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The focus of this paper is optimizing the recognition of vehicles in Synthetic Aperture
Radar (SAR) imagery by exploiting the azimuthal variance of scatterers using multiple
SAR recognizers at different look angles. The variance of SAR scattering center locations
with target azimuth leads to recognition system results at different azimuths that are
independent, even for small azimuth deltas. Extensive experimental recognition results
are presented in terms of receiver operating characteristic (ROC) curves to show the
effects of mulitiple look angles on recognition performance for MSTAR vehicle targets
with configuration variants, articulation, and occlusion.

Keywords: Automatic target recognition; synthetic aperture radar; multiple recognizers;
recognizing occluded objects; articulated object recognition; recognizing configuration
variants.

1. Introduction

In this paper we are concerned with optimizing the recognition of vehicles in Syn-
thetic Aperture Radar (SAR) imagery by using multiple SAR. recognizers at differ-
ent look angles. Methods to acquire multi-look SAR data would currently involve
using multiple platforms or multiple passes, however, one can also envision the
future potential of multiple sensors on a single platform. In this research, the recog-
nition system starts with real SAR chips (at one foot resolution) of actual military
vehicles from the MSTAR public data' and ends with the identification of a spe-
cific vehicle type (e.g. a T72 tank). A major challenge is that the vehicles can have
significant external configuration variants (fuel barrels, searchlights, etc.), they can
be in articulated configurations (such as a tank with its turret rotated), or they
can be partially occluded. SAR recognition results for our basic approach are com-
pared (in Ref. 2) to other different approaches using real SAR images from the
MSTAR public data. This paper extends our previous work on SAR recognition®?
to multiple recognizers at different look angles. It takes a principled approach
to multiple look angle SAR recognition and answers two fundamental questions:
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(1) what should the next view angle be? and (2) how to integrate the results? We
know of no prior published work on SAR recognition at multiple look angles.
The key contributions of this paper are:

o Uses the fundamental azimuthal variance of SAR scatterer locations as the basis
for a principled approach to multiple look angle SAR recognition.

e Demonstrates that SAR recognition results at different azimuths are independent,
even for small azirmuths, such as one degree.

o Shows that decision level fusion of two observations at different look angles can
substantially increase SAR recognition performance. _

e Shows that these results apply to target configuration variants, articulated
objects and occluded objects.

The remainder of this paper is organized as follows: the next section demon-
strates the azimuthal variance of SAR. scattering center locations; Sec. 3 gives a
description of the SAR recognition syster; Sec. 4 demonstrates that multiple look
angle SAR. recognition results are independent; Sec. 5 gives the experimental results
for multiple look angle SAR recognition with configuration variant, articulated and
occluded objects; and finally Sec. 6 has the conclusions and suggests future work.

2. Azimuthal Variance of SAR Scatterers

The typical detailed edge and straight line features of man-made objects in the
visual realm do not have good counterparts in SAR images of sub-components of
vehicle-sized objects at one foot resolution. However, there are a wealth of peaks
in the radar return corresponding to scattering centers. The relative locations of
SAR scattering centers, determined from local peaks in the radar, are related to the
aspect and physical geometry of the object, independent of translation and serve
as distinguishing features. In addition to the scatterer locations, the magnitudes of
the peaks are also features that we use for recognition.

Figure 1 shows an example of a typical T72 tank SAR target image (at 66°
azimuth) and the associated region of interest (ROI) with the locations of the SAR
scattering centers superimposed. The typical rigid body rotational transformations
for viewing objects in the visual world do not apply much for the specular radar
reflections of SAR images, where we use the locations of SAR scattering centers
(determined from local peaks in the radar return) as features. This is because, as
we have previously shown, a significant number of features do net typically persist
over a few degrees of rotation.” :

Because the radar depression angle is generally known, the significant unknown
target rotation is (360°) in azimuth. Azimuth persistence or invariance can be ex-
pressed in terms of the percentage of scattering center locations that are unchanged
over a certain span of azimuth angles. It can be measured (for some base azimuth 8;)
by rotating the pixel locations of the scattering centers from an image at azimuth
6y by an angle A and comparing the resulting range and cross-range locations
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(a) T72: image. (b) T72: ROL

Fig. 1. Example MSTAR SAR image and ROI (with peaks) for a T72 tank at 66° azimuth,

with the scatterer locations from an image of the same ob ject at azimuth #y + A6.
More precisely, because the images are in the radar slant plane, we actually project
from the slant plane to the ground plane, rotate in the ground plane and project
back to the slant plane. Because the objects in the chips are not registered, we cal-
culate the azimuth invariance as the maximum number of corresponding scattering
centers (whose locations match within a given tolerance) for the optimum integer
pixel translation. This method of registration by finding the translation that yields
the maximum number of correspondences has the limitation that for very small or
no actual invariance it may find some false correspondences and report a slightly
higher invariance than in fact exists. To determine scattering center locations that
persist over a span of angles, there is an additional constraint that for a matching
scattering center to “persist” at the kth span A#y, it must have been a persistent
scattering center at all smaller spans Af;, where 0 < j < k. Averaging the results of
these persistent scattering center locations over 360 base azimuths gives the mean
azimuth invariance of the object.

Figure 2 shows an example of the mean scatterer location invariance {for the
40 strongest scatterers) as a funiction of azimuth angle span using T72 tank serial
number (#)132, with various definitions of persistence. In the “exact match” cases
the centroid of the rotated scatterer pixel from the image at 8y azimuth is within
the pixel boundaries of a corresponding scatterer in the image at 8y + Af. In the
“within 1 pixel” cases, the scatterer location is allowed to move into one of the
eight adjacent pixel locations. Note that for a 1° azimuth span, although only 20%
of the scatterer locations are invariant for an “exact match”, 65% of the scatterer
locations are invariant “within 1 pixel”. The cases labeled “persists” in Fig. 2
enforce the constraint that the scatterer exist for the entire span of angles and very
few scatterers continuously persist for even 5°. In the upper two cases (not labeled
“persists” } scintillation is allowed and the location invariance declines slowly with
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Fig. 2. Scatterer location persistence, T72 #132.

azimuth span. The “within 1 pixel” results (which allow scintillation) are consistent
with the one foot ISAR results of Dudgeon,® whose definition of persistence allowed
scintillation. Because of the higher scatterer location invariance with 1° azimuth
span, in our research we use 360 azimuth models for each target, in contrast to
others who have used 5°,7 10°.8 and 12 models.®

The fact that the SAR scatterer locations do not persist over a span of even a
few degrees, demonstrated in Fig. 2, strongly indicates that observations at differ-
ent szimuth angles are independent. Thus, what had previously been viewed as a
“problem” for modeling, now presents a significant opportunity for integrating the
results of SAR observations at multiple look angles.

3. SAR Recognition System

Establishing an appropriate local coordinate reference frame is critical to reliable
recognition, based on locations of features in SAR images, of objects that can be
in articulated configurations or be partially occluded. The object articulation and
occlusion problems require the use of local features; global features and measures
do not work, because the center of mass and principal axes of the object change
with articulation or occlusion.? In a SAR image the radar range and cross-range
directions are known and choosing any local reference point, such as a scattering
center location, establishes a reference coordinate system. The relative distance and
direction of the other scattering centers can be expressed in radar range and cross-
range coordinates, and naturally tesselated into integer buckets that correspond to
the radar range/cross-range bins. The scale is determined by the bin size, which
is a function of the frequency of the radar (one foot resolution and X-band in
this case). The recognition system takes advantage of this natural system for SAR,
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where selecting a single basis point performs the translational transformation and
fixes the coordinate system to a “local” origin.

The SAR recognition system uses standard non-articulated models of the ob-
jects (at 1° azimuth increments) to recognize the same objects in noun-standard,
articulated and occluded configurations. The relative locations and magnitudes of
the N strongest SAR scattering centers (local maxima. in the radar return signal)
are used as characteristic features. Using a technique similar to geometric hashing,10
the relative positions of pairs of scattering centers in the range (R) and cross-range
(C) directions are the initial indices to a look-up table of labels that give the asso-
ciated target type/pose and the remaining features: range and cross-range position
of the “origin” and the magnitudes of the two scatterers. (The “origin”, 0, is the
strongest of a pair of scatterers, the other is a “point”, P.) Any local reference
point, such as a scattering center location, can be chosen as an origin to establish a
reference coordinate system for building a model of an object at a specific azimuth
angle pose. For ideal data, picking the location of the strongest scattering center as
the origin is sufficient. However, for potentially corrupted data where any scattering
center could be spurious or missing (due to the effects of noise, target articulation,
occlusion, non-standard target configurations, etc.), we use all N strongest scat-
tering centers in turn as the origin to ensure that a valid local reference point is
obtained. Thus, to handle articulation and occlusion, the size of the look-up table
models (and also the number of relative distances that are considered in the test
image during recognition) are increased from N to N(N —1)/2.

The recognition process is an efficient search for positive evidence, using relative
locations of scattering centers to access the look-up table and generate votes for
the appropriate object, azimuth, range and cross range translation. Constraints are
applied to limit the allowable percent difference in the magnitudes of the data and
model scattering centers to +L%. (The design parameters N and I are optimized,
based on experiments, to produce the best forced recognition results). Given the
MSTAR targets are “centered” in the chips, a +5 pixel limit on allowable trans-
lations is imposed for computational efficiency. To accommodate some uncertainty
in the scattering center locations, the eight-neighbors of the nominal range and
cross-range relative location are also probed and the translation results are accu-
mulated for a 3 x 3 neighborhood in the translation space. The process is repeated
with different scattering centers as reference points, providing muitiple queries of
the model database to handle spurious scatterers that arise due to articulation,
occlusion or configuration differences. The recognition algorithm actually makes a
total of 9N (N —1)/2 queries of the look-up table to accumulate evidence for the
appropriate target type, azimuth angle and translation. In contrast to many other
model-based approaches (e.g. Refs. 1 and 8), this recognition process is not exhaus-
tively searching all the models; instead we are doing table look-ups based on the
relative distances between the strongest scatterers in the test image to accumulate
evidence for the recognition result. The efficiency of this approach is indicated by
the typical one second time to process a single test image with 38 scatterers (using
a Sun Ultra 2 workstation with no attempts to optimize the code).
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To handle identification with “unknown” objects, we introduce a criterta for
the quality of the recognition result (e.g. the votes for the potential winning object
exceed some threshold, D). By varying the decision rule parameter (typically from
50 to 400 votes in 10 vote increments) we obtain a form of Receiver Operating
Characteristic (ROC) curve with probability of correct recognition (PCR) versus
probability of false alarm (PFA).

More formally, a radar image of object ¢ at azimuth pose a consists of N (or
more) scatterers, each scatterer k with a magnitude Sy and range and cross-range
locations Ry and Cj, which (for consistency) are ordered by decreasing magnitude
such that Sy > Sgy1 where k = 1,...,N. A model M of object c at azimuth a is
given by:

M(c,a) = {Vi(c,a), Va(c,a), - - -, Vivv—1) 2{c 6} (1)

which is comprised of the set of all pairwise observations, V:
i(c,a) = {fu, fas.. ,fa}i, (2)
where i =1,2,...,N(N —1)/2, fi = Rp — Ro, f2=Cp — Co, fz2 = Ro, fa = Co,

fs = So, fe = Sp, and with the individual scatterers in each pair labeled O and P
so that Sp > Sp for consistency (see Fig. 3).
We define a match, H, as:

< =

H(T/E,V;,-)z{l if |(fo)i — (fo)sl S0, VO=1,...,6, )
0 otherwise

where the match constraints are 8; = da = 0 pixels, §3 = §4 = 5 pixels (translation)

and &5 = g = L percent. A subscript ¢ applied to a match denotes that the match,

H,, is associated with the relative translation {(R, C) = (Afs, Afs) of the stronger

scatterers in the two observations.

The recognition result, T, for some test image (with a test class, z, and test
azimuth, ¥, to be determined) is a maximal match that is greater than a threshold,
D, given by:

9 N(N-1)/2 g

[e;al, if argmax | 3 E > H(V (2,9), Vin(e,0)) | > D
=1 k=1

T = n=1 (4)

“unknown”, otherwise,

where Vi, € M(c,a) ¥m such that [(f1)vr — (fi)w.| = 0 and |[(f2)vp — (fo)vi| =

0 (note: this formulation avoids exhaustive search of all the models and can be
implemented as a look-up table). The nine observations (denoted by the superseript

n in V) are made to account for location uncertainty by taking the 3 x 3 neighbors

about the nominal values for the relative locations f1 and fz of scatterer pair & in

the test image. Similarly, the nine matches (denoted by the superscript { in H}

are computed at the 3 x 3 neighbors located £1 pixel about the resulting nominal

value for translation, (R, C), of the scatterers in the test image from the model.
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Fig. 3. Observation for a pair of scatterers O and P.

4. Independence of Multiple Look Angle SAR Recognizers

The azimuthal variance of SAR scatterer locations, previously demonstrated in
Fig. 2, strongly indicates that observations at different azimuth angles are indepen-
dent. Given the probability of one SAR recognizer failing, F1, where F1 = 1-PCR;
then if two recognizers are independent, the probability that both recognizers are
wrong, F2, is simply 2 = F'12. In order to obtain the most failures, we pick the
object configuration variant case, which we had previously determined? to be the
most difficult case for our SAR recognition approach (compared to the depression
angle change and object articulation cases),

In the configuration variant experiments a single configuration of the T'72 (#132)
and BMP2 (#C21) vehicles are used as the models and the test data are two
other variants of each vehicle type (T72 #812, #s7 and BMP2 #9563, #9566),
all at 15° depression angle. Comparing the model with the test data at the same
azimuth for different configurations of the same type of vehicle, typically less than
20 percent of the scatterer locations are invariant with configuration differences for
an exact match of scatterer locations, while about 60 percent are quasi-invariant
for a location match within a 1 pixel (8 neighbor) uncertainty region.?

Recognition results are obtained using the optimutn parameters of N = 38 scat-
tering centers and a percent magnitude change, L, of less than +11%. Figure 4
shows the probability that two recognizers are both wrong for forced recognition
of configuration variants as a function of the difference in azimuth angle of the
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Fig. 4. Probability that two recognizers are both wrong.

object from the two recognizers. (While Fig. 4 emphasizes the small angles by only
showing up to £60 degrees, the results out to £180 degrees are similar.) The single
recognizer result, 19 failures of 414 trials, is an F1 failure rate of 0.0459, which is
plotted for reference as point ‘a’ in Fig. 4. For an F1 of 0.0459 the predicted value
of F2 is 0.0021, which is very close to the overall experimental average I'2 of 0.0025.
The other interesting observation from Fig. 4 is that the results are independent,
of the angle difference. Although Fig. 2 shows that there is some correlation in
scatterer locations for a one degree angle change (about 20 percent for an exact
match), Fig. 4 shows that the results for two recognizers are independent even for
small angle differences like one degree. This demonstration that multiple look an-
gle SAR recognition results are independent, even for small angles, provides the
scientific basis for both measuring and improving the quality of recognition results.

5. Multiple Look Angle SAR Recognition Results
5.1. Configuration vaﬁiantsl

In contrast to the forced recognition case described in the previous section, in these
configuration variant experiments the BTR70 armored personnel carrier (#c71)
is used as an unmodeled confuser vehicle to test the recognition system and the
vote threshold parameter is used to generate “unknown” results. The other test
conditions and parameters are the same as the forced recognition case (most signi-
ficantly, the models are one configuration of the T72 and BMP?2 vehicles and the
test vehicles are two different configurations).

Figure 5 shows the effect of multiple look angle recognizers on the probability
of false alarm using the BTR70 as a confuser. (The BTR70 is a more difficult; case
than other confusers such as the BRDM2 armored personnel carrier or the ZSU
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23/4 anti-aircraft gun.?) In the cases with two recognizers, the decision rule is that
if either gives results above the vote threshold, the result is declared a target (which,
for these BTR70 confusers, would be a false alarm). Thus, with this “target bias”
decision rule for the multiple recognizer cases have higher false alarms than a single
recognizer. It is important to note that the penalty in increased false alarms is
small for the left tail of the curve. Figure 5 also shows that the false alarm rates
are similar for all the two look angle recognizer cases and that agreement on the
“target” is basically irrelevant for a false alarm.
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Fig. 6. Effect of multi-look on probability of correct recognition.
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Figure 6 shows the effect of multiple look angle recognizers on the probability
of correct recognition for the configuration variant case where the test data are
different configurations of the T72 and BMP2. The top curve shows the results for
the 91.7 percent of the time when two recognizers at different look angles agree on
the result. The bottom curve is for the remaining 8.3 percent of the time when the
two recognizers disagree and the answer that gets the most votes is chosen. The
second curve, Iabeled “best of two” , uses a decision level fusion rule that simply picks
the target based on which of the two recognizers got the most votes. (This case is
also the weighted average of the agree and disagree cases.) In Fig. 6 the probability
of correct recognition decreases as the vote threshold increases (to the left in Fig. 6),
because the higher threshold causes more targets to be clagsified as “unknown”. The
recognition results for using the best of two recognizers at different look angles are
substantially better than the results for a single recognizer. This is basically the
result of fewer “misses”, where a target object is classified as an “unknown”; because
there are two opportunities to get above the vote threshold and declare a “target”.

Figure 7 combines the results of Figs. 5 and 6 and shows the effect of using
multiple look angle recognizers on the Receiver Operating Characteristic curve for
the configuration variant cases. These recognition results, using the best of two
recognizers at different look angles, are substantially better than the results for a
single recognizer. For example, at 2 0.10 PFA the PCR for the best of two look angles
is 0.8324, compared to 0.7091 for a single recognizer. The performance improvement
is because the cost in increased false alarms (in Fig. 5) is low compared to the
benefits in increased recognition (in Fig. 6), due to fewer targets being classified as
“unknown”.
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Fig. 7. Effect of multi-look on configuration variant ROC curve.
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5.2. Articulation and occlusion

In the articulated object experiments the models are non-articulated versions of
the T72 tank #a64 and the ZSU 23/4 anti-aircraft gun #d08 (with the gun turret
straight forward). The test data are articulated versions of these same serial number
objects (with the turret rotated) and the BRDM2 armored personnel carrier #e71
is a confuser vehicle (all at 30° depression angle). The results of applying the same
techniques {and all the same recognition system parameters) in these articulated
object experiments are shown as ROC curves in Fig. 8. Again the results for using
two recognizers at different look angles and picking the answer with the largest
number of votes are better than the single recognizer results.

The occlusion experiments use four models: T72 tank #132, BMP2 APC #C21,
BTR70 APC #¢71 and ZSU23/4 gun #d08 and the unmodeled confuser vehicle is
BRDM2 APC (#e71) (all at 15° depression angle). Since there is no real SAR data
with occluded objects available to the general public, the occluded test data in
this paper is simulated by starting with a given number of the strongest scattering
centers in target chips of these same four objects and then removing the appropriate
number of scattering centers encountered in order from one of four perpendicular
directions d; (where d; and ds are the cross range directions, along and opposite the
flight path respectively, and d and d4 are the up range and down range directions).
Then the same number of scattering centers (with random magnitudes) are added
back at random locations within the original bounding box of the chip. This is
the same technique used in Ref. 3; it keeps the number of scatterers constant and
acts as a surrogate for some potential occluding object. In some of our previous
work on occluded objects,? the confuser vehicle was occluded. However, while the
target may be occluded, the confuser vehicle may not necessarily be occluded in the
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practical case. Hence, in this research the BRDM2 APC (#e71) is an unoccluded
confuser vehicle, which is a substantially more difficult case.

Figure 9 shows the effect of multiple look angle recognizers on the probability
of correct recognition for the case of 50% occluded targets and an unoccluded
confuser. The same techniques {and all the same recognition system parameters)
used in the prior configuration variant and articulation experiments are applied to
these occluded object experiments. Here again, using two recognizers at different
look angles and a decision level fusion rule of picking the answer with the largest
number of votes gives better results than a single recognizer.

6. Conclusions and Future Work

The fundamental azimuthal variance of SAR scatterer locations can be successfully
used as the basis for a principled and effective multiple look angle SAR recognition
approach. The experiments demonstrate that SAR recognition results at different
azimuths are independent, even for small azimuths, such as one degree. In addition,
using decision level fusion of two observations at different look angles can substan-
tially increase SAR. recognition performance for target configuration variants. These
techniques can also be successfully applied to recognition of articulated objects and
occluded objects.

This paper considers only two look angles, but a similar approach could be used
for more look angles. In addition, more formal methods, like Dempster-Shafer and
Bayesian approaches, can be used for decision level fusion. Our approach can be
applied to resolve ambiguities with multiple looks from the same or different sensor

platforms.
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