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Abstract 

 
      In this paper, we learn to discover composite operators and features that are synthesized from 

combinations of primitive image processing operations for object detection. Our approach is 

based on genetic programming (GP). The motivation for using GP-based learning is that we hope 

to automate the design of object detection system by automatically synthesizing object detection 

procedures from primitive operations and primitive features. There are many basic operations 

that can operate on images and the ways of combining these primitive operations to perform 

meaningful processing for object detection are almost infinite. The human expert, limited by 

experience, knowledge and time, can only try a very small number of conventional 

combinations. Genetic programming, on the other hand, attempts many unconventional 

combinations that may never be imagined by human experts. In some cases, these 

unconventional combinations yield exceptionally good results. To improve the efficiency of GP, 

we propose soft composite operator size limit to control the code bloat problem while at the 

same time avoid severe restriction on the GP search. Our experiments, which are performed on 

selected regions of images to improve training efficiency, show that GP can synthesize effective 

composite operators consisting of pre-designed primitive operators and primitive features to 

effectively detect objects in images and the learned composite operators can be applied to the 

whole training image and other similar testing images. 
 
Keywords: object detection, genetic programming, composite feature, ROI extraction. 
 
 
1. Introduction 

In recent years, with the advent of newer, much improved and inexpensive imaging 

technologies and the rapid expansion of the Internet, more and more images are becoming 
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available. Recent developments in image collection platforms produce far more imagery than the 

declining ranks of image analysts are capable of handling due to the speed limitation of human 

beings in analyzing images. Relying entirely on human image experts to perform image 

processing, image analysis and image classification becomes more and more unrealistic. 

Building automatic object detection and recognition systems to take advantage of the speed of 

computer is a viable and important solution to the increasing need of processing a large quantity 

of images efficiently.  

Designing automatic object detection and recognition systems is one of the important 

research areas in computer vision and pattern recognition [1, 2]. The major task of object 

detection is to locate and extract regions of an image that may contain potential objects so that 

the other parts of the image can be ignored. It is an intermediate step to object recognition. The 

regions extracted during detection are called regions-of-interest (ROIs). ROI extraction is very 

important in object recognition, since the size of the image is usually large, leading to the heavy 

computational burden of processing the whole image. By extracting ROIs, the recognition 

system can focus on the extracted regions that may contain potential objects and this can be very 

helpful in improving the recognition rate. Also by extracting ROIs, the computational cost of 

object recognition is greatly reduced, thus, improving the recognition speed. This advantage is 

particularly important for real-time applications, where the recognition accuracy and speed are of 

prime importance.  

      However, The quality of object detection is dependent on the type and quality of features 

extracted from an image. There are many features that can be extracted. The question is what are 

the appropriate features or how to synthesize features, particularly useful for detection, from the 

primitive features extracted from images. The answer to these questions is largely dependent on 

the intuitive instinct, knowledge, previous experience and even the bias of algorithm designers 

and experts in object recognition by computer. 

      In this paper, we use genetic programming (GP) to synthesize composite features, which are 

the output of composite operators, to perform object detection. A composite operator consists of 

primitive operators and it can be viewed as a way of combining primitive operations on images. 

The basic approach is to apply a composite operator on the original image or primitive feature 

images generated from the original one; then the output image of the composite operator, called 

composite feature image, is segmented to obtain a binary image or mask; finally, the binary 
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mask is used to extract the region containing the object from the original image. The individuals 

in our GP based learning are composite operators represented by binary trees whose internal 

nodes represent the pre-specified primitive operators and the leaf nodes represent the original 

image or the primitive feature images. The primitive feature images are pre-defined, and they are 

not the output of the pre-specified primitive operators. 

 

2. Motivation and Related Research 

2.1.Motivation 

       In most imaging applications, human experts design an approach to detect potential objects 

in images. The approach can often be dissected into some primitive operations on the original 

image or a set of related feature images obtained from the original one. It is the expert who, 

relying on his/her rich experience, figures out a smart way to combine these primitive operations 

to achieve good detection results. The task of synthesizing a good approach is equivalent to 

finding a good point in the space of composite operators formed by the combination of primitive 

operators. 

      Unfortunately, the number of ways of combining primitive operators is almost infinite. The 

human expert can only try a very limited number of conventional combinations. However, a GP 

may try many unconventional ways of combining primitive operations that may never be 

imagined by a human expert. Although these unconventional combinations are very difficult, if 

not impossible, to be explained by domain experts, in some cases, it is these unconventional 

combinations that yield exceptionally good results. The inherent parallelism of GP and the high 

speed of current computers allow the portion of the search space explored by GP to be much 

larger than that by human experts. The search performed by GP is not a random search. It is 

guided by the fitness of composite operators in the population. As the search proceeds, GP 

gradually shifts the population to the portion of the space containing good composite operators. 

 

2.2. Related Research and Contributions 

       Genetic programming, an extension of genetic algorithm, was first proposed by Koza [3] 

and has been used in image processing, object detection and object recognition. Harris et al. [4] 

applied GP to the production of high performance edge detectors for 1D signals and image 

profiles. The method is also extended to the development of practical edge detectors for use in 
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image processing and machine vision. Poli [5] used GP to develop effective image filters to 

enhance and detect features of interest or to build pixel-classification-based segmentation 

algorithms. Bhanu and Lin [6] used GP to learn composite operators for object detection. Their 

initial experimental results showed that GP is a viable way of synthesizing composite operators 

from primitive operations for object detection. Stanhope and Daida [7] used GP to generate rules 

for target/clutter classification and rules for the identification of objects. To perform these tasks, 

previously defined feature sets are generated on various images and GP is used to select relevant 

features and methods for analyzing these features. Howard et al. [8] applied GP to automatic 

detection of ships in low-resolution SAR imagery by evolving detectors. Roberts and Howard 

[9] used GP to develop automatic object detectors in infrared images.  

 Unlike the work of Stanhope and Daida [7], Howard et al. [8] and Roberts and Howard [9], 

the input and output of each node of the tree in our system are images, not real numbers. The 

primitive features defined in this paper are more general and easier to compute than those used 

in [7, 8]. Unlike our previous work [6], we take off the hard size limit of composite operator and 

use a soft size limit to let GP search more freely while at the same time prevent the code-bloat 

problem. The training in this paper is not performed on a whole image, but on the selected 

regions of an image and this is very helpful in reducing the training time. Of course, training 

regions must be carefully selected and represent the characteristics of training images [10]. Also, 

two other types of mutation are added to further increase the diversity of the population. Finally, 

more primitive feature images are employed. The primitive operators and primitive features 

designed in this paper are very basic and domain-independent, not specific to a kind of imagery. 

Thus, our system and methodology can be applied to a wide variety of images. We show results 

using synthetic aperture radar (SAR), infrared (IR) and color video images.  

 

3. Technical Approach 

        In our GP based approach, individuals are composite operators represented by binary trees. 

The search space of GP is the space of all possible composite operators. The space is very large. 

To illustrate this, consider only a special kind of binary tree, where each tree has exactly 30 

internal nodes and one leaf node and each internal node has only one child. For 17 primitive 

operators and only one primitive feature image, the total number of such trees is 1730. It is 

extremely difficult to find good composite operators from this vast space unless one has a smart 
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search strategy. 
 
3.1. Design Considerations 

   There are five major design considerations, which involve determining the set of terminals, the 

set of primitive operators, the fitness measure, the parameters for controlling the evolutionary 

run, and the criterion for terminating a run. 

• The Set of Terminals:  The set of terminals used in this paper are sixteen primitive feature 

images generated from the original image: the first one is the original image; the others are 

mean, deviation, maximum, minimum and median images obtained by applying templates of 

sizes 3×3, 5×5 and 7×7, as shown in Table 1. These images are the input to composite operators. 

GP determines which operations are applied on them and how to combine the results. To get the 

mean image, we translate the template across the original image and use the average pixel value 

of the pixels covered by the template to replace the pixel value of the pixel covered by the 

central cell of the template. To get the deviation image, we just compute the pixel value 

difference between the pixel in the original image and its corresponding pixel in the mean image.  

To get maximum, minimum and median images, we translate the template across the original 

image and use the maximum, minimum and median pixel values of the pixels covered by the 

template to replace the pixel value of the pixel covered by the central cell of the template, 

respectively. 

 Table 1. Sixteen primitive feature images used as the set of terminal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• The Set of Primitive Operators: A primitive operator takes one or two input images, 

performs a primitive operation on them and stores the result in a resultant image. Currently, 17 

primitive operators are used by GP to form composite operators, as shown in Table 2, where A 

No
. 

Primitive 
feature image 

description No. Primitive 
feature image 

description 

0 PFIM0 Original image 8 PFIM8 5×5 maximum image 
1 PFIM1 3×3 mean image 9 PFIM9 7×7 maximum image 
2 PFIM2 5×5 mean image 10 PFIM10 3×3 minimum image 
3 PFIM3 7×7 mean image 11 PFIM11 5×5 minimum image 
4 PFIM4 3×3 deviation image 12 PFIM12 7×7 minimum image 
5 PFIM5 5×5 deviation image 13 PFIM13 3×3 median image 
6 PFIM6 7×7 deviation image 14 PFIM14 5×5 median image 
7 PFIM7 3×3 maximum image 15 PFIM15 7×7 median image 
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and B are input images of the same size and c is a constant (ranging from –20 to 20) stored in the 

primitive operator. For operators such as ADD, SUB, MUL, etc., that take two images as input, 

the operations are performed on the pixel-by-pixel basis. In the operators MAX, MIN, MED, 

MEAN and STDV, 3×3, 5×5 or 7×7 neighborhood are used with equal probability. 

Table 2. Seventeen primitive operators  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• The Fitness Measure: The fitness value of a composite operator is computed in the 

No. Operator  Description 
1 ADD (A, B) Add images A and B. 
2 SUB (A, B) Sub image B from A. 
3 MUL (A, B) Multiply images A and B. 
4 DIV (A, B) Divide image A by image B (If the pixel in B has value 0, the 

corresponding pixel in the resultant image takes the maximum pixel 
value in A). 

5 MAX2 (A, B) The pixel in the resultant image takes the larger pixel value of images A 
and B.                                                                     

6 MIN2 (A, B) The pixel in the resultant image takes the smaller pixel value of images A 
and B.                                                                     

7 ADDC (A) Increase each pixel value by c.    
8 SUBC (A) Decrease each pixel value by c.    
9 MULC (A) Multiply each pixel value by c.    
10 DIVC (A) Divide each pixel value by c.    
11 SQRT (A) For each pixel with value v, if v ≥ 0, change its value to v . Otherwise, 

to v−− .  
12 LOG (A) For each pixel with value v, if v ≥ 0, change its value to ln(v). Otherwise, 

to –ln(-v). 
13 MAX (A) Replace the pixel value by the maximum pixel value in a 3×3, 5×5 or 

7×7 neighborhood. 
14 MIN (A) Replace the pixel value by the minimum pixel value in a 3×3, 5×5 or 7×7 

neighborhood. 
15 MED (A) Replace the pixel value by the median pixel value in a 3×3, 5×5 or 7×7 

neighborhood. 
16 MEAN (A) Replace the pixel value by the average pixel value of a 3×3, 5×5 or 7×7 

neighborhood. 
17 STDV (A) Replace the pixel value by the standard deviation of pixels in a 3×3, 5×5 

or 7×7 neighborhood. 
 

following way. Suppose G and G’ are foregrounds in the ground truth image and the resultant 

image of the composite operator respectively. Let n(X) denote the number of pixels within region 

X, then Fitness = n(G∩G’) / n(G ∪ G’). The fitness value is between 0 and 1. If G and G’ are 

completely separated, the value is 0; if G and G’ are completely overlapped, the value is 1. 
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• Parameters and Termination:  The key parameters are the population size M, the number 

of generation N, the crossover rate, the mutation rate and the fitness threshold. The GP stops 

whenever it finishes the pre-specified number of generations or whenever the best composite 

operator in the population has fitness value greater than the fitness threshold. 

 
3.2. Selection, Crossover and Mutation 

    GP searches through the space of composite operator to generate new composite operators, 

which may be better than the previous ones. By searching through the composite operator space, 

GP gradually adapts the population of composite operators from generation to generation and 

improves the overall fitness of the whole population. More importantly, GP may find an 

exceptionally good composite operator during the search. The search is done by performing 

selection, crossover and mutation operations. The initial population is randomly generated and 

the fitness of each individual is evaluated. 

• Selection: The selection operation involves selecting composite operators from the current 

population. In this paper, we use tournament selection, where a number of individuals are 

randomly selected from the current population and the one with the highest fitness value is 

copied into the new population. The size of tournament is 5. 

• Crossover: To perform crossover, two composite operators are selected on the basis of their 

fitness values. The higher the fitness value, the more likely the composite operator is selected for 

crossover. These two composite operators are called parents. One internal node in each of these 

two parents is randomly selected, and the two subtrees rooted at these two nodes are exchanged 

between the parents to generate two new composite operators, called offspring. The offspring are 

composed of subtrees from their parents. If two composite operators are somewhat effective in 

detection, then some of their parts probably have some merit. The reason that an offspring may 

be better than the parents is that recombining randomly chosen parts of somewhat effective 

composite operators may yield a new composite operator that is even more fit in detection. 

     It is easy to see that the size of one of the offspring (i.e., the number of nodes in the binary 

tree representing the offspring), may be greater than both parents. So if we do not control the 

size of composite operator by implementing crossover in this simple way, the sizes of composite 

operators will become larger and larger as GP proceeds. This is the well-known code bloat 

problem of GP. It is a very serious problem, since when the size becomes too large, it will take a 
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long time to execute a composite operator, thus, greatly reducing the search speed of GP. 

Further, large-size composite operators may overfit the training data by approximating various 

noisy components of the image. Although the results on the training image may be very good, 

the performance on the unseen testing images may be bad. Also, large composite operators take 

up a lot of computer memory. Due to the finite computer resources and the desire to achieve a 

good running speed (efficiency) of GP, we must limit the size of composite operator by 

specifying its maximum size. In our previous work [6], if the size of one offspring exceeds the 

maximum size allowed, the crossover operation is performed again until the sizes of both 

offspring are within the limit. Although this simple method guarantees that the size of composite 

operator won’t exceed the size limit, it is a brutal method since it sets a hard size limit. The hard 

size limit may greatly restrict the search performed by GP, since after randomly selecting a 

crossover point in one composite operator, GP cannot select some nodes of the other composite 

operator as a crossover point in order to guarantee that both offspring won’t exceed the size 

limit. However, restricting the search may greatly reduce the efficiency of GP, making it less 

likely to find good composite operators.  

      One may suggest that after two composite operators are selected, GP may perform crossover 

twice and may each time keep the offspring of smaller size. This method can enforce the size 

limit and will prevent the sizes of offspring composite operators from growing large. However, 

GP will now only search the space of these smaller composite operators. With small number of 

nodes, a composite operator may not capture the characteristics of objects to be detected. How to 

avoid restricting the GP search while at the same time prevent code-bloat is the key to the 

success of GP and it is still a subject of intensive research. The key is to find a balance between 

these two conflicting factors.  

      In this paper, we set a composite operator size limit to prevent code-bloating, but unlike our 

previous work, the size limit is a soft size limit, so it restricts the GP search less severely than the 

hard size limit. With soft size limit, GP can select any node in both composite operators as 

crossover points. If the size of an offspring exceeds the size limit, GP still keeps it and evaluates 

it later. If the fitness of this large composite operator is the best or very close to the fitness of the 

best composite operator in the population, it is kept by GP, otherwise, GP randomly selects one 

of its sub-trees of size smaller than the size limit to replace it in the population. In this paper, GP 

discards any composite operator beyond the size limit unless it is the best one in the population.  
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• Mutation: In order to avoid premature convergence, mutation is introduced to randomly 

change the structure of some individuals to maintain the diversity of the population. Composite 

operators are randomly selected for mutation. There are three types of mutation invoked with 

equal probability: 

1. Randomly select a node of the binary tree representing the composite operator and replace 

the subtree rooted at this node, including the node selected, by another randomly generated 

binary tree 

2. Randomly select a node of the binary tree representing the composite operator and replace 

the primitive operator stored in the node with another primitive operator of the same 

number of inputs as the replaced one. The replacing primitive operator is selected at 

random from all the primitive operators with the same number of input as the replaced one. 

3. Randomly select two subtrees within the composite operator and swap these two subtrees. 

Of course, neither of the two sub-trees can be the sub-tree of the other. 
 
3.3.  Steady-state and Generational Genetic Programming 

        Both steady-state and generational genetic programming are used in this paper. In steady-

state GP, two parent composite operators are selected on the basis of their fitness for crossover. 

The children of this crossover replace a pair of composite operators with the smallest fitness 

values. The two children are executed immediately and their fitness values are recorded. Then 

another two parent composite operators are selected for crossover. This process is repeated until 

crossover rate is satisfied. Finally, mutation is applied to the resulting population and the 

mutated composite operators are executed and evaluated. The above cycle is repeated from 

generation to generation. In generational GP, two composite operators are selected on the basis 

of their fitness values for crossover and generate two offspring. The two offspring are not put 

into the current population and won’t participate in the following crossover operations on the 

current population. The above process is repeated until crossover rate is satisfied. Then, mutation 

is applied to the composite operators in the current population and the offspring from crossover. 

After mutation is done, selection is applied to the current population to select some composite 

operators. The number of composite operator selected must meet the condition that after 

combining with the composite operators from crossover, we get a new population of the same 

size as the old one. Finally, combine the composite operators from crossover with those selected 

from the old population to get a new population and the next generation begins. In addition, we 

 9



adopt an elitism replacement method that keeps the best composite operator from generation to 

generation. 

• Steady-state Genetic Programming: 

0.    randomly generate population P of size M and evaluate each composite operator in P. 

1. for gen = 1 to N do   // N is the number of generation 

2. keep the best composite operator in P. 

3. repeat 

4.      select 2 composite operators from P based on  their fitness values for crossover. 

5.      select 2 composite operators with the lowest fitness values in P for replacement. 

6.      perform crossover operation and let the 2 offspring replace the 2 composite 

  operators selected for replacement. 

7.     execute the 2 offspring and evaluate their fitness values. 

8. until crossover rate is met. 

9. perform mutation on each composite operator with probability of mutation_rate and 

evaluate mutated composite operators. 

10. After crossover and mutation, a new population P’ is generated. 

11.  let the best composite operator from population P replace the worst composite operator in    

P’ and let P = P’. 

12.  if  the fitness value of the best composite operator in P is above fitness threshold value 

then 

13.       stop. 

          endif 

14. check each composite operator in P. if its size exceeds the size limit and it is not the best 

composite operator in P, replace it with one of its subtree whose size is within the size 

limit. 

     endfor  // loop 1 

• Generational Genetic Programming: 

0. randomly generate populations of size M and evaluate each composite operator in P. 

1. for gen = 1 to N do   // N is the number of generation 

2. keep the best composite operator in P. 
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3.  perform crossover on the composite operators in P until crossover rate is satisfied and 

keep all the offspring  from crossover separately. 

4. perform mutation on the composite operators in P and the offspring  from crossover with 

the probability of  mutation rate. 

5. perform selection on P to select some composite operators. The number of selected 

composite operator must be M minus the number of composite operators from crossover. 

6. combine the composite operators from crossover with those from P to get a new 

population P’ of the same size as P. 

7. evaluate offspring from crossover and the mutated composite operators.  

8.  let the best composite operator from P  replace the worst composite operator in P’ and  

let P = P’. 

9.  if  the fitness of the best composite operator in P is above fitness threshold then 

10.       stop. 

endif 

11. check each composite operator in P. if its size exceeds the size limit and it is not the best 

composite operator in P, replace it with one of its subtree whose size is within the size 

limit. 

 endfor  // loop 1 
 
4. Experiments 

        Various experiments are performed to test the efficacy of genetic programming in 

extracting regions of interest from real synthetic aperture radar (SAR) images, infrared (IR) 

images and RGB color images. The size of SAR images is 128×128, except the tank SAR 

images whose size is 80×80, and the size of IR and RGB color images is 160×120. GP (in 

subsections 4.1 and 4.2) is not applied to the whole training image, but only to a region or 

regions carefully selected from the training image, to generate the composite operators. The 

generated composite operator is then applied to the whole training image and to some other 

testing images to evaluate it. The advantage of performing training on a small selected region is 

that it can greatly reduce the training time, making it practical for the GP system to be used as a 

subsystem of other learning systems, which improve the efficiency of GP by adapting the 

parameters of GP system based on its performance.  Our experiments show that if the training 
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regions are carefully selected from the training images, the best composite operator generated by 

GP is effective. In the following experiments in sections 4.1 and 4.2, the parameters are: 

population size (100), the number of generations (70), the fitness threshold value (1.0), the 

crossover rate (0.6), the mutation rate (0.05), the maximum size of composite operator (30), and 

the segmentation threshold (0). In each experiment, GP is invoked ten times with the same 

parameters and the same training region(s). The coordinate of the upper left corner of an image 

is (0, 0). The ground truth is used only during training, it is not needed during testing. We use it 

in testing only for evaluating the performance of the composite operator on testing images. 
 
4.1. SAR images 

        Five experiments are performed with real SAR images. The experimental results from one 

run and the average performance of ten runs are reported in Table 3. We select the run in which 

GP finds the best composite operator among the composite operators found in all ten runs. The 

first two rows show the fitness value of the best composite operator and the population fitness 

value (average fitness value of all the composite operators in the population) on training 

region(s) in the initial and final generations in the selected run. The numbers in the parenthesis in 

the “fop” columns are the fitness values of the best composite operators on the whole training 

image (numbers with a * superscript) and other testing images in their entirety. The last two 

rows show the average values of the above fitness values over all ten runs. The regions extracted 

during the training and testing by the best composite operator from the selected run are shown in 

the following examples. 

 
 
 
 

Table 3. The performance of our approach on various examples of SAR images. 
(fop = fitness of the best composite operator, fp = fitness of population, *: indicate fitness on 
training images, finitial = fitness in the initial generation, ffinal = fitness in the final population)
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Road  Lake  River Field Tank 
 

fop fp fop fp fop fp fop fp fop fp 

nitial 0.68 0.28 0.56 0.32 0.65 0.18 0.53 0.39 0.51 0.16 

 
final 

0.95 
(0.93*, 

0.9, 
0.93) 

0.67 
0.97    

(0.93*, 
0.98) 

0.93
0.90     

(0.71*, 
0.83) 

0.85
0.78    

(0.89*, 
0.80) 

0.64 
0.88     

(0.88*, 
0.84) 

0.80 

ve. 
nitial  0.55 0.27 0.59 0.32 0.48 0.18 0.54 0.37 0.61 0.17 

ve. 0.83 0.60 0.95 0.92 0.85 0.77 0.76 0.59 0.86 0.68 

final 
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• Example 1  Road Extraction: Three images contain road, the first one contains 

horizontal paved road and field (Fig 1(a)); the second one contains unpaved road and field (Fig 

8(a)); the third one contains vertical paved road and grass (Fig 8(d)). Training is done on the 

training regions of training image shown in Figure 1(a) and testing is performed on the whole 

training image and testing images. There are two training regions, locating from (5, 19) to (50, 

119) and from (82, 48) to (126, 124), respectively. Figure 1(b) shows the ground truth provided 

by the user and the training regions. The white region corresponds to the road and only the 

training regions of the ground truth are used in the evaluation during the training. Figure 2 shows 

the sixteen primitive feature images of the training image. 

 

 

 

 

 (c) composite feature image  (b) ground truth (d) ROI extracted(a) paved road vs. field 

 Figure 1. Training SAR image containing road. 

 

 

 

 

 

 

 

PFIM0 PFIM7PFIM6 PFIM5PFIM4PFIM3PFIM2 PFIM1 

PFIM8 PFIM10 PFIM12 PFIM14 PFIM9 PFIM11 PFIM13 PFIM15 
Figure 2. Sixteen primitive feature images of training SAR image containing road.   

       The generational GP is used to synthesize a composite operator to extract the road and the 

results of the 6th run are reported. The fitness value of the best composite operator in the initial 

population is 0.68 and the population fitness value is 0.28. The fitness value of the best 

composite operator in the final population is 0.95 and the population fitness value is 0.67. Figure 

1(c) shows the output image of the best composite operator on the whole training image and 

Figure 1(d) shows the binary image after segmentation. The output image has both positive 

pixels in brighter shade and negative pixels in darker shade. Positive pixels belong to the region 
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to be extracted. The fitness value of the extracted ROI is 0.93. The best composite operator has 

17 nodes and its depth is 16. It has only one leaf node containing 5×5 median image. The median 

image is less noisy, since median filtering is effective in eliminating speckle noises. The best 

composite operator is shown in Figure 3, where PFIM14 is 5×5 median image. Figure 4 shows 

how the average fitness of the best composite operator and average fitness of population over all 

10 runs change as GP explore the composite operator space. Unlike [6] where the population 

fitness approaches the fitness of the best composite operator as GP proceeds, in Figure 4, 

population fitness is much lower than that of best composite operator even at the end of GP 

search. It is reasonable, since we don’t restrict the selection of crossover points. The population 

fitness is not important since only the best composite operator is used in testing. If GP finds one 

effective composite operator, the GP learning is successful. The large difference between the 

fitness of the best composite operator and the population indicates that the diversity of the 

population is always maintained during GP search, which is very helpful in preventing 

premature convergence. 10 best composite operators are learned in 10 runs.  

      After computing the percentage of each primitive operator and primitive feature image 

among the total number of internal node (representing primitive operator) and total number leaf 

node (representing primitive feature image), we get the utility of these primitive operators and 

primitive feature images, which is shown in Figure 5(a) and (b). MED (primitive operator 15) 

and PFIM5 (the 6th primitive feature image) have the highest frequency of utility. Figure 6 shows 

the output image of each node of the best composite operator shown in Figure 3. From left to 

right and top to bottom, the images correspond to nodes sorted in the pre-traversal order of the 

binary tree representing the best composite operator. The output of the root node is shown in 

Figure 1(c), so Figure 6 shows the outputs of other nodes. The primitive operators in Figure 6 are 

connected by arrow. The operator at the tail of an arrow provides input to the operator at the 

head of the arrow. After segmenting the output image of a node, we get the ROI (shown as the 

white region) extracted by the corresponding subtree rooted at the node. The extracted ROIs and 

their fitness values are shown in Figure 7. If an output image of a node has no positive pixel (for 

example, the output of MEAN primitive operator), nothing is extracted and the fitness value is 0; 

if an output image has positive pixels only (for example, PFIM14 has positive pixels only), 

everything is extracted and the fitness is 0.25. The output of the root node storing primitive 

operator MED is shown in Figure 1(d).  
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 Figure 5. Utility of primitive operators and primitive feature images. 
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Figure 6. Feature image output by the nodes of the best composite operator. 
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Figure 7. ROI extracted from the output image of nodes of the best composite operator.  
(The fitness value is shown for the entire image.) 
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      We applied the composite operator obtained in the above training to the other two real SAR 

images shown in Figure 8(a) and 8(d). Figure 8(b) and 8(e) show the output of the composite 

operator and Figure 8(c) shows the region extracted from Figure 8(a). The fitness value of the 

region is 0.90. Figure 8(f) shows the region extracted from Figure 8(d) and the fitness value of 

the region, which is 0.93. 
 
 
 
 
 
 
 

(d) paved road 
vs. grass 

(e) composite 
feature image 

(f) ROI extracted  
 
 

(a) unpaved 
road vs. field 

(b) composite 
feature image 

(c) ROI extracted

Figure 8. Testing SAR image containing road. 
 
 
• Example 2  Lake Extraction: Two SAR images contain lake (Fig 9(a), 10(a)), the first 

one contains a lake and field, and the second one contains a lake and grass. Figure 9(a) shows 

the original training image containing lake and field and the training region from (85, 85) to 

(127, 127). Figure 5(b) shows the ground truth provided by the user. The white region 

corresponds to the lake to be extracted. Figure 10(a) shows the image containing lake and grass. 
 
 
 
 
 
 
 

(c) composite feature image  (b) ground truth (d) ROI extracted(a) lake vs. field  
 Figure 9. Training SAR image containing lake. 
 
       The steady-state GP is used to generate the composite operator and the results of the 9th run 

are reported. The fitness value of the best composite operator in the initial population is 0.56 and 

the population fitness value is 0.32. The fitness value of the best composite operator in the final 

population is 0.97 and the population fitness value is 0.93. Figure 9(c) shows the output image of 

the best composite operator on the whole training image and Figure 9(d) shows the binary image 

after segmentation. The fitness value of the extracted ROI is 0.93. 

      We apply the composite operator to the testing image containing lake and grass. Figure 10(b) 

shows the output of the composite operator and Figure 10(c) shows the region extracted from 

Figure 10(a). The fitness of the region is 0.98.  
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 (a) lake vs. grass (b) composite feature image (c) ROI extracted 
 

Figure 10. Testing SAR image containing lake.   
 
• Example 3  River Extraction: Two SAR images contain river and field. Figure 11(a) and 

11(b) show the original training image and the ground truth provided by the user. The white 

region in Figure 11(b) corresponds to the river to be extracted. The training regions are from (68, 

31) to (126, 103) and from (2, 8) to (28, 74). The testing SAR image is shown in Figure 14(a). 

 
 
 
 
 
 
 (c) composite feature image  (b) ground truth (d) ROI extracted(a) river vs. field  

Figure 11. Training SAR image containing river.  
 
      The steady-state GP was used to generate the composite operator and the results from the 

fourth run are reported. The fitness value of the best composite operator in the initial population 

is 0.65 and the population fitness value is 0.18. The fitness value of the best composite operator 

in the final population is 0.90 and the population fitness value is 0.85. Figure 11(c) shows the 

output image of the best composite operator on the whole training image and Figure 11(d) shows 

the binary image after segmentation. The fitness value of the extracted ROI is 0.71. The best 

composite operator has 29 nodes and its depth is 19. It has five leaf nodes and all contain 7×7 

median image. There are more than ten MED operators that are very useful in eliminating 

speckle noises.  It is shown in Figure 12. Figure 13 shows how the average fitness of the best 

composite operator and average fitness of population over all 10 runs change as GP explores the 

composite operator space. 

       We apply the composite operator to the testing image containing a river and field. Figure 

14(b) shows the output of the composite operator and Figure 14(c) shows the region extracted 

from Figure 14(a) and the fitness value of the region is 0.83.  There are some islands in the river 

and these islands along with the river around them are not extracted. 
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 Figure 12. Learned composite operator tree 
in LISP notation.  Figure 13. Fitness versus generation (river vs. field).  

 
 
 
 
 
 
 
 (a) river vs. field (b) composite feature image (c) ROI extracted  

Figure 14. Testing SAR image containing river.  
 
• Example 4  Field Extraction: Two SAR images contain field and grass. Figure 15(a) and 

15(b) show the original training image and the ground-truth. The training regions are from (17, 

3) to (75, 61) and from (79, 62) to (124, 122). We consider extracting field from a SAR image 

containing field and grass as the most difficult task among the five experiments, since the grass 

and field are similar to each other and some small regions between grassy areas are actually field 

pixels. 
 

 

 

 

 
(c) composite feature image  (b) ground truth (d) ROI extracted(a) field vs. grass  

Figure 15. Training SAR image containing field.  

      The generational GP was used to generate the composite operator and the results from the 

second run are reported. The fitness value of the best composite operator in the initial population 

is 0.53 and the population fitness value is 0.39. The fitness value of the best composite operator 

in the final population is 0.78 and the population fitness value is 0.64. Figure 15(c) shows the 

output image of the best composite operator on the whole training image and Figure 15(d) shows 

the binary image after segmentation. The fitness value of the extracted ROI is 0.89. 

       We apply the composite operator to the testing image containing field and grass shown in 
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Figure 16(a). Figure 16(b) shows the output of the composite operator and Figure 16(c) shows 

the region extracted from Figure 16(a). The fitness value of the region is 0.80. 
 
 

 
 
 
 
 

(a) field vs. grass (b) composite feature image (c) ROI extracted  
 Figure 16. Testing SAR image containing field.  
 
 
• Example 5  Tank Extraction: We use SAR images of T72 tank that are taken under 

different depression and azimuth angles and the size of the images is 80×80. The training image 

contains T72 tank under depression angle 17° and azimuth angle 135°, which is shown in Figure 

17(a). The training region is from (19, 17) to (68, 66). The testing SAR image contains a T72 

tank under depression angle 20° and azimuth angle 225°, which is shown in Figure 20(a). The 

ground-truth is shown in Figure 17(b). 

 

 

 

 

 (c) composite feature image  (b) ground truth (d) ROI extracted(a) T72 tank  

Figure 17. Training SAR image containing field.  

     The generational GP is applied to synthesize composite operators for tank detection and the 

results from the first run are reported. The fitness value of the best composite operator in the 

initial population is 0.51 and the population fitness value is 0.16. The fitness value of the best 

composite operator in the final population is 0.88 and the population fitness value is 0.80. Figure 

17(c) shows the output image of the best composite operator on the whole training image and 

Figure 17(d) shows the binary image after segmentation. The fitness value of the extracted ROI 

is 0.88. The best composite operator has 10 nodes and its depth is 9. It has only one leaf node, 

which contains the 5×5 mean image. It is shown in Figure 18. Figure 19 shows how the average 

fitness of the best composite operator and average fitness of population over all 10 runs change 

as GP proceeds. 
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Figure 18. Learned composite operator tree 
in LISP notation. 

 
Figure 19. Fitness versus generation (T72 tank).   

 
       We apply the composite operator to the testing image containing T72 tank under depression 

angle 20° and azimuth angle 225°. Figure 20(b) shows the output of the composite operator and 

Figure 20(c) shows the region corresponding to the tank. The fitness of the extracted ROI is 

0.84. Our results show that GP is very much capable of synthesizing composite operators for 

target detection. With more and more SAR images collected by satellites and airplanes, it is 

impractical for human experts to scan each SAR image to find targets. Applying the synthesized 

composite operators on these images, regions containing potential targets can be quickly 

detected and passed on to automatic target recognition systems or to human experts for further 

examination. Concentrating on the regions of interest, the human experts and recognition 

systems can perform recognition task more effectively and more efficiently. 
 
 
 
 
 
 
 
 (a) T72 tank  (b) composite feature image (c) ROI extracted  
 Figure 20. Testing SAR image containing tank.  
 
 
4.2. IR and RGB Color Images 

        One experiment is performed with IR images and one is performed with RGB color images. 

The experimental results from one run and the average performance of ten runs are reported in 

Table 4. As we did in Subsection 4.1, we select the run in which GP finds the best composite 

operator among the composite operators found in all the ten runs. The regions extracted during 

the training and testing by the best composite operator from the selected run are shown in the 

following examples. 
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Table 4. The performance of our approach on examples of IR and RGB color images. 
(fop = fitness of the best composite operator, fp = fitness of population, *: indicate fitness on training 

images, finitial = fitness in the initial generation, ffinal = fitness in the final population) 
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IR Image  People Color Image  Car 
 

fop fp fop fp 

nitial 0.56 0.23 0.35 0.18 

final 0.93                   
(0.85*, 0.84, 0.81, 0.86) 0.79 

0.84           
(0.82*, 0.76) 0.79 

. finitial 0.59 0.21 0.47 0.18 
. ffinal 0.85 0.65 0.72 0.67 
action in IR Images: In IR images, pixel values correspond to the temperature 

e have four IR images with one used in training and the other three used in 

21(a) and (b) show the training image and the ground truth. There are two 

 from (59, 9) to (106, 88) and from (2, 3) to (21, 82), respectively. The left 

contains no pixel belonging to the person. The reason for selecting it during 

there are major changes of pixel intensities among the pixels in the region. 

region should be detected. The fitness of composite operator on this region is 

inus the percentage of pixels detected in the region. If nothing is detected, the 

1.0. Averaging the fitness values on the two training regions, we get the fitness 

When the learned composite operator is applied to the whole training image, the 

ted as a measurement of the overlap between the ground truth and the extracted 

in the previous experiments. Three testing IR images are shown in Figure 24(a), 

nal GP is applied to synthesize composite operators for person detection and the 

 third run are reported. The fitness value of the best composite operator in the 

n is 0.56 and the population fitness value is 0.23. The fitness value of the best 

tor in the final population is 0.93 and the population fitness value is 0.79. Figure 

 output image of the best composite operator on the whole training image and 

ws the binary image after segmentation. The fitness value of the extracted ROI 

t composite operator has 28 nodes and its depth is 13. It has nine leaf nodes and 

ure 22. Figure 23 shows how the average fitness of the best composite operator 
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and average fitness of population over all the 10 runs change as GP proceeds. 

 
 
 
 
 
 
 (c) composite feature image  (b) ground truth (d) ROI extracted(a) person   

Figure 21. Training IR image containing person.  
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Figure 22. Learned composite operator tree 
in LISP notation. 

 Figure 23. Fitness versus generation (T72 tank).  
 
 
 
 
 
 
 
 
 (c) ROI extracted(a) person  (b) composite feature image 
 
 
 
 
 
 
 
 

(f) ROI extracted (d) person  (e) composite feature image  
 
 
 
 
 
 
 
 (i) ROI extracted (g) person  (h) composite feature image 
 

Figure 24. Testing IR images containing person.   
 
       We apply the composite operator to the testing images shown in Figure 24. Figure 24(b), (e) 

and (h) show the output of the composite operator and Figure 24(c), (f) and (i) show the ROI 

extracted. Their fitness values are 0.84, 0.81 and 0.86 respectively. 
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• Car Extraction in RGB Color Image: GP is applied to learn features to detect car in RGB 

color images. Unlike previous experiments, the primitive feature images in this experiment are 

RED, GREEN and BLUE planes of RGB color image. Figure 25(a), (b) and (c) show the RED, 

GREEN and BLUE planes of the training image. The ground truth is shown in Figure 25(d). The 

training region is from (21, 3) to (91, 46). 
 
 
 
 
 
 (a) RED plane (b) GREEN plane (c) BLUE plane  
 
 
 
 
 
 (f) ROI extracted (e) composite feature image (d) ground truth  
 Figure 25. Training RGB color image containing car.  
 
     The steady-state GP is applied to synthesize composite operators for car detection and the 

results from the fourth run are reported. The fitness value of the best composite operator in the 

initial population is 0.35 and the population fitness value is 0.18. The fitness value of the best 

composite operator in the final population is 0.84 and the population fitness value is 0.79. Figure 

25(e) shows the output image of the best composite operator on the whole training image and 

Figure 25(f) shows the binary image after segmentation. The fitness value of the extracted ROI 

is 0.82. The best composite operator has 44 nodes and its depth is 21. It has ten leaf nodes with 

one of them containing GREEN plane and the others contain BLUE plane. It is shown in Figure 

26, where PFG means GREEN plane and PFB means BLUE plane. Figure 27 shows how the 

average fitness of the best composite operator and average fitness of population over all 10 runs  

change as GP proceeds. 
 
 
 
 
 
 
 
 
 
 
 

Figure 26. Learned composite operator tree 
in LISP notation. 
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Figure 27. Fitness versus generation (T72 tank).  
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       We apply the composite operator to the testing image whose RED plane is shown in Figure 

28(a). Figure 28(b) shows the output of the composite operator and Figure 28(c) shows the ROI 

extracted. The fitness value of extracted ROI is 0.76. 
 
 
 
 
 
 

(c) ROI extracted (b) composite feature image (a) RED plane  
 Figure 28. Testing RGB color image containing car.  
 
 
4.3. Comparison 
        In [6], we applied genetic programming to learn composite operators for object detection. 

This paper is an advancement to our previous work. The major differences between the method 

presented here and that in [6] are:  

1) Unlike [6] where a whole training image is used during training, GP runs on carefully 

selected region(s) in this paper to reduce the training time.  

2) Hard size limit on the composite operator is replaced by soft size limit in this paper. 

This removes the restriction on the selection of crossover point in the parent composite 

operators to improve the search efficiency of GP, as stated in subsection 3.2.  

3) Only the first mutation type in subsection 3.2 and only the fist seven primitive feature 

images are used in [6]. With more mutation types and more primitive feature images 

used, the diversity of the composite operator population can be further increased. 

        We summarize the experimental results on REAL SAR images in [6] for the purpose of 

comparison. The parameters are: population size (100), the number of generations (100), the 

fitness threshold value (1.0), the crossover rate (0.6), the mutation rate (0.1), the maximum size 

(number of internal node) of composite operator (30), and the segmentation threshold (0). In 

each experiment, GP is invoked ten times with the same parameters. The experimental results 

from one run and the average performance of ten runs are reported in Table 5. We select the run 

in which GP finds the best composite operator among the composite operators found in all ten 

runs to report. The numbers in the parenthesis in the “fop” columns are the fitness values of the 

best composite operators on the testing SAR images. 

 

 

 24



 

t

 

 

 

 

 

 

 

 

 

 

• 

im

fit

fit

0.

co

ap

Fi

fr

ou

va

 

 

 

 (
f 

 

• 

im

be

 

Table 5. The Performance of Genetic Programming on Various Examples of 
SAR Images. 

(fop = fitness of the best composite operator, fp = fitness of population, *: indicate fitness on 
raining images, finitial = fitness in the initial generation, ffinal = fitness in the final population)
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Road  Lake  River Field 
 

fop fp fop fp fop fp fop fp 

nitial 0.47 0.19 0.65 0.42 0.43 0.21 0.62 0.44 

final 
0.92*   
(0.92, 
0.89) 0.89 

0.93*    
( 0.92 ) 0.92 

0.74*    
( 0.84 ) 0.68 

0.87*    
( 0.68 ) 0.86 

. finitial  0.47 0.18 0.73 0.39 0.37 0.11 0.65 0.41 

. ffinal 0.81 0.76 0.92 0.87 0.68 0.58 0.84 0.77 
ad Extraction: Figure 1(a) shows the training image and Figure 8(a), (d) show the testing 

. The generational GP was used to generate a composite operator to extract the road. The 

value of the best composite operator in the initial population is 0.47 and the population 

value is 0.19. The fitness value of the best composite operator in the final population is 

d the population fitness value is 0.89. Figure 29(a) shows the output image of the best 

site operator in the final population and Figure 29(b) shows the extracted ROI. We 

 the composite operator obtained in the above training to the two testing SAR images. 

29(c) and (d) show the output image of the composite operator and the ROI extracted 

igure 8(a). The fitness value of the extracted ROI is 0.92. Figure 29(e) and (f) show the 

image of the composite operator and the ROI extracted from Figure 8(d). The fitness 

f the extracted ROI is 0.89. 

(e) composite 
feature image 

(f) ROI extracted 
from Figure 8(d) 

mposite 
e image 

(c) composite 
feature image 

(b) ROI extracted 
from Figure 1(a) 

(d) ROI extracted 
from Figure 8(a) 

Figure 29. Results on SAR images containing road.  

ke Extraction:  Figure 9(a) shows the training image and Figure 10(a) shows the testing 

 The steady-state GP was used to generate the composite operator. The fitness value of the 

mposite operator in the initial population is 0.65 and the population fitness value is 0.42. 
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The fitness value of the best composite operator in the final population is 0.93 and the population 

fitness value is 0.92. Figure 30(a) shows the output image of the best composite operator in the 

final population and Figure 30(b) shows the extracted ROI. We applied the composite operator 

to the testing SAR image. Figure 30(c) and (d) show the output image of the composite operator 

and the extracted ROI with fitness value 0.92. In Figure 30(a) and (c), pixels in the small dark 

regions have very low pixel values (negative values with very large absolute value), thus, 

making many pixels near the borders of the image appear bright, although these pixels have 

negative pixel values. 

 

 

 

 
(a) composite feature 

image  
(b) ROI extracted 
from Figure 5(a) 

(d) ROI extracted 
from Figure 6(a) 

(c) composite feature 
image  

 

 Figure 30. Results on SAR images containing lake.  

• River Extraction: Figure 11(a) shows the training image and Figure 14(a) shows the testing 

image. The steady-state GP was used to generate the composite operator. The fitness value of the 

best composite operator in the initial population is 0.43 and the population fitness value is 0.21. 

The fitness value of the best composite operator in the final population is 0.74 and the population 

fitness value is 0.68. Figure 31(a) shows the output image of the best composite operator in the 

final population and Figure 31(b) shows the extracted ROI. We applied the composite operator 

to the testing image. Figure 31(c) and (d) show the output image of the composite operator and 

the extracted ROI with fitness value 0.84. Like Figure 30(c), pixels in the small dark region have 

very low pixel values (negative values with very large absolute value), thus, making many pixels 

with negative pixel values appear bright, 

 

 

 

 
(a) composite feature 

image  
(b) ROI extracted 
from Figure 7(a) 

(d) ROI extracted 
from Figure 10(a)

(c) composite feature 
image  

 

 Figure 31. Results on SAR images containing river.  
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• Field Extraction: Figure 15(a) shows the training image and Figure 16(a) shows the testing 

image. The generational GP was used to generate the composite operator. The fitness value of 

the best composite operator in the initial population is 0.62 and the population fitness value is 

0.44. The fitness value of the best composite operator in the final population is 0.87 and the 

population fitness value is 0.86. Figure 32(a) shows the output image of the best composite 

operator in the final population and Figure 32(b) shows the extracted ROI. We applied the 

composite operator to the testing image. Figure 32(c) and (d) show the output image of the 

composite operator and the extracted ROI with fitness value 0.68.  

 

 

 

 
(a) composite feature 

image  
(b) ROI extracted 
from Figure 11(a)

(d) ROI extracted 
from Figure 12(a)

(c) composite feature 
image   

Figure 32. Results on SAR images containing field.   

      From Tables 3 and 5 and associated figures, it can be seen that if the training regions are 

carefully selected and represent the characteristics of training images, the composite operators 

learned by GP running on training regions are effective in extracting the ROIs containing the 

object and their performances are comparable to the performances of composite operators 

learned by GP running on the whole training images. By running on the selected regions, the 

training time is greatly reduced. Table 6 shows the average running time of GP running on 

selected regions (Region GP) and GP running on the whole training images (Image GP) over all 

ten runs and the time is measured in second. Since the number of generation in [6] is 100 and the 

number of generation in this paper is 70, the running time of “Image GP” in Table 6 is the 

actually running time of “Image GP” times 0.7. It can be seen that the training time using 

selected training region is much shorter than that using the whole image. 

 Table 6. Average running time of Region GP and Image GP. 
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 Road  Lake  River Field 

on GP 12876 2263 6560 9685 

ge GP 23608 9120 66476 21485 
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5. Conclusions 

        In this paper, we use genetic programming to synthesize composite operators and composite 

features to detect potential objects in images. We use soft composite operator size limit to avoid 

code-bloating and severe restriction on GP search. Our experimental results show that the 

primitive operators and primitive features defined by us are effective. GP can synthesize 

effective composite operators for object detection by running on the carefully selected training 

regions of training image and the synthesized composite operators can be applied to the whole 

training image and other similar testing images. We don’t find significant difference between 

generational and steady-state genetic programming algorithms. GP has well known code bloat 

problem. Controlling code bloat due to the limited computational resources inevitably restricts 

the search efficiency of GP. How to reach the balance point between these two conflicting 

factors is critical in the implementation of GP. In the future, we plan to address this problem by 

designing new fitness functions based on the minimum description length (MDL) principle to 

incorporate the size of composite operator into the evaluation process. Also, we will extend this 

work by discovering features within the regions of interest for automated object recognition.  
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