
classification are 40 ms and 71 ms, respectively.

Fig. 14. Feature vectors generated by the composite operators as shown in
Fig. 11 on fingerprint s1000 07.

TAN et al.: FINGERPRINT CLASSIFICATION BASED ON LEARNED FEATURES 297

Fig. 15. Fingerprints with two ground-truth labels: T and L.

TABLE III
CONFUSION MATRIX OF THE TESTING RESULTS FOR 5- AND 4-CLASS

CLASSIFICATIONS

Table III shows the confusion matrix of our testing results
on the second 1000 pairs of fingerprints in NIST-4. Note that,
because of bad quality, the ground-truths of some fingerprints
provided by the NIST-4 fingerprint database contain 2 classes,
i.e., the ground-truths of f0008 10 and s0008 10 include classes
T and L. Fig. 15 shows these two images together. As other re-
searchers did in their experiments, we use only the first ground-
truth label to estimate the parameters of the classifier. However,
in testing, we use all the ground-truth labels and consider a test
as correctly classified if the output of the system matches to one
of the ground-truths. However, if the output of the system does
not match any one of them, then we consider it as two incorrect
classifications and each of them has an entry in the confusion
matrix. Note that some published research work, such as [7],
has only one entry in the confusion matrix when the input fin-
gerprint has two ground-truths and the classification result is
incorrect, which inevitably reduces the error rate. Based on the
confusion matrix in Table III, the PCC is 93.3% and 91.6% for
4- and 5-class classifications, respectively. Because bad quality
image areas do not provide any useful information, they result
in misclassifications. Some examples of misclassifications are
shown in Fig. 16. Figs. 17 and 18 show all the fingerprints
that are misclassified in our approach for 5-class and 4-class,
respectively.

Classes R, L, W, A, and T are uniformly distributed in NIST-
4. However, in nature, the frequencies of their occurrence are
31.7%, 33.8%, 27.9%, 3.7%, and 2.9%, respectively. From
Table III, we observe that most of the classification errors are
related to classes A and T. Considering that A and T occur less
frequently in nature, our approach is expected to perform better
in the real world. Table IV shows the results from the NIST-
4 database reported by other researchers. Considering that we
have not rejected any fingerprints from NIST-4, our results are
one of the best. For the 5-class classification, our result has a
1.6% advantage over the result shown in [5], although in [5]
the reject rate is 1.8%. The results reported in [7] are better
than ours. One of the important reasons is that they have only
one entry in the confusion matrix when the input fingerprint
has two ground-truths and the classification result is incorrect.
They do not report the number of incorrect classifications for
which the input fingerprint has two ground-truths, so we can
not compute the error rate after adjustment. In our experimental
results shown in Table III, there are a total of 20 and 14 of this
kind of incorrect classification for 5-class and 4-class classifi-
cation, respectively. There are a total of 2020 and 2014 entries
for 5-class and 4-class, respectively. If we count correct classi-
fication when any of the ground-truth classes match and count
incorrect classification when none of the ground-truth classes
match, the PCC for 5-class and 4-class classifications are 92.5%
and 93.9%, respectively.

IV. CONCLUSION

In this paper, we proposed a learning algorithm for finger-
print classification based on GP. Our experimental results show
that the primitive operators selected by us are effective and
GP can find good composite operators, which are beyond hu-
mans’ imagination, to extract the feature vectors for fingerprint
classification. The experimental results from the NIST-4 fin-
gerprint database show that our approach is one of the best
approaches. Without rejecting any fingerprints, the experimen-
tal results show that our approach is efficient and promising, and
shows one of the best results reported in the literature.

298 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 3, AUGUST 2005

Fig. 16. Errors in classification: (a) ground-truth: R, classification: W; (b) ground-truth: T, classification: A; (c) ground-truth: R, classification: T; (d) ground-truth:
T/R, classification: A. (a) fl027 02, (b) fl037 06, (c) fl043 01, (d) fl074 04.

Fig. 17. Fingerprints that are misclassified in our approach for 5-class classification: Fingerprint ID (class, ground-truth). 0, 1, 2, 3, and 4 represent classes T, A,
W, R, and L, respectively. The total number of misclassification is 150. There are 20 incorrect classifications which have two ground-truths.

TAN et al.: FINGERPRINT CLASSIFICATION BASED ON LEARNED FEATURES 299

Fig. 18. Fingerprints that are misclassified in our approach for 4-class classification: Fingerprint ID (class, ground-truth). 0, 1, 2, and 3 represent classes T/A, W,
R, and L, respectively. The total number of misclassification is 121. There are 14 incorrect classifications which have two ground-truths.

TABLE IV
CLASSIFICATION RESULTS FROM NIST-4

REFERENCES

[1] FBI National Academy, U.S. Department of Justice, Federal Bureau
of Investigation. Advanced Latent Fingerprint School., Quantico, VA,
1983.

[2] K. Karu and A. K. Jain, “Fingerprint classification,” Pattern Recognit.,
vol. 29, no. 3, pp. 389–404, Mar. 1996.

[3] G. T. Candela, P. J. Grother, C. I. Watson, R. A. Wilkinson, and C.
L. Wilson, “PCASYS—A pattern-level classification automation system
for fingerprints,” NIST, Gaitherburg, MD, Tech. Rep. NISTIR 5647, Apr.
1995.

[4] U. Halici and G. Ongun, “Fingerprint classification through self-
organizing feature maps modified to treat uncertainties,” Proc. IEEE,
vol. 84, no. 10, pp. 1497–1512, Oct. 1996.

[5] A. K. Jain, S. Prabhakar, and L. Hong, “A multichannel approach to
fingerprint classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 21,
no. 4, pp. 348–359, Apr. 1999.

[6] R. Cappelli, A. Lumini, D. Maio, and D. Maltoni, “Fingerprint clas-
sification by directional image partitioning,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 21, no. 5, pp. 402–421, May 1999.

[7] R. Cappelli, D. Maio, and D. Maltoni, “Fingerprint classification based
on multi-space KL,” in Proc. Workshop Autom. Identific. Adv. Tech., Oct.
1999, pp. 117–120.

[8] A. K. Jain and S. Minut, “Hierarchical kernel fitting for fingerprint
classification and alignment,” in Proc. Int. Conf. Pattern Recog., vol. 2,
Aug. 2002, pp. 469–473.

[9] A. Senior, “A combination fingerprint classifier,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 23, no. 10, pp. 1165–1174, Oct. 2001.

[10] Y. Yao, G. L. Marcialis, M. Pontil, P. Frasconi, and F. Roli, “Combining
flat and structured representations for fingerprint classification with re-
cursive neural networks and support vector machines,” Pattern Recognit.,
vol. 36, no. 2, pp. 397–406, Feb. 2003.

[11] S. Prabhakar, A. K. Jain, J. G. Wang, S. Pankanti, and R. Bolle,
“Minutia verification and classification for fingerprint matching,” in Proc.
Int. Conf. Pattern Recog., vol. 1, Sep. 2000, pp. 25–29.

[12] B. Bhanu and X. Tan, “Learned templates for feature extraction in
fingerprint images,” in Proc. IEEE Conf. Computer Vision and Pattern
Recog., vol. 2, 2001, pp. 591–596.

[13] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs.. Cambridge, MA: MIT Press, 1994.

300 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 3, AUGUST 2005

[14] R. Poli, “Genetic programming for feature detection and image segmen-
tation,” in AISB Workshop Evolutionary Computing, T. C. Forgarty, Ed.
Brighton, UK, 1996, pp. 110–125.

[15] S. A. Stanhope and J. M. Daida, “Genetic programming for automatic
target classification and recognition in synthetic aperture radar imagery,”
in Proc. Evolutionary Programming VII, 1998, pp. 735–744.

[16] D. Howard, S. C. Roberts, and R. Brankin, “Target detection in SAR
imagery by genetic programming,” Adv. Eng. Soft., vol. 30, no. 5, pp. 303–
311, May 1999.

[17] S. C. Roberts and D. Howard, “Evolution of vehicle detectors for infrared
line scan imagery,” in Proc. Evolutionary Image Anal., Signal Process.,
and Telecommunic., 1999, pp. 110–125.

[18] M. Kamijo, “Classifying fingerprint images using neural network: Deriv-
ing the classification state,” in Proc. IEEE Int. Conf. Neural Netw., vol. 3,
Apr. 1993, pp. 1932–1937.

[19] Y. Qi, J. Tian, and R. W. Dai, “Fingerprint classification system with
feedback mechanism based on genetic algorithm,” in Proc. Int. Conf.
Pattern Recog., vol. 1, Aug. 1998, pp. 163–165.

[20] F. Su, J. A. Sun, and A. Cai, “Fingerprint classification based on fractal
analysis,” in Proc. Int. Conf. Signal Process., vol. 3, 2000, pp. 1471–1474.

[21] M. S. Pattichis, G. Panayi, A. C. Bovik, and S. P. Hsu, “Fingerprint
classification using an AM-FM model,” IEEE Trans. Image Process.,
vol. 10, no. 6, pp. 951–954, Jun. 2001.

[22] S. Bernard, N. Boujemaa, D. Vitale, and C. Bricot, “Fingerprint classifi-
cation using kohonen topologic map,” in Proc. Int. Conf. Image Process.,
vol. 3, 2001, pp. 230–233.

[23] S. M. Mohamed and H. O. Nyongesa, “Automatic fingerprint classifi-
cation system using fuzzy neural techniques,” in Proc. IEEE Int. Conf.
Fuzzy Systems, vol. 1, May 2002, pp. 358–362.

[24] A. M. Bazen and S. H. Gerez, “Systematic methods for the computation
of the directional fields and singular points of fingerprints,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 905–919, July 2002.

[25] C. I. Watson and C. L. Wilson, NIST special database 4, U.S. National
Institute of Standards and Technology, 1992.

Xuejun Tan received the B.S. degree in automation
from Tian Jin University, Tian Jin, China, in 1995,
the M.S. degree in pattern recognition and artificial
intelligence from the Institute of Automation, Chi-
nese Academy of Sciences, Beijing, China, in 1998,
and the Ph.D. degree in electrical engineering from
the University of California, Riverside, in 2003.

Dr. Tan’s research interests include biometrics,
image processing, pattern recognition, and machine
learning.

Bir Bhanu (S’72–M’82–SM’87–F’95) received the
S.M. and E.E. degrees in electrical engineering and
computer science from the Massachusetts Institute
of Technology, Cambridge, the M.B.A. degree from
the University of California, Irvine, and the Ph.D.
degree in electrical engineering from the Image Pro-
cessing Institute, University of Southern California,
Los Angeles.

Currently, he is the Director of the Center for
Research in Intelligent Systems at the University of
California, Riverside, where he has been a professor

and Director of Visualization and Intelligent Systems Laboratory since 1991.
Previously, he was a Senior Honeywell Fellow at Honeywell, Inc., in Minneapo-
lis, MN. He has been on the faculty of the Department of Computer Science at
the University of Utah, Salt Lake City, and has worked at Ford Aerospace and
Communications Corporation, CA, INRIA-France, and IBM San Jose Research
Laboratory, CA. He has been the principal investigator of various programs
for DARPA, NASA, NSF, AFOSR, ARO, and other agencies and industries
in the areas of learning and vision, image understanding, pattern recognition,
target recognition, biometrics, navigation, image databases, and machine vision
applications. He is the coauthor of several books and many published articles.
He has received two outstanding paper awards from the Pattern Recognition
Society and industrial and university awards. He has been on the editorial board
of various journals and has edited special issues of several IEEE transactions
and other journals. He holds 11 U.S. and international patents. He has been
General Chair for IEEE Workshops on Applications of Computer Vision, Chair
for the DARPA Image Understanding Workshop, General Chair for the IEEE
Conference on Computer Vision and Pattern Recognition, and Program Chair
for the IEEE Workshops on Computer Vision Beyond the Visible Spectrum.

Dr. Bhanu is a Fellow of the American Association for the Advancement of
Science, International Association of Pattern Recognition, and The International
Society for Optical Engineering.

Yingqiang Lin received the B.S. and M.S. degrees in
computer science from Fudan University, Shanghai,
China, in 1991 and 1994, respectively, and the Ph.D.
degree in computer science from the University of
California, Riverside, in June 2003.

Dr. Lin’s research interests include image process-
ing, pattern recognition and machine learning.

