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Abstract

Content-based image retrieval methods based on the Euclidean metric expect the feature space to be isotropic. They

su�er from unequal di�erential relevance of features in computing the similarity between images in the input feature

space. We propose a learning method that attempts to overcome this limitation by capturing local di�erential relevance

of features based on user feedback. This feedback, in the form of accept or reject examples generated in response to a

query image, is used to locally estimate the strength of features along each dimension while taking into consideration

the correlation between features. This results in local neighborhoods that are constricted along feature dimensions and

that are most relevant, while elongated along less relevant ones. In addition to exploring and exploiting local principal

information, the system seeks a global space for e�cient independent feature analysis by combining such local infor-

mation. We provide experimental results that demonstrate the e�cacy of our technique using both simulated and real-

world data. Ó 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The rapid advance in digital imaging technolo-
gy makes possible the widespread use of image li-
braries and databases. This in turn demands
e�ective means for access to such databases. It has
been well documented that simple textual anno-
tations for images are often ambiguous and inad-
equate for image database search. Thus, retrieval
based on image ``content'' becomes very attractive
(Cox et al., 1996; Flickner et al., 1995; Ma and
Manjunath, 1996; Minka and Picard, 1997; Peng
et al., 1999; Rui et al., 1997). Generally, a set of

features (color, shape, texture, etc.) are extracted
from an image to represent its content. As such,
image database retrieval becomes a K nearest
neighbor (K-NN) search in a multidimensional
space de®ned by these features under a given
similarity metric.

Simple K nearest neighbor search, as an image
retrieval procedure, returns the K images closest to
the query. Obviously this involves the issue of
measuring the closeness or similarity between two
images. The most common measure of the simi-
larity between two images, represented by their
feature vectors x and y, is the distance be-
tween them. If the Euclidean distance D�x; y� �����������������������������Pq

i�1�xi ÿ yi�2
q

is used, then the K closest images
to the query xQ are computed according to
fx j D�x; xQ�6 dKg, where dK is the Kth order
statistic of fD�xi; xQ�gN

i�1. Here N is the number of
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images in the database. The major appeal for
simple K-NN search methods resides in their
ability to produce continuous and overlapping
rather than ®xed neighborhoods, and to use a
di�erent neighborhood for each individual query
so that, to the extent possible, all points in the
neighborhood are close to the query.

One problem with the Euclidean metric, how-
ever, is that it does not take into account the
in¯uence of the scale of each feature variable in
the distance computation. Changing the scale of a
feature dimension in di�erent amounts alters the
overall contribution of that dimension to the
distance computation, hence its in¯uence in the
nearest neighbors retrieved. This is usually con-
sidered undesirable. An additional limitation is
that the use of Euclidean distance, while simple
computationally, implies that the input feature
space is isotropic. However, isotropy is often in-
valid and irrelevant features might hurt retrieval
performance. Finally, feature relevance depends
on the location where the query is made in the
input feature space. Capturing such relevance
information is a prerequisite for constructing
successful retrieval procedures for image data-
bases.

In this paper, we propose a novel method that
provides a solution to the problems discussed
above. With this method image retrieval system is
able to learn di�erential feature relevance in an
e�cient manner that takes into account the cor-
relation between features, and that is highly
adaptive to query locations. In addition, by accu-
mulating experience obtained at each iteration the
system is capable of, to the extent possible, con-
tinuously improving its retrieval performance.

2. Previous work

Minka and Picard (1997) select features based
on feedback from user but all features are treated
with equal importance. Ma and Manjunath (1996)
use hybrid neural networks to partition the feature
space into clusters but no user feedback is used to
re®ne retrievals and all features are treated as
equally important. Rui et al. (1997) in their MARS
system use a simple query shifting mechanism that

attempts to improve retrieval performance by
adaptively moving the input query toward relevant
retrievals and, at the same time, away from irrel-
evant ones. Similarity computation remains ®xed
throughout the retrieval process. While MARS has
been shown to improve retrieval performance in
simple tasks, it is clear that in many problems the
mere shifting of the query is insu�cient to achieve
desired goals. PicHunter (Cox et al., 1996) is a
system based on Bayesian relevance feedback.
PicHunter de®nes a set of actions that a user might
take and attempts to estimate the probabilities of
the actions the user will take. Based on actual
actions taken, the system estimates the probability
of each image in the database being the target. A
major concern with PicHunter is that probability
estimates rely heavily on simplifying assumptions
that are often invalid in practice. Furthermore, its
image similarity measure is nonadaptive. Peng et
al. (1999) use probabilistic feature relevance
learning for content-based image retrieval that
computes ¯exible metrics for producing retrieval
neighborhoods that are elongated along less rele-
vant feature dimensions and constricted along
most in¯uential ones. The technique has shown
promise in a number of image database applica-
tions (Peng and Bhanu, 1999). It, however, be-
comes less appealing in situations where feature
relevance can only be captured by examining sev-
eral feature variables simultaneously. In this pa-
per, we develop techniques that attempt to
overcome this limitation.

3. Local feature relevance

In a two class (1/0) classi®cation problem, the
class label y 2 f0; 1g at query x is treated as a
random variable from a distribution with the
probabilities fPr�1 j x�; Pr�0 j x�g. We then have
f �x��: Pr�y � 1 j x� � E�yjx�. To predict y at x,
f �x� is ®rst estimated from a set of training data
using techniques based on regression, such as the
least-squares estimate. The Bayes classi®er can
thus be applied to achieve optimal classi®cation
performance. In image retrieval, however, the
``label'' of x is known, which is 1 (positive image)
in terms of the notation given above. All that is
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required is to exploit di�erential relevance of the
input features to image retrieval. In the absence of
any variable assignments, the least-squares esti-
mate for f �x� is E�f � � R f �x�p�x�dx, where p�x�
is the joint density. Now given only that x is
known at dimension xi � zi. The least-squares es-
timate becomes E�f j xi � zi� �

R
f �x�p�x j xi � zi�

dx. Here p�x j xi � zi� is the conditional density of
the other input variables.

In image retrieval, f �z� � 1, where z is the
query. Then ��f �z� ÿ 0� ÿ �f �z� ÿ E�f j xi � zi��� �
E�f j xi � zi� represents a reduction in error be-
tween the two predictions. We can now de®ne a
measure of feature relevance at query z as
ri�z� � E�f j xi � zi�. The relative relevance can be
used as a weighting scheme. The following expo-
nential weighting scheme:

wi�z� � exp�Tri z�� �
Xq

l�1

,
exp�Trl�z�� �1�

is employed in this paper. Here T is a parameter
that can be chosen to maximize (minimize) the
in¯uence of ri on wi. A discussion on the choice of
a value for T can be found in (Peng et al., 1999).
From (1), we obtain the weighted Euclidean dis-

tance D�x; y� �
���������������������������������Pq

i�1 wi�xi ÿ yi�2
q

.

In order to estimate (1), one must ®rst compute
E�f j xi � zi�. The retrieved images with relevance
feedback from the user can be used as training
data to obtain estimates for E�f j xi � zi�, hence
(1). Let fxj; yjgK

1 be the training data, where xj

denotes the feature vector representing the jth re-
trieved image, and yj is either 1 (positive image) or
0 (negative image) marked by the user as the class
label associated with xj. Since there may not be
any data at xi � zi, the data from the vicinity of xi

at zi are used to estimate E�y j xi � zi�, a strategy
suggested in (Friedman, 1994). That is,

Ê y j xi� � zi� �
PK

j�1 y1
j j xji ÿ zi j 6X
ÿ �PK

j�1 1 j xji ÿ zi j 6X
ÿ � ; �2�

where 1��� is 1 if its argument is true, and 0 oth-
erwise. X can be chosen so that there are su�cient
data for the estimation of E�f j xi � zi�. In this
paper, X is chosen such that

XK

j�1

1 j xji

ÿ ÿ zi j6X
� � C; �3�

where C6K is a constant. It represents a trade-o�
between bias and variance and should be chosen to
lie between 1 and K.

4. Feature decorrelation using local principal infor-

mation

In order for Eq. (1) to be e�ective, features must
be independent. However, this condition can
hardly be met in practice. Often, there is a degree
of correlation among the input features. Our goal
here is to seek a space into which to project data so
that the feature dimensions coincide with the ei-
genvectors of the space, whereby feature relevance
can be estimated at the query along individual
dimensions independently. The novelty here is in
choosing the space using pooled local principal
information.

We begin with linear multivariate analysis.
Given a set of q-dimensional data fxjgn

j�1, the ei-
genspace is the space spanned by eigenvectors onto
which the feature dimensions representing the
projected data are statistically uncorrelated. Let �x
denote the mean for the observed data. Then this
space corresponds to the eigenspace of the data
points xj ÿ �x, or the local covariance matrix at the
query.

In the context of image retrieval, the basic idea
is to compute xj ÿ �x at a given query using only
local information, and then perform the principal
component analysis for the local scatter matrix.
Speci®cally, let fxj�i�gn

1 be the set of n nearest
neighbors obtained at query i, and �x�i� be the as-
sociated mean vector. Also let

S�i� � 1

n

Xn

j�0

xj�i�
�

ÿ �x�i�
�

xj�i�
�

ÿ �x�i�
�t

�4�

be the scatter matrix at query i, where t denotes
transpose. We compute the space spanned by the
eigenvectors of S�i� (for query i) onto which the
feature relevance analysis of the projected data can
be performed independently along each dimension.
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The overall algorithm is summarized in Fig. 1.
Here K denotes the number of images returned to
the user, and M is an adjustable procedural pa-
rameter. In general, M � K. We call this algo-
rithm adaptive feature relevance estimation
(AFRE). Note that n is the number of data points
used to compute the local scatter matrix, whereas
M represents the number of data points projected
onto the eigenspace within which feature relevance
computation is carried out.

The algorithm just described computes the local
scatter matrix S�i� for each given query i. As such,
it is capable of computing a neighborhood that is
highly adaptive to query locations, thereby sig-
ni®cantly improving retrieval performance. On the
other hand, a potential weakness of the method is
that the estimated covariance matrix centered at
the given query might be far di�erent from the true
covariance matrix that characterizes actual data
distributions due to the nature of computation,
which is based solely on limited local samples. We
seek a method here to overcome this limitation by
®nding a space that is close to the eigenspace of the
average local scatter matrices, S�i�s, over all que-
ries.

If we denote by U an orthonormal basis for the
q-dimensional space, we can obtain the space by
minimizing the following total residual sum of
squares

R�U� �
XN

i�1

Xn

j�1

�~xt
j�i�~xj�i� ÿ ~xt

j�i�UU t~xj�i��;

where ~xj�i� � �xj�i� ÿ �x�i��, n is the number of lo-
cal retrievals, and N is the number of queries. We
can obtain the minimum of the above equation by
maximizing trU tfPN

i�1 S�i�gU , where tr represents
the trace operation of a matrix. This can be solved
by ®nding the eigenvectors of the following matrix
�S �PN

i�1 S�i�=N , which is the average scatter ma-
trices over all queries. The main bene®t of aver-
aging is that it reduces variance due to skewed local
information, thereby improving overall estimation
accuracy. If we add �S � �S � �S�i� ÿ �S�=�l� 1�;
l � l� 1 to Fig. 1, immediately after step 4, and
replace S�i� by �S in step 5, we obtain the learning
feature relevance estimation (LFRE). Here both �S
and l are initialized to zero.

While LFRE demonstrates improvements over
AFRE on the problems we examine here, it is still

Fig. 1. The AFRE algorithm.
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a rather computationally intensive process. We
propose to approximate the average scatter matrix
without compromising the level of achievable
performance. The basic assumption is that �S can
be reasonably estimated from a few representative
local S�i�s. Speci®cally, we approximate �S by in-
crementally combining the local S�i�'s computed
for the queries seen so far, similar to the way it is
computed in LFRE. However, the estimation
process stops when �S becomes su�ciently accu-
rate. Subsequent feature relevance estimates are
carried out in the space spanned by the eigenvec-
tors of �S. In this paper, we measure the accuracy
of �S using a matrix norm m. That is, we say that �S
is accurate if m��St�1 ÿ �St� is su�ciently small.
While other measures exist, we do not intend to
address this issue further in the rest of this paper.

If we replace line 4 in AFRE (Fig. 1) by the
following, and S�i� by �S in line 5, we arrive at the
approximate learning feature relevance estimation
(A-LFRE) algorithm (Fig. 2). Here �S0 is initialized
to 0, m��� represents the matrix norm operator, and
d is a constant parameter input to the algorithm.

5. Empirical results

In the following we compare three competing
retrieval methods using both real and simulated
data. (a): The probabilistic feature relevance
learning (PFRL) algorithm (Peng et al., 1999)
coupled with the exponential weighting scheme (1).
Note that this algorithm, unlike the ones described
above, computes local feature relevance in the

Fig. 2. The A-LFRE algorithm.

Fig. 3. A simple two class problem with substantial within class covariance between the two input features.
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original feature space. It does not perform feature
decorrelation. (b): The AFRE algorithm described
above. Again, the algorithm is coupled with the
exponential weighting scheme (1). (c): The LFRE
algorithm described above. Similar to (a) and (b)
above the algorithm is coupled with the exponen-
tial weighting scheme (1). Note that there is a
fourth method, the simple (unweighted) K-NN
method, that is being compared against implicitly.
The ®rst retrieval by all the three methods is based
on the unweighted K-NN method. Also, in all the
experiments, the performance is measured using
the following average retrieval precision (Peng et
al., 1999; Rui et al., 1997):

precision � Positive retrievals

Total retrievals
� 100%:

In all the experiments the input features are ®rst
normalized. The normalization is performed along
each feature dimension over the entire data set in
such a way that the normalized feature values lie
between 0 and 1. It simply removes some of the
artifacts due to di�erent scales of variables that
are generally considered undesirable in the ab-
sence of any additional information. The number
of retrieved images, K, at each iteration is set to 20
that provide relevance feedback. As far as the
relative performance of AFRE, LFRE and PFRL
is concerned, the choice of K will not alter the
qualitative behaviors of the three techniques ob-
served in the databases, provided that K is not too
small.

5.1. Simulated data experiments

5.1.1. The problem
In the simulated data experiments we use a two

class problem with substantial within class co-
variance between the two features, as shown in
Fig. 3. There are 250 data points in each class. This
problem clearly favors algorithms that ®rst rotate
the feature dimensions so that they coincide with
the eigenvectors of a sample covariance matrix,
and then perform feature relevance analysis. In
these experiments, each data point is selected as a
query, and the average retrieval precisions by the
three competing methods are reported.

5.1.2. Results
In these experiments, the procedural parameters

T (1), C (3), n and M input to the algorithms under
comparison were determined empirically that
achieved the best performance. They were set to 12
and 25 (PFRL, parameters n and M are not ap-
plicable to PFRL), 12, 22, 80 and 400 (AFRE),
and 14, 24, 80 and 400 (LFRE), respectively. Fig.
4(a) plots the performance of the three algorithms:
PFRL, AFRE and LFRE as a function of itera-
tion. Both AFRE and LFRE demonstrate per-
formance improvement over PFRL, as expected,
and more so by LFRE because of its averaging
e�ect.

Fig. 4. E�ect of feature decorrelation on retrieval. (a) Perfor-

mance of PFRL, AFRE and LFRE. (b) Performance of A-

LFRE.
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We carried out an additional experiment to ex-
amine the performance of the A-LFRE algorithm
(Fig. 2) on the same problem shown in Fig. 3. In
this experiment, 400 data points were uniformly

randomly selected, each of which was used as a
query. This process was repeated 10 times, and the
average retrieval precisions by LFRE and A-LFRE
were reported in Fig. 4(b). Note that in these ®rst

Fig. 5. Sample images from MIT database.
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experiments, we compared the results achieved by a
®xed number of updates to �S, as in the A-LFRE
algorithm, against that achieved by a total update,
as in the LFRE algorithm. The results show that

the signi®cant level of performance can be achieved
by A-LFRE with fewer �S updates. The procedural
parameters used in this experiment were 14 (T), 24
(C), 80 (n) and 400 (M) for both algorithms.

Fig. 5. (Continued)
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5.2. Real data experiments

5.2.1. Database 1
The data, taken from the UCI repository

(Murphy and Aha, 1995), consist of images that
were drawn randomly from a database of seven
outdoor images. The images were hand segmented
by the creators of the database to classify each
pixel. Each image is a region. There are seven
classes: brickface, sky, foliage, cement, window,
path and grass, each having 330 instances. Thus,
there are totally 2310 images in the database.
These images are represented by 19 real valued
attributes. These features are basically statistical
moments and line counts. For further details, see
Murphy and Aha (1995).

5.2.2. Database 2
The data are obtained from MIT Media Lab. 1

There are total 640 images of 128� 128 in the
database with 15 classes. The number of images in
each class varies from 16 to 80. The images in this

database are represented by 8 Gabor ®lters (2
scales and 4 orientations), giving rise to a 16-di-
mension feature space. The mean and S.D. of the
magnitude of the transform coe�cients are used as
feature components after being normalized by the
standard deviations of the respective features over
the images in the entire database. Fig. 5 shows
sample images from the MIT dataset.

5.2.3. Results
For both the problems, each image in the dat-

abase is selected as a query and top 20 (corre-
sponding to parameter K in the algorithms
described above) nearest neighbors are returned
that provide necessary relevance feedback. Note
that only negative images (that are di�erent from
the query) need to be marked in practice. Also, M
was set to 400 in AFRE and LFRE in these ex-
periments. The average retrieval performance by
the three competing algorithms is plotted in Fig. 6.

The ®rst iteration in Fig. 6 shows the average
retrieval precision obtained without any relevance
feedback. That is, it is the result of applying the
simple K-NN method using unweighted Euclidean
metric. The second iteration and beyond show the

Fig. 5. (Continued)

1 Whitechapel.media.mit.edu/pub/VisTex.
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average retrieval precision obtained after learning
has taken place. That is, relevance feedback ob-
tained from the previous retrieval is used to esti-
mate local feature relevance, hence a new
weighting. The procedural parameters T (1), C (3)
and n input to the algorithms under comparison
were determined empirically that achieved the best
performance. They are by no means exhaustive.
For the UCI image database, they were set to 13
and 19 (PFRL, parameter n is not applicable to
PFRL), 13, 21 and 200 (AFRE), and 13, 27 and
200 (LFRE), respectively; while for the MIT image
database, they were set to 13 and 20 (PFRL, again
n is not applicable to PFRL), 15, 19 and 50
(AFRE), and 14, 19 and 70 (LFRE), respectively.

It can be seen from Fig. 6 that LFRE demon-
strates performance improvement across the tasks
and over both PFRL and AFRE. However, the
improvement is most pronounced on the MIT data
set. The reason is that features based on Gabor
wavelet ®lters exhibit a degree of correlation be-
cause these ®lters partially overlap. On the other
hand, the features representing the UCI data set
are less correlated. Overall, the results show con-
vincingly that feature decorrelation plays an im-
portant role in improving feature relevance
estimates.

An additional experiment was also carried out
to examine the performance of the A-LFRE algo-
rithm (Fig. 2). In this experiment, 600 images are
randomly chosen from the MIT database as query
images. We ran both LFRE and A-LFRE on this
database and obtained the average retrieval preci-
sions on the query sets. We repeated this process
for 10 times, and plotted the average precisions
over the 10 runs at iterations 1, 2, 3, 4 and 5 in Fig.
7. Note that instead of computing a matrix norm to
measure the accuracy of �S, as a ®rst approximation
A-LFRE simply computes a ®xed number of up-
dates to �S, after which �S is ®xed throughout.

The plots in Fig. 7 show that after only a few
updates of the average scatter matrix A-LFRE
approached the level of performance obtained by
LFRE. Furthermore, A-LFRE did so with far less
computation than that required by LFRE, thereby
demonstrating its computational e�ciency and
advantage in practical applications. We performed
similar experiments on the UCI database, where
2000 images are randomly selected as query im-
ages. We omit the details of the experiments except
stating that similar results to that of the MIT
database were obtained.

5.2.4. Discussions
One might contemplate to use a covariance

matrix computed from a set of samples to decor-
relate the entire database o�-line, and then to
perform feature relevance estimate in the trans-
formed feature space using the techniques pre-
sented in this paper. There may be several reasons
against such an idea. The most important one is
when the database is dynamic, then an o�-line
operation may not be feasible. In one experiment

Fig. 6. E�ect of feature decorrelation on retrieval. (a) Perfor-

mance of PFRL, AFRE and LFRE on the UCI data set. (b)

Performance of PFRL, AFRE and LFRE on the MIT data set.
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the entire UCI data set is used to compute the
scatter matrix. We then project the original data
into the eigenspace of the matrix and perform
corresponding feature relevance estimates. We
obtained the following average retrieval precisions
at iterations 1, 2, 3, 4 and 5: 91.14, 94.99, 96.07,
96.70 and 96.86, respectively. These results and
those obtained earlier (the UCI data set in Fig.
6(a)) clearly favor the on-line techniques proposed
in this paper. We obtained similar results on the
MIT database.

Two databases used here have a relatively small
number of data in each class. The e�ectiveness of
AFRE and LFRE in databases where each class
may contain a large number of images depends
critically on the e�ectiveness of PFRL (Peng et al.,
1999) in such databases, since both AFRE and
LFRE can be viewed as a special case of PFRL
that computes feature relevance in the eigenspace
of a scatter matrix. For a detailed empirical eval-
uation of PFRL in such databases, please see Peng
and Bhanu (1999).

6. Conclusions

This paper presents a novel method for learning
the di�erential feature relevance for a given query

that takes into consideration the correlation be-
tween features. In addition to exploring and ex-
ploiting local discriminant information, the system
seeks a global space for e�cient independent fea-
ture analysis by combining such local information.
Furthermore, by accumulating experience ob-
tained at each iteration the system is capable of, to
the extent possible, continuously improving its
retrieval performance. The experimental results
presented demonstrate the potential for substan-
tial improvements in both the technique presented
here and simple K-NN search.
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