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Abstract

This paper presents the "rst sucessful approach for recognizing articulated vehicles in real synthetic aperture radar
(SAR) images. This approach is based on invariant properties of the objects. Using SAR scattering center locations and
magnitudes as features, the invariance of these features with articulation (e.g. turret rotation of a tank) is shown for
XPATCH-generated synthetic SAR signatures and actual signatures from the MSTAR (public) data. Although related to
geometric hashing, our recognition approach is speci"cally designed for SAR, taking into account the great azimuthal
variation and moderate articulation invariance of SAR signatures. We present a basic recognition system for the
XPATCH data, using scatterer relative locations, and an improved recognition system, using scatterer locations and
magnitudes, that achieves excellent results with the more limited articulation invariance encountered with the real SAR
targets in the MSTAR data. The articulation invariant properties of the objects are used to characterize recognition
system performance in terms of probability of correct identi"cation as a function of percent invariance with articula-
tion. ( 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Automatic target recognition; Geometric invariance; Magnitude invariance; Azimuth variance; Model-based recognition;
Characteristics of scattering centers

1. Introduction

This paper establishes the existence of articulation
invariant object features in SAR images and presents the
"rst successful approach to recognizing articulated ob-
jects in real SAR images. We are concerned with recog-
nizing articulated vehicles, starting with SAR image chips
of various target vehicles and ending with identi"cation
of the speci"c vehicle type (e.g., a T72 tank). The major
challenge is that the vehicles can be in articulated con"g-
urations such as a tank with its turret rotated or the
SCUD missile erect on its mobile launcher. We approach
the problem of recognizing articulated objects from the
fundamentals of SAR images. We characterize the SAR
image azimuthal variance to determine the number of
models required. We demonstrate (and measure) the in-
variance with target articulation. Based on these invari-

ants, we develop SAR speci"c recognition methods that
use non-articulated models to successfully recognize ar-
ticulated versions of the same objects. This is done for
both synthetic target images, generated by the XPATCH
radar signature prediction code [1] and real SAR images
of actual vehicles from the MSTAR (Public) targets
data set [2]. The XPATCH data allow a large number of
precisely controlled experiments, while the MSTAR data
provide more challenging real-world cases. The paper is
organized so that the three sections following Section
2 on Background and Related Work: SAR Object Char-
acteristics, SAR Recognition System, and Recognition
Results, each address the simulated XPATCH data and
then the real MSTAR data.

2. Background and related work

2.1. Background

Automatic target recognition (ATR) is the use of com-
puter processing to detect and recognize object (target)
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signatures in sensor data. General reviews of ATR con-
cepts and technologies can be found in Refs. [3}6]. ATR
systems generally have separate detection and recogni-
tion stages. The goal of the detection stage is to eliminate
most of the sensor data from further consideration and
"nd small regions potentially containing the objects of
interest. The goal of the recognition stage is to classify or
identify the objects. The term classixcation is generally
used for a coarse categorization (e.g., the object is a tank,
not a truck) and identixcation is used for a "ne categor-
ization (e.g., a speci"c type of tank). Detecting objects in
SAR imagery typically involves a prescreen stage (e.g.,
a constant false alarm rate (CFAR) thresholding tech-
nique [7]) and a discriminator stage to separate the
objects from the background clutter (a detailed descrip-
tion of features can be found in Ref. [8]). Other methods
for object detection include: "lters [9], using the vari-
ations in return from man-made objects and natural
clutter with changes in image resolution [10], likelihood
images with image relational graphs [11] and neural
networks [12]. There are several di!erent categories of
algorithms used for recognition in ATR systems: detec-
tion theory, pattern recognition, arti"cial neural net-
works and model-based recognition [6]. Several of these
can be used for detection as well as recognition and
several ATR systems use combinations of approaches.

2.1.1. Detection theory
The detection theory approach uses "lters to separate

the distributions of object and clutter signatures so they
can be distinguished by a simple statistical test. This
approach has been applied to classi"cation of di!erent
objects in SAR images using minimum noise and correla-
tion energy (MINACE) "lters [9] and optimal trade-o!
distance classi"er correlation "lters (OTDCCFs) [13]
(which use a distance measure for classi"cation instead of
just the output correlation peak). Because of the azimuth
variation of SAR signatures, multiple "lters are used for
each object, each covering a range of target azimuths.

2.1.2. Pattern recognition
The pattern recognition approach uses SAR image

templates [14] or feature vectors (such as topographical
primal sketch (TPS) features, based on zero crossings of
directional derivatives [15]) and determines the best
match between the object image and an exemplar
database. In contrast to detection theory algorithms that
are derived by using statistical models of raw data, pat-
tern recognition uses more ad hoc approaches to the
de"nition and extraction of the features used to charac-
terize objects. In contrast to the later model-based ap-
proach, the pattern recognition approaches usually use
global measures to represent the object. These global
features are very susceptible to occlusion and articulation
e!ects. Many of the pattern recognition approaches suf-
fer from an exhaustive search of a database of exemplars,

although a hierarchical index of distance transforms with
composite models had been used [16] to convert the
problem to a tree search.

2.1.3. Neural networks
The neural network approach uses learning by

example to discover and use signature di!erences that
distinguish di!erent types of objects. Adaptive resonance
theory networks [12] have been used to categorize SAR
object aspects and learn SAR object templates. Feature
space trajectory neural networks have been used for SAR
detection and classi"cation [17]. One problem for neural
network approaches is to achieve good performance with
a range of object signatures (with occlusion, articulation
and non-standard con"gurations) and varying back-
ground clutter, given limited amounts of training data.

2.1.4. Model-based recognition
The model-based recognition approach typically uses

multiple local features (involving object parts and the
relationships between the parts) and matching of sensor
data to predictions based on hypotheses about the object
type and pose. A current state of the art example is the
moving and stationary object acquisition and recogni-
tion (MSTAR) program that uses a search module for
hypothesis generation and re"nement [18], a feature
prediction module that captures the object signature
phenomenology [19] and a matching module [20].
While most model-based systems are optimized for un-
obscured objects, one model-based approach, partial
evidence reconstruction from object restricted measures
(PERFORM) [21], uses a linear signal decomposition,
direction of arrival pose estimation technique and at-
tempts to overcome the di$culties of recognizing an
obscured object by breaking the problem into smaller
parts (e.g. separately recognize the front, center and rear
regions of the vehicle and fuse the results).

2.2. Related work

There is no published paper, by others, on the recogni-
tion of articulated objects in SAR images. The detection
theory, pattern recognition and neural network ap-
proaches to SAR recognition, as discussed in the pre-
vious subsection, all tend to use global features that are
optimized for standard, non-articulated, non-occluded
con"gurations. Approaches that rely on global features
are not appropriate for recognizing articulated objects
because articulation changes global features like the ob-
ject outline and major axis [22]. Template matching
(whether the templates are built by hand, as in Ref. [14],
or developed by neural networks, as in Ref. [12]) has
been successfully used for object recognition with SAR
images, but this approach is not suitable for recognizing
articulated objects since there will be a combinatorial
explosion of the number of templates with varying articu-
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Fig. 1. Models of articulated objects (not to scale) for XPATCH.

lations. Some of the ATR techniques, e.g., MINACE
"lters [23] and PERFORM [21], have reported limited
test results for small amounts of occlusion, typically 25%
or less, which would indicate some potential for articu-
lated object recognition. The standard approaches used
for articulated object recognition in optical images (such
as recognition by components [24], constrained models
of parts [25] and joint articulation [26]) are not appro-
priate for the relatively low-resolution, non-literal nature
and complex part interactions of SAR images; which are
successfully handled by using articulation invariants in
our approach presented in this paper. Our previous work
in this area [27] was limited to XPATCH data and only
used the location invariance of the SAR scattering
centers with articulation as the basis for recognition. This
paper establishes that where the scattering center loca-
tions are invariant with articulation, the corresponding
magnitudes are also invariant (within a small tolerance);
it signi"cantly expands the prior work to real SAR data;
and it demonstrates that an improved recognition sys-
tem, using the scatterer magnitudes as well as locations,
can successfully overcome the greater variability of the
real SAR data.

3. SAR object characteristics

The typical detailed edge and straight line features of
man-made objects in the visual world, do not have good
counterparts in SAR images for sub-components of ve-
hicle-sized objects at 6 in to 1 ft resolution. However, there
are a wealth of peaks corresponding to scattering centers.
The relative locations of SAR scattering centers, deter-
mined from local peaks in the radar return, are related to
the aspect and physical geometry of the object, indepen-
dent of translation and serve as distinguishing features.
In addition to the scatterer locations, the magnitudes of
the peaks are also features that we use in this paper.

3.1. Objects, SAR images and scattering centers

3.1.1. XPATCH objects, SAR images and scattering centers
The XPATCH radar signature prediction code is used

to generate image chips of objects at 360 azimuth angles
(at a 153 depression angle) from CAD models of articu-
lated and non-articulated versions of three tanks (T72,
T80 and M1a1) and a SCUD missile launcher.
Fig. 1 shows the CAD models in some articulated posi-
tions; these are modi"ed commercial CAD models with
numbers of surface facets ranging from 5345 to 32,954.
The articulated versions of the tanks have 60 and 903
counter-clockwise turret rotations, the SCUD launcher
has the missile erect. The scattering center locations are
determined by "nding local eight-neighbor maxima in
the radar image. Examples, at various azimuths, of the
object geometry, SAR image and scattering center
locations (as black squares) are shown for both articu-
lated and non-articulated cases of the T72 tank (Fig. 2)
and the T80 tank (Fig. 3). (Figs. 2 and 3 are not to scale
and the image is displayed at eight intensity levels, the
scattering center map at 256 levels.) Unless otherwise
noted, the XPATCH data and results are for 6 in resolu-
tion SAR.

3.1.2. MSTAR objects, SAR images and scattering centers
Photo images of the MSTAR articulated objects used

in this paper, T72 tank serial number (d) a64 and ZSU
23/4 antiaircraft gun dd08, are shown in Figs. 4 and 5.
The articulated test data have the turret rotated 3153
counter-clockwise, compared to the non-articulated
models with the turret straight forward. Regions of
interest (ROI) are found in the MSTAR SAR object
chips by reducing speckle noise using the Crimmins
algorithm in Khoros [28], thresholding at the mean
plus two standard deviations, dilating to "ll small gaps
among regions, eroding to have one large ROI and little
regions, discarding the small regions with a size "lter
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Fig. 2. T72 tank geometry, XPATCH SAR image and scattering centers for 30 and 603 hull azimuths.

and dilating to expand the extracted ROI. The
parameters used in extracting ROIs are held constant
for all the results reported. The scattering centers

are extracted from the SAR magnitude data (within
the boundary contour of the ROI) by "nding local
eight-neighbor maxima. Example SAR images and the
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Fig. 3. T80 tank geometry, XPATCH SAR image and scattering centers for 150 and 1803 hull azimuths.

regions of interest (ROI), with the locations of the
scattering centers superimposed (as black squares), are
shown in Fig. 6 for baseline and articulated versions of

the T72 and ZSU. The MSTAR data are all at 1 ft
resolution and the articulated object data are at 303
depression angle.
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Fig. 4. T72 tank da64.

Fig. 5. ZSU 23/4 antiaircraft gun dd08.

3.2. Azimuthal variance

The typical rigid-body rotational transformations for
viewing objects in the visual world do not apply much for
the specular radar re#ections of SAR images. This is
because a signixcant number of features do not typically
persist in radar images over a few degrees of object
rotation. Since the radar depression angle is generally
known, the signi"cant unknown object rotation is (3603)
in azimuth. Azimuth invariance or persistence can be
expressed in terms of the percentage of scattering center
locations that are unchanged over a certain span of
azimuth angles. It can be measured (for some base azi-
muth h

0
) by rotating the pixel locations of the scattering

centers from an image at azimuth h
0

by an angle *h and
comparing the resulting range and cross-range locations

with the scatterer locations from an image of the same
object at azimuth h

0
#*h. We consider two cases for the

precision of the scatterer location match. In the &exact
match' cases the center of the rotated scatterer pixel from
the image at h

0
azimuth is within the pixel boundaries of

a corresponding scatterer in the image at h
0
#*h. In the

&within 1 pixel' cases, the scatterer location is allowed to
move into one of the 8 adjacent pixel locations. To
determine scattering center locations that persist over
a span of angles, there is an additional constraint that for
a matching scattering center to &persist' at the kth span
*h

k
, it must have been a persistent scattering center at all

smaller spans *h
j
, where 0)j(k. Averaging the results

of these unchanged scattering center locations over 360
base azimuths gives a &mean location invariance' for an
object.
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Fig. 6. MSTAR SAR images and ROIs (with peaks) for T72 tank da64 and ZSU 23/4 dd08 at 663 azimuth.

Fig. 7. XPATCH scatterer location persistence.

3.2.1. XPATCH Azimuthal Variance
The XPATCH images are generated with a consistent

origin so no translation is required for registration and
the corresponding scatterers are evident. (With the
XPATCH data we accomplish the rotation in the slant
plane, instead of the projection to the ground plane
* rotation*projection back to the slant plane, but at
a 153 depression angle the di!erence is small.)
Fig. 7 shows the location invariance of the strongest 50
T72 tank scattering centers as a function of azimuth span
for both 6 in and 1 ft resolution XPATCH data. The
invariance of the 1 ft resolution cases is similar to (but
slightly less than) the 6 in data. For both the exact match
and within one-pixel cases, signi"cant numbers of scat-
tering centers do not persist over a few degrees of rota-
tion. Because of this azimuthal variation and the goal of
recognizing articulated objects, in this research we use
object models at 13 intervals.

3.2.2. MSTAR Azimuthal variance
With the 303 depression angle MSTAR data we ac-

complish the azimuthal rotation by projection from the
slant plane to the ground plane, rotation in the ground
plane and projection back to the slant plane. Since the
objects in the MSTAR chips are not registered, we calcu-

late the azimuth invariance as the maximum number of
corresponding scattering centers (whose locations match
within a given tolerance) for the optimum integer pixel
translation. This method of registration by "nding the
translation that yields the maximum number of cor-
repondences has the limitation that for very small or no

G. Jones III, B. Bhanu / Pattern Recognition 34 (2001) 469}485 475



Fig. 8. Scatterer location persistence, MSTAR T72 d132.

Fig. 9. XPATCH SCUD launcher and T72 tank articulation examples.

actual invariance it may "nd some false correspondences
and report a slightly higher invariance than in fact exists.
Fig. 8 shows an example of the mean scatterer location
invariance (for the 40 strongest scatterers) as a function of
azimuth angle span using T72 tank d132, with various
de"nitions of persistence. The cases labeled &persists' in
Fig. 8 enforce the constraint that the scatterer exist for
the entire span of angles and are similar to the results
previously shown in Fig. 7 with XPATCH data. For both
the XPATCH simulated data and the MSTAR real data,
very few scatterers continuously persist for even 53. In the
two cases not labeled &persists' in Fig. 8, scintillation is

allowed (i.e. a scatterer can disappear and then reappear
as a result of constructive/destructive interference) and
the location invariance declines slowly with azimuth
span. The &within one-pixel' results (that allow scintilla-
tion) are consistent with the one foot ISAR results of
Dudgeon [29], whose de"nition of persistence allowed
scintillation.

3.3. Geometric invariance with articulation

The existance of scattering center locations that are
invariant with object articulation is crucial to success-
fully recognizing articulated objects with non-articulated
models, thus avoiding the combinatorial problem of
modeling 360 articulations ] 360 azimuths.

3.3.1. XPATCH location invariance
Fig. 9 demonstrates the existence of articulation invari-

ants with XPATCH data, where the locations of scatter-
ing centers are indicated by the black squares. In the
SCUD launcher example, with the radar directed (from
the left in Fig. 9) at the cab end of the launcher, many of
the scattering center locations on the launcher itself are
independent of whether the missile is erect or down. In
the similar view of the T72 tank, many of the details from
the hull are independent of the turret angle. An example
of XPATCH articulation invariance is shown in Fig.
10(a), which plots the percentage of the strongest 50
scattering centers for the T72 tank that are in exactly the
same location (the &exact match' case) with the turret
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Fig. 10. XPATCH articulation invariants.

rotated 603 as they are with the turret straight forward,
for each of 360 azimuths. Similar examples of articulation
invariance are shown in Fig. 10 for the T80 tank with 603
turret, M1a1 tank with 903 turret, and the SCUD laun-
cher with the missile erect. Fig. 11 shows the articulation
invariance at 6 in and 1 ft resolutions for the T72 tank
with a 903 turret; on average 48% of the locations are
invariant for the six inch data and the one foot XPATCH
results are similar.

Table 1 shows the mean and standard deviation values
of the average (over 360 azimuths) percent articulation
invariance for the various XPATCH (6 in resolution)
articulated objects and the overall average. The mean
values are similar for the 20 and 50 scattering center
cases. The smaller average articulation invariance for the
M1a1 tank is expected, because the M1a1 tank has
a comparatively much larger turret than the other tanks
(see Fig. 1(c)).

3.3.2. MSTAR location invariance
Because the object and ROI are not registered in the

MSTAR data, we de"ne the scattering center location
invariance with respect to articulation as the maximum
number of corresponding scattering centers (whose loca-
tions match within a stated tolerance) for the optimum
integer pixel translation. Given an original version of
a SAR object image with n scattering centers, represented
by points at pixel locations P

i
"(x

i
, y

i
) for 1)i)n and

a translated, distorted version P@
j
"(x@

j
, y@

j
) (1)j)n) at

a translation t"(t
x
, t

y
), we de"ne a match between points

P@
j

and P
i
as

M
ij
(t)"G

1 if Dx@
j
!t

x
!x

i
D)l and Dy@

j
!t

y
!y

i
D)l,

0 otherwise,

where l"0 for an &exact' match and l"1 for a match
&within one pixel'. The scatterer location invariance, ¸

n
,
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Fig. 11. E!ect of resolution on XPATCH articulation invariance.

Table 1
Scatterer location invariance for XPATCH objects with articu-
lation (in %)

20 scatterers 50 scatterers

Mean Std. dev. Mean Std. dev.

SCUD missile up 52.76 12.98 53.67 9.79
T72 603turret 47.92 15.96 49.94 11.71

903turret 45.22 15.61 48.00 12.03
M1a1 603turret 35.96 16.79 37.96 9.32

903turret 37.18 15.35 37.66 9.06
T80 603turret 58.49 16.52 54.17 8.02

903turret 58.31 14.61 53.84 7.94

Average 47.98 15.41 47.89 9.70

Fig. 12. MSTAR scatterer location invariance with articulation.

of n scatterers, expressed as a percentage of matching
points, is given by

¸
n
"max

t G
100

n

n
+
j/1

minAA
n
+
i/1

M
ij
(t)B,1BH,

where each point P @
j

is restricted to at most one match.
(The &min' distinguishes between the no match case, 0,
and one or more matches, 1). Fig. 12 shows the location
invariance, ¸

40
, of the strongest 40 scattering centers

with articulation for MSTAR T72 tank da64 and ZSU
23/4 antiaircraft gun dd08 (at a 303 depression angle) as
a function of the hull azimuth. The mean and standard
deviation for percent location invariance with articula-
tion of the MSTAR T72 and ZSU23/4 are shown in
Table 2 for the exact match and within one pixel match
cases. Note that the 16.5% exact match articulation
invariance in Table 2 for the real MSTAR data is

478 G. Jones III, B. Bhanu / Pattern Recognition 34 (2001) 469}485



Table 2
Scatterer location invariance for MSTAR objects with articula-
tion (in %)

Object Turret Exact match Within 1 pixel
angle invariance invariance

Mean Std. dev. Mean Std. dev.

T72 da64 315 17.17 1.47 57.83 2.23
ZSU dd08 315 15.69 0.91 55.05 1.72

Average 16.45 56.47

Fig. 13. XPATCH SCUD launcher peak return invariance.

considerably less than the comparable 48% invariance
for the XPATCH simulated data in Table 1.

3.4. Magnitude invariance with articulation

This section establishes another useful invariant fea-
ture that the scatterer magnitudes associated with the
invariant scattering center locations are also invariant
(within limits).

3.4.1. XPATCH magnitude invariance
Fig. 13 shows a comparison of the magnitude of the

peak return (from the strongest scattering center) for the
XPATCH SCUD launcher with the missile erect versus
the launcher with the missile down as a function of
azimuth. For the 222 (of 360) azimuth values where the
range and cross-range pixel locations of these peak re-
turns are identical (i.e. location invariant with articula-
tion) the mean magnitude di!erence is 0.06% and the
standard deviation is 1.25%.

3.4.2. MSTAR magnitude invariance
Using a scaled scatterer amplitude (S), expressed as

a radar cross section in square meters, given by
S"100#10 log

10
(i2#q2), where i and q are the com-

ponents of the complex radar return, we de"ne a percent
amplitude change (A

jk
) as: A

jk
"100(S

j
!S

k
)/S

j
. (This

form allows a larger variation for the stronger signal
returns.) A location and magnitude match Q

jk
(t) is given

by

Q
jk

(t)"G
1 if M

jk
(t)"1 and DA

jk
D)l

A
,

0 otherwise,

where l
A

is the percent amplitude change tolerance. The
scatterer magnitude and location invariance (I

n
), ex-

pressed as a percentage of n scatterers, is given by:

I
n
"max

t G
100

n

n
+
k/1

minAA
n
+
j/1

Q
jk

(t)B, 1BH.
Fig. 14 shows the probability mass functions (PMFs)

for percent amplitude change for the strongest 40 articu-

lated vs. non-articulated scattering centers of MSTAR
T72 tank da64 and ZSU dd08. Curves are shown both
for the cases where the scattering center locations corres-
pond within a 1-pixel tolerance and for all the combina-
tions of scatterers whose locations do not match. The
mean and standard deviation for these matching and
non-matching scatterers and the crossover points for the
PMFs are given in Table 3. Table 4 shows the mean and
standard deviation for the percent location and magni-
tude invariance (within a one-pixel location tolerance
and an amplitude change tolerance of $9%) of the
strongest 40 scatterers for the MSTAR articulated data.

4. SAR recognition system

Establishing an appropriate local coordinate reference
frame is critical to reliably identifying objects (based on
locations of features) in SAR images of articulated ob-
jects. The object articulation problem requires the use of a
local coordinate system; global coordinates and global
constraints do not work, as illustrated in Figs. 2, 3, 6 and
9, where the center of mass and the principal axes of the
object change with articulation. In the geometry of
a SAR sensor the &squint angle', the angle between the
#ight path (cross-range direction) and the radar beam
(range direction), can be known and "xed at 903. Given
the SAR squint angle, the image range and cross-range
directions are known and any local reference point
chosen, such as a scattering center location, establishes
a reference coordinate system. (The scattering centers are
local maxima in the radar return signal.) The relative
distance and direction of the other scattering centers can
be expressed in radar range and cross-range coordinates,
and naturally tessellated into integer buckets that corres-
pond to the radar range/cross-range bins. The recogni-
tion system takes advantage of this natural system for
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Fig. 14. MSTAR scatterer magnitude invariance with articulation.

Table 3
MSTAR scatterer percent amplitude change

Articulation Within 1 pixel No match

Mean Std. dev. Mean Std. dev. x-over

T72 da64 0.51 5.91 0.75 10.44 !5/#6
ZSU dd08 0.06 7.44 0.08 11.37 $9

Table 4
MSTAR scatterer location and magnitude invariance (in %)

Articulation Mean Std. dev.

T72 da64 53.47 2.63
ZSU dd08 47.98 2.22

Average 50.78

SAR, where selecting a single basis point performs the
translational transformation and "xes the coordinate
system to a &local' origin.

Our model-based recognition system uses standard
non-articulated models of the objects (at 13 azimuth
increments) to recognize the same objects in non-stan-
dard articulated con"gurations. Using a technique like
geometric hashing [30], the relative positions of the scat-
tering centers in the range (R) and cross-range (C) direc-
tions are indices to a look-up table of labels that give the
associated object type and pose. This is an e$cient search
for positive evidence that generates votes for the appro-
priate object (and azimuth). The models and recognition
engine have evolved from the 2D version [27] for the
XPATCH data, which uses only the relative distances
and the &exact' scatterer locations, to a 6D version for the
more challenging MSTAR data, which uses more local
features and accommodates a &within 1 pixel' scatterer

location uncertainty. In the 6D version the model look-up
table labels contain four additional features: range and
cross-range position of the &origin' and the magnitudes (S)
of the two scatterers. The model construction algorithm
for the 6D recognition system is outlined in Fig. 15.

For ideal data one could use the strongest scatterer as
the origin, however any given scatterer could actually be
spurious or missing due to the e!ects of noise, articula-
tion, occlusion, or non-standard con"gurations. Thus,
for both the 2D and 6D versions, we model and use (for
recognition) all the scattering center locations in turn as
the origin, so the size of the look-up table models and
the number of nominal relative distances considered
in the recognition of a test image is n(n!1)/2, where n is
the number of the strongest scattering centers used.

In contrast to many model-based approaches to recog-
nition [31], we are not &searching' all the models; instead
we are doing table look-ups based on relative distances
between the strongest scatterers in the test image. Each
query of the look-up table may generate votes for one or
more potential candidate solutions. In the 2D version,
the look-up table results directly generate votes for ob-
ject}azimuth pairs and when all the combinations of
scatterer pairs are considered, the object}azimuth pair
with the most accumulated votes is chosen.

In the 6D version, further comparison of each test data
pair of scatterers with the model look-up table result(s)
provides information on the range and cross-range trans-
lation and the percent magnitude changes for the two
scatterers. Limits on allowable values for translations
and magnitude changes are used as constraints to reduce
the number of false matches. (The number of scattering
centers used and the various constraint limits are design
parameters that are optimized, based on experiments, to
produce the best recognition results.) Here, votes are
accumulated in a 4D space: object, azimuth, range and
cross-range translation. Also a (city-block) weighted
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Fig. 15. 6D model construction algorithm.

Fig. 16. 6D recognition algorithm.

voting method is used to reduce the impact of the more
common small relative distances. To accommodate some
uncertainty in the scattering center locations, the eight
neighbors of the nominal range and cross-range relative
location are also probed in the look-up table and the
"nal translation results are summed over a 3]3 neigh-
borhood in the translation subspace. This voting in
translation space, in e!ect, converts the consideration of
scatterer pairs back into a group of scatterers at a consis-

tent translation. The process is repeated with di!erent
scattering centers as reference points, providing multiple
&looks' at the model database to handle spurious scat-
terers that arise due to articulation, noise or other fac-
tors. To handle identi"cation with &unknown' objects, we
introduce a criteria for the quality of the recognition
result (e.g., the votes for the potential winning object
exceed some threshold v

.*/
). The recognition algorithm

for the 6D system is given in Fig. 16.
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Table 5
Confusion matrix for XPATCH articulated forced identi"cation
results (50 scatterers)

Articulated
test objects

Non-articulated models

SCUD
Down

T72 M1a1 T80

03 turret

SCUD missile up 360
T72 603 turret 335 7 18

903 turret 327 8 25
M1a1 603 turret 1 300 59

903 turret 2 305 53
T80 603 turret 360

903 turret 360

Fig. 17. E!ect of the number of scattering centers on forced
recognition rate (XPATCH).

Fig. 18. XPATCH T72 tank (turret 903) recognition failure plot
(e) on articulation invariance curve.

Fig. 19. Forced recognition rate and articulation invariance (50
scatterers, average of four XPATCH objects).

5. Recognition results

5.1. Results using XPATCH SAR data

Results with the XPATCH data are based on using
a 2D recognition algorithm that is an earlier, simpler
version of the 6D algorithm described in Fig. 16. The 2D
algorithm uses only the relative range and cross-range
distances; it does not compute the appropriate transla-
tion; it only considers the &exact match' scatterer location;
and it does not use the scatterer magnitude information.
The experimental results of 2520 trials with XPATCH
generated articulated test objects (SCUD launcher with
the missile up, T72, M1a1 and T80 tanks with 603 and
903 turrets) for the 2D recognition system using 50 scat-
tering centers and non-articulated models (missile down,
turrets straight forward) are shown as a confusion matrix
in Table 5. The overall forced recognition performance is
a 93.14% probability of correct identi"cation (PCI). The
&number of scattering centers used' is a design parameter
that can be tuned to optimize the performance of the 2D
recognition system as shown in Fig. 17, where each point
on the plot of PCI vs. &number of scattering centers used'
is the result of 2520 trials. While the maximum recogni-
tion rate is achieved at 50 scattering centers (93.14%), a
more optimal system with 35 scattering centers achieves
similar performance (92%) with slightly less than half the
storage and twice the speed of 50 scattering centers.

The detailed recognition results can be related to the
articulation invariance of the objects. The 33 recognition
failures for the T72 tank with the turret at 903 in Table 5
are plotted (as 'diamonds') on the curve of percent invari-
ance vs. azimuth in Fig. 18. These results show that
recognition failures generally occur for azimuths where
the percent invariance is low. Fig. 19 shows how the PCI
varies with the percent articulation invariance for the
forced recognition case with the 2D recognition system,
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Fig. 20. Scatter plots for 6D engine MSTAR results with articulation.

Table 6
MSTAR articulated object confusion matrix

MSTAR (Public) Identi"cation results
articulated
test objects T72 ZSU Unknown

T72 3153 turret 98 0 0
ZSU 3153 turret 0 92 2
BRDM2 32 0 222

where the invariance is measured for an exact match of
pixel locations. The points at low invariance values (plot-
ted as &diamonds in Fig. 19) are misleading. They are due
to a few correct identi"cations for the M1a1 tank, where
the invariance (measured with respect to the hull) is low,
yet a correct identi"cation is made from a number of
features on the large turret, which are not accounted for
in the hull invariance measure.

5.2. Results using MSTAR SAR data

In the MSTAR experiments the models are non-articu-
lated versions of T72 da64 and ZSU23/4 dd08 and the
test data are the articulated versions of these same serial
number objects and BRDM2 de71 as an `unknowna
confuser vehicle (all at 303 depression angle). (The confus-
er is not modeled and represents some unknown object
that the recognition system should reject.) Results are
optimum with the 6D recognition system using 38 scat-
tering centers, a translation limit of $5 pixels and a per-
cent magnitude change of less than $9%. The overall
forced recognition rate (without a confuser, using only
a decision rule that the winning object has the most
votes) is 100% over a range from 14 to 40 scattering
centers. Figs. 20(a) and (b) show 6D recognition scatter
plot results in ZSU-T72 vote space for articulation of the
ZSU 23/4 gun and the T72 tank and for the BRDM2
confuser. The results for the ZSU 23/4 and T72 are
widely separated and away from the equal votes line,
giving a 100% forced recognition rate. Fig. 20(b) shows
that while the BRDM2 is always classi"ed as a T72,
a unique threshold in the range of 2000}2500 T72 votes
will eliminate most of the false alarms at the cost of only
a few T72s moved to the `unknowna classi"cation.
A common threshold applied to votes for either the T72
or the ZSU has a higher cost because some ZSUs would
be moved to `unknowna. This can be seen in Table 6 for

a common threshold of 2100 votes, where the T72s are all
correctly classi"ed and only 2 ZSUs are classi"ed as
unknown, for an overall PCI of 0.990 and a probability of
false alarm (PFA) of 0.126.

A form of receiver operating characteristic (ROC)
curve, with PCI vs. PFA, can be generated from the
scatter plot data in Fig. 20 by varying the vote threshold
(e.g. from 1500 to 4000 in 50 vote increments). The ROC
curve in Fig. 21 shows the excellent recognition results
that are obtained with the 6D recognition system for the
MSTAR articulated objects. Fig. 22 shows how the PCI
varies with the percent articulation invariance (for a
within one-pixel location match) for the 6D recognition
engine. The sets of curves are shown with di!erent vote
thresholds from 1700 to 2700 to generate failures that
illustrate the e!ect of location invariance on recognition
rate. The behavior shown in Fig. 22 for the 6D system
with MSTAR data and &within one-pixel' location match
is consistent with the 2D system with XPATCH data and
&exact' location match previously shown in Fig. 19.

6. Conclusions

The large azimuthal variations in the SAR signatures
of objects can be successfully captured by using models at
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Fig. 21. Receiver Operating Characteristics for recognizing
MSTAR articulation.

Fig. 22. MSTAR recognition rate and articulation invariance.

13 degree increments for a "xed depression angle. Useful
articulation invariant features exist in SAR images of
vehicles. For the XPATCH simulated SAR data, 48% of
the scattering center locations exactly match after object
articulation. For the real MSTAR SAR data, only 16.5%
exactly match, however 56.5% of the locations match
within a 3]3 pixel tolerance. In addition, where the
scattering center locations are invariant with articula-
tion, the corresponding magnitudes are also invariant
within a small tolerance (typically less than a 10%
change for the MSTAR data). The feasibility of a new
concept for a system to recognize articulated objects in
SAR images based on non-articulated models is demon-
strated. A basic version of the system, using only relative
locations of the scattering centers is su$cient for recog-

nizing XPATCH generated objects that have a relatively
high articulation invariance. The much greater variabil-
ity of the real MSTAR SAR data can be successfully
overcome by using the scatterer magnitude as well as
location, by accommodating one-pixel uncertainty in the
scatterer location and by considering an object as
a group of scatterers at a consistent translation. These
systems achieve excellent articulated object recognition
results for simulated and real SAR data.
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